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1

Basic hypotheses and related

constants

Arpege-IFS is a complex code designed not only for weather forecast or
climate simulation, but also for data assimilation, forecast pre- and post-
processing. It has been extended, diversified and complexified since 1986
jointly by Météo-France and ECMWF. The present documentation restricts
to the description of the French climate version of Arpege-IFS. Some fea-
tures are not compatible with the version used by ECMWF. In this case, we
will use the term Arpege. Some features are specific to the French climate
version, and we will use the term Arpege-climat. The core of the model
is cycle 37T1 of Arpege-IFS.

Arpege-climat is now an atmosphere-only model. So the calculations
concerning the surface boundary layer, vegetation, snow cover and soil are
done in Surfex (SURFace EXternalisée), which is another model. Surfex

simulates the exchanges of momentum, heat, water, carbon dioxide concen-
tration or chemical species between the surface and the atmosphere. It uses
the concept of ’tile’ to describe the surface (nature, town, sea, water) and can
perform different parametrizations. Each surface grid box is made of the four
adjacent tiles. The coverage of each of these surfaces is known through the
global ECOCLIMAP database. Surfex receives atmospheric forcing terms,
runs the surface schemes, computes the average surface fluxes over the na-
ture, town, sea and water weighted by their respective fraction and sends
them back to the atmosphere in addition to radiatives terms. All this infor-
mation is then used as lower boundary conditions for the atmospheric radia-
tion and turbulent schemes. The complete documentation on Surfex (Sur-
fex main scientific documentation v2 and Surfex V8_0 user’s guide) is avail-
able on the web site http://www.umr-cnrm.fr/surfex//spip.php?rubrique141.

The model relies upon a geometrical assumption: the thin layer approxima-

http://www.umr-cnrm.fr/surfex//spip.php?rubrique141
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tion, and a certain number of phenomenological assumptions such as the law
of perfect gases or the hydrostatic approximation. With these assumptions
a set of basic constants is presented here.

1 Astronomical constants

This section follows the last recommendations of the International Astro-

nomical Union. It should be noted that the formulas are not valid for dates
too far away from the 1st January 2000 (more than one century).

1.1 Calendar

The calendar used is the Gregorian calendar. The dates are given in the
form:

AAAAMMJJ, sssss

with:





AAAA year,
MM month,
JJ day,
sssss seconds in the day.

1.2 Time

The length of the day is:

d = 86400 s

Time t is expressed in seconds, the date of reference being 20000101.43200
(2451545.0 in Julian calendar). It is negative before this date and positive
afterward. t is deduced from the calendar date by:

t = (JD − 2451545)86400 + sssss

with JD, date in the Julian calendar (E indicating the integer part):

JD = 1720994.5 +K + E(365.25a) + E(30.601(m+ 1)) + JJ
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and:

a =

{
AAAA, if MM > 2
AAAA− 1, if MM ≤ 2

m =

{
MM, if MM > 2
MM + 12, if MM ≤ 2

K = 2− E(a/100) + E(E(a/100)/4)

1.3 Astronomical elements

In the following we set:

θ = t/(dyj)

with:

yj = 365.25 days

The constants between square brackets are not used in the model; however,
we provide them because they form a consistent set with those needed by
the model.

half great axis ea = 149597870000 m ± 5 10−5

[ excentricity 0.016704± 10−4 ]
[ inclination 0± 2 10−4 ]

mean longitude el = 1.7535 + 6.283076 θ
[ longitude of perihelion 1.79661 + 0.0000563 θ ]
[ longitude of ascending node 6.1937 if t < 0, 3.0521 if t > 0 ]

mean anomaly eM = 6.240075 + 6.283020 θ
Sun-Earth distance Rs = ea(1.0001− 0.0163 sin(el)

+0.0037 cos(el))

1.4 Sun trajectory relative to Earth

mean longitude ls = 4.8951 + 6.283076 θ
true longitude Ls = 4.8952 + 6.283320 θ

−0.0075 sin(el)− 0.0326 cos(el)
−0.0003 sin(2el) + 0.0002 cos(2el)

