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Abstract
Snow, from its fall until its full melting, undergoes a structure
metamorphism governed by temperature and humidity fields. Among the
many possible mechanisms that contribute to snow metamorphism, those
that depend only on curvature are the most accessible to modelling. The
isothermal metamorphism of a dry snow sample near 0˚C is addressed in
this paper. Near 0˚C, the vapour pressure of water is high: the
metamorphism can be considered, in first approximation, as fully
curvature-driven. This corresponds to neglect crystallographic orientation
and diffusion-limited effects.

Based on Kelvin’s and Langmuir–Knudsen equations, a growth law of
the ice phase can be analytically obtained. In this law, the variation of the
local volume fraction is proportional to the difference between integral and
local curvatures. A simple numerical model was implemented in three
dimensions and applied on real tomographic images.

1. Introduction

Dry natural snow (T < 0˚C) can be considered as a volatile
porous medium, prone to sublimation/condensation processes
that alter its microstructure. Such metamorphism occurs in the
presence of a temperature gradient (this often leads to faceted
structures like depth hoar [1]), or not (then smooth shapes
are obtained). In isothermal metamorphism, snow grains
are allowed to evolve toward their equilibrium crystal shapes
that minimize the surface energy of the set {grains + grain
boundaries}. Close to 0˚C, the vapour pressure is high and one
can assume that possible grain boundary effects [2–4] would
only affect the contact angle between grains. The rest of the

1 Author to whom correspondence should be addressed.

grain surface is expected to be driven by the minimization
of its local mean curvature, and possibly limited by vapour
diffusion across the pores. The easiest way to carry out
modelling is to take the local curvature as the only driving
force. The validity of this assumption will be discussed in
the following, and evaluated in a later work by running the
model at a higher resolution (>6003 voxels). We consider
this stage as a starting point for modelling the metamorphism
of real three-dimensional snow microstructures. We present a
simple three-dimensional model based on the two-dimensional
work of Bullard [5, 6], but using a more accurate geometric
description of the grain surfaces [7–9]. It computes iteratively
the curvature map of the three-dimensional snow image,
then transfers solid matter from high to low mean curvature
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regions. Together with this model, we describe a recent
experiment of isothermal metamorphism that is documented
with tomographic images taken at the ESRF ID19 beamline.
Although the image processing is still in progress, some
preliminary tests of our model on subsamples of real data
are finally presented and discussed.

2. Model

2.1. Principle

Here are presented the main hypotheses of our model and their
physical motivations.

2.1.1. Driving force of the isothermal metamorphism.
Isothermal metamorphism of a dry snow sample is known to
be driven by the minimization of its interfacial energy. This
results in a minimization of the difference in vapour partial
pressure between two points of the ice surface. Let γ be
the surface tension between ice and vapour and � the molar
volume of ice. The vapour partial pressure P(C) of a point of
mean curvature C is given by the Kelvin’s equation:

P(C) = P0 exp

(
2γ�C

RT

)
(1)

where R is the universal gas constant, T the temperature of
snow and P0 the vapour pressure on a flat surface. As generally
(2γ�C/RT ) � 1, we have:

�P = P − P0 � P0

(
2γ�C

RT

)
(2)

2.1.2. Evaporation–condensation mechanism. Many
mechanisms can be invoked to descript the mass transfer
[10]. Intensive experimental work [11, 12] used laws from
metallurgy [13] to find out the governing mechanisms. For
experimental [14] and theoretical reasons [15], these works
led to contradictory results. In our model, we assume that
metamorphism is limited by the evaporation–condensation
mechanism. This approximation corresponds to suppose
that the vapour diffusion in the air is fast enough so that
the vapour partial pressure is homogenous in the air phase.
Surface diffusion, which generally occurs at first stages
of the metamorphism [16] is neglected here. Due to its
very high constant time, solid migration in the bulk is
neglected too. Note that although ice matrix is a polycrystal,
crystallographic orientations and grain boundary effects can
generally be omitted for isothermal metamorphism at ‘high’
temperature (0 to −5˚C). The evaporation–condensation is
easy to implement and seems to be the mostly relevant to
isothermal metamorphism: further validations of the model
would confirm (or infirm) this mechanism. Assuming that
Langmuir’s equation is valid for mass transport in the gas
phase, the flow rate, j , of the vapour deposition on a point
of the surface is given by

j = α(Pamb − P)

(2πMRT )1/2
(3)

where Pamb is the ambient partial vapour pressure, α a positive
constant and M the molar mass of water.