[ true latitude 0 ]
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obliquity ǫs = 0.409093
declination δs = Asin(sin(ǫs) sinLs)

[ right ascension 0 ≤ αs ≤ 2π ]
[ cos(αs) cos(δs) = cos(Ls) ]
[ sin(αs) cos(δs) = sin(Ls) cos(ǫs) ]

equation of time Et = 591.8 sin(2ls)− 459.4 sin(eM )
(true solar time − +39.5 sin(eM ) cos(2ls)
mean solar time) −12.7 sin(4ls)− 4.8 sin(2eM )

Over the period 1980–2020, the relative accuracy on Rs is of 5 10−4, the
accuracy on the various angles is of 5 10−4 rd, and that on equation of time
is of 10 s. These constants implicitly define the length of the sidereal year:

ys =
2π d yj
6.283076

and therefore the length of sidereal day:

ds =
d

1 + d/ys

and earth rotation:

Ω =
2π

ds

2 Geometry, geoid

2.1 Geometry

We mentioned in the introduction that the thin layer assumption is the base
of Arpege-IFS equations. To make sense, it requires the choice of one
surface on which the equations are written.

As we write the momentum equation in vorticity-divergence, the Laplacian
operator must have his kernel reduced to constant functions; we suppose
moreover than the surface is of revolution around the axis of rotation of the
planet.
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2.2 Coordinate system

On the horizontal, we use longitude λ varying from 0 to 2π to parametrize
the circles of revolution. The East is directed towards increasing longitudes.
In the orthogonal direction, we use µ variable from −1 at South pole to +1
at North pole (by definition) to parametrize the surface generator.

On the vertical, we use a coordinate η varying from 0 at the top of the fluid
to 1 at the bottom. This vertical coordinate has no geometrical significance
with the ordinary metrics. The 3d metrics is obtained as the product of
horizontal metrics by vertical one.

2.3 Geoid

The preceding assumptions imply that the vertical coordinate does not have
any geometrical significance and that gravity is not explicitly used. In place
we need two infinitely close equipotential surfaces between which the equa-
tions are written. We make the additional assumption that for the descrip-
tion of the Earth, equipotential surfaces are spheres of radius a (average
value of the reference ellipsoid):

a = 6371229 m

To transform an elevation value into geopotential in J kg−1, it should be
multiplied by the conventional value:

g = 9.80665 ms−2

If we used an ellipsoid instead of a sphere, gravity would vary with the
latitude according to a formula close to that of Clairault, but it would not
appear explicitly in the equations and the preceding remarks would remain
valid.

Because of the sphericity assumption, the notions of “North, East, longi-
tude . . . ” used above should not be taken in their geographical meaning
since, as we will see further, the pole of the coordinate system is not neces-
sarily in the Arctic.

3 Fundamental constants

light speed c = 299792458 ms−1

Planck’s constant h = 6.6260755 10−34 J s
Boltzmann’s constant k = 1.380658 10−23 J K−1

Avogadro’s number N = 6.0221367 1023 mol−1



14 1. Basic hypotheses and related constants

4 Radiation

Stefan-Boltzmann’s constant σ =
2π5k4

15c2h3

solar constant I0 = 1370W m−2

5 Thermodynamics, gas phase

The fluid is a mixture of dry air, of water in gas, liquid and solid phases.

gas constant R = Nk
dry air molar mass Ma = 28.9644 10−3 kgmol−1

water vapor molar mass Mv = 18.0153 10−3 kgmol−1

Ra =
R

Ma
J kg−1K−1

Rv =
R

Mv
J kg−1K−1

It is supposed here that dry air and water vapor are perfect gases. The
maximum error is 0.1 %.

cpa =
7

2
Ra

cva =
5

2
Ra

These quantities are not constant in the atmosphere. But this assumption is
coherent with the approximation of perfect gases, and the error introduced
is less than 1 %.

cpv = 4Rv

cvv = 3Rv

In the case of water vapor, supposing them constant leads to an error less
than 5 %.

If one activates the optional “prognostic physical parametrizations”, atmo-
sphere contains also four species: cloud water, cloud ice, rain water and rain
ice.
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6 Thermodynamics, liquid