From equations (2) and (3), we have:

j = αγP0�

(
2

πM(RT )3

)1/2

(Camb − C) (4)

where Camb denotes the curvature corresponding to the ambient
partial vapour pressure.

Hence,
j = k(Camb − C) (5)

with k the rate constant of the evaporation–condensation
mechanism. It can be noted that this formulation
is equivalent to the surface-attachement-limited-kinetics
(SALK) formulation introduced by Carter et al (see [6, 17]).

The change in solid volume fraction vp of any surface
volume element p during a time increment �t can be
expressed as:

�vp = j
�

V 0
p

Sp�t (6)

where V 0
p is the volume occupied by one volume element

(voxel) and Sp the amount of surface lying within the
voxel p.

Hence, we have

�vp = k0(Camb − Cp)Sp�t (7)

where k0 is a constant term, independant of p.
To simulate a metamorphism where mass remains

constant, Camb should verify

Camb =
∑

S CpSp∑
S Sp

(8)

where the voxels belonging to S are the surface voxels of the
image.

Note that another expression of Camb can be chosen to
act as a source or a sink of matter. It can then simulate
other evaporation–condensation mechanisms with global mass
variation.

2.2. Algorithm

To each surface voxel is assigned a volume fraction value vp,
from −1 to 1, which accounts for the state of the surface
boundary at a subvoxel scale: if the volume fraction is nearing
−1, the considered voxel is about to disapear. If it is near
1, a neighbouring voxel will soon appear. When the levels
of ±1 are reached, the binary image is updated by adding or
removing the appropriate voxels. The volume fractions vp of
the new interface voxels are then set to zero. At the beginning
of the simulation, the volume fraction is assigned to zero for
each surface voxel.

The algorithm consists in the following iterative
method:

• The normal vector field of the binary image is first
computed using an original discrete algorithm [8]. This
adaptive method optimizes the smoothing of discretization
effects while preserving relevant details of the numerical
object.
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• Then a three-dimensional curvature algorithm [7] is
applied on this normal field: in each surface voxel p,
the values C1,p and C2,p of the two-dimensional curvature
are computed on two orthogonal planes by fitting the
discrete arcs by a parabola. The three-dimensional
curvature Cp on p is obtained as follows:

Cp = 1
2 (C1,p + C2,p) (9)

• The curvature Camb corresponding to the ambient
vapour pressure is estimated according to equation (8).
The quantity Sp, which depends on the normal vector in
voxel p, is estimated by a voxel projection algorithm [9].

• For each surface voxel, the volume fraction variation
�vp, which should be added to the previous value of
vp, is estimated according to equation (10). To save
computation time, the time increment �t is adapted at
each stage of the metamorphism so that:

�t = |�vmax
p |

k0 maxp∈S((|Camb − Cp|)Sp)
(10)

where �vmax
p is the volume fraction increment that

corresponds to add or remove an entire voxel in one
iteration, i.e. ±1. As k0 depends on numerous physical
constants whose a part (in particular, α coefficient) is not
precisely known, its value was arbitrary set to the unity.
It implies that experimental and numerical times differ by
an undetermined multiplicative constant.

• The new binary image is created according to the values
of vp:
— if vp � −1, the voxel p is removed of the ice phase.
— if vp � +1, p is removed of the vapour phase.

• The previous method is applied to the new image.

3. Experiment of isothermal metamorphism

3.1. X-ray microtomography

A three-month long experiment of isothermal metamorphism
at −2˚C was run at Col de Porte, Charteuse mountain,
French Alps, to provide tomographic three-dimensional
data for the validation of metamorphism models. Three-
dimensional images of snow samples (9 × 9 mm2 cylinders)
were obtained at the ESRF ID19 beamline by x-ray absorption
microtomography [18] using a specially designed refrigerated
cell [19]. All the images were obtained at 18–20 keV, with a
voxel size of 4.91 µm.

3.2. Sample preparation

A 0.5 × 1 m slab of recent snow was first collected on the field
(on 01/16/02) 15 h after the snow fall (exterior temperature
−1˚C, slab thickness 12 cm), then stored in a closed styrodur
box (to prevent sublimation) inside the cold room carefully
held at −2±0.2˚C for three months; till the end of sampling, all
manipulations were done in the cold room at this temperature.
A 3 cm wide core was sampled at increasing intervals, ranging
from 24 h at the beginning to one week at the end of the
experiment. All samples were taken at mid-height of the slab,
always more than 10 cm away from already sampled regions
of the slab.

Once sampled, each core was impregnated by
1-chloronaphtalene (90% purity, ACROS, practical melting
range after raw fractioned crystallization −15/−20˚C), then
allowed to freeze and stored in a refrigerator at −20˚C. Owing
to the stiffness of its cyclic molecule, this low toxicity filler
is readily machined close to its melting point; moreover,
its absorption properties allow to distinguish ice, filler and
remaining air bubbles on 9 mm wide samples at 18–20 keV.
Of course, it does not dissolve water. At the end of the meta-
morphism experiments, the cold room was set to −25˚C, each
strengthened core was machined into the shape of a 9×9 mm2

cylinder and sealed into a gas-tight sample holder made of
0.2 mm thick plexiglas. Secured samples were stored till the
beginning of the tomography in a refrigerator at −50˚C.

3.3. Image processing

The grey-level images, reconstructed at the ESRF from each
set of 1500 radiographs, were contoured using the following
semi-automatic procedure:

• Normalization, then first neighbours three-dimensional
averaging, i.e. three-dimensional averaging in a 33 cubic
neighbourhood around the considered point.

• Two-dimensional bubbles detection in each plane owing to
phase contrast: to locate a bubble, any of three demanding
criteria (very dark, very pale, high gradient) should be
fulfilled.

• A two-dimensional median morphological filter was
applied in order to remove noise speckles.

• Three-dimensional averaging in a 53 cubic neighbourhood
around the considered point. An auto-threshold by
factorization [20] was then used to obtain the desired black
and white (B/W) three-dimensional image.

• B/W first-neighbours three-dimensional averaging bring-
ing back 256 grey-levels in the image, followed by a
tresholding at level 127.

• For each plane, visual verifications and manual
corrections.

As can be seen in figure 1, the B/W image obtained
by the above procedure is generally in good agrement with
the original reconstructed plane. The precision of the
contour can be estimated to ±3 voxels. Manual corrections
were necessary only in regions where experimental problems
happened (air bubbles producing undesired air/ice interfaces,
ring artefacts, etc). They had to be done on about 15% of the
processed section planes.

The three-dimensional images obtained are 600 voxel
wide, which amounts to a considerable quantity of volumic
data. To allow reasonable processing times for our normal and
curvature algorithms, the resolution of the three-dimensional
images were reduced by a factor 2 in the 3 axes. Thus, in
all the three-dimensional snow images presented in this paper,
one voxel corresponds to 9.82 µm.

4. Preliminary results and discussion

The model was first tested on geometrical shapes of small size,
then applied to snow data and compared to the real isothermal
metamorphism experiment presented in the previous part.
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(a) (b)

Figure 1. Image processing: a grey level original plane (a) and the same plane with the resulting contouring obtained (b), without manual
corrections. The precision of the contour was estimated to ±3 voxels.

Figure 2. Metamorphism model applied on simulated data. Image
edge: 64 voxels.

4.1. Validation on simulated data

The qualitative soundness of the model can be assessed by
testing the well-known effects of isothermal metamorphism:
edge smoothing and growth on concavities can be respectively
observed in figures 2(a) and (b). The growth of the largest
grains thanks to the smallest ones can be seen in figure 2(c).
The problem of neck growth or removal is addressed in
figures 2(d) and (e). The evolution of a neck is directly related
to its initial size. Note that it is a typical three-dimensional
phenomenon: in two dimensions, a neck is always growing,
whatever its size is.

In most simulations some instabilities appear at long
timescales (see the end of simulation 2(d)). This is due
to the used curvature algorithm, which may not take into
account the curvature discrepancy on small neighbourhoods.
A new curvature algorithm is now in progress to solve this
problem.

(a)

(b)

Figure 3. First (a) and last (b) stages of the isothermal experiment:
grains are clearly growing and rounding during the metamorphism.
Image edges are 256 voxel (∼2.5 mm) wide.

4.2. Validation on real data

In figure 4(a) are presented some stages given by the
metamorphism model when applied on a capped column which
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Figure 4. Metamorphism on real data: simulations on a capped column (a) taken in a fresh snow image (image edge: 150 voxels).
Simulation (b) was obtained by applying the model to a subvolume of the first experimental image 3(a). The simulation is compared to
experimental samples at the same resolution (c) (image edge: 128 voxels).

was extracted from a fresh snow tomographic image. Such
an evolution seems very realistic, except for small remaining
particles which are disappearing too slowly. As explained
above, the used curvature algorithm is unable to process
correctly very small neighbourhoods. As the number of such
points is very small, we assume it does not disturb the general
evolution of the snow particle.

In figures 3 and 4(c) are presented some stages of the
isothermal metamorphism experiment. These figures can be
compared to figure 4(b) where the model was applied on an
extract of the first experimental image 3(a).

As explained in section 2.2, experimental and numerical
times only differ by an undetermined constant. In the range
of time considered for the experimental data, both the mean
curvature and specific surface area seem to follow a logarithmic
law (see figure 5). By plotting the mean curvature and
specific surface area evolutions of the simulation in the same
logarithmic graphics, one can observe the global soundness
of the model: simulated data can be lineary fitted and have a
slope error inferior to 15% of the experimental slope for the two
quantities. Note that simulations where applied on subsamples
of the original images: the representative volume is not reached
in this case. This explains the vertical shift between simulated
and real data.

To go deeper into validations, other images of the
experimental metamorphism will be processed and simulations
will be applied on representative volumes. Note that the
real metamorphism, due to packing effects, differs from the
simulated one in two significiants points: the preservation
of the connectivity and the mass conservation. In the real
snowpack, when a grain is disconnecting from the others,
it falls on the other ones. This phenomenon is preserving
the connectivity while resulting in a densification of the
snow microstructure. To improve the current model, it will
be necessary to simulate such gravity effects. With such
an improvement, it will be possible to obtain a valuable
relationship between numerical and real times. It will
then be possible to discuss the soundness of the chosen
evaporation–condensation mechanism.
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Figure 5. Mean curvature (a) and specific surface area (b)
evolutions during real and simulated metamorphisms. Time is
expressed in hour for real metamorphism and in numerical time
(arbitrary) for simulated evolution. To allow comparison between
real and simulated metamorphisms, the graphics are in logarithmic
scale: the first points of each curve, where the logarithm is not
defined (t = 0), were omitted.

5. Conclusion

A simple three-dimensional model of curvature-driven
sintering has been presented together with an experiment
monitoring the isothermal metamorphism of natural snow
in three dimensions. This model assumes that the local
mean curvature of the solid phase is the main driving force
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of such transformations. Presently, some basic features of
the isothermal metamorphism are already simulated on small
numerical samples. The next step will be to account for
grain packing (by gravity) and to speed up our curvature
algorithm. By simulating a realistic sintering on 6003 voxel
images that describe a few hundred grains, we expect to
check conclusively our assumption that curvature governs real
isothermal metamorphism. We also expect to assess in three
dimensions the importance of grain boundary effects on a real
case of snow metamorphism, by comparing simulated and
real concave regions. This may provide some guidelines for
chosing further improvements to be implemented in models of
snow microstructure.
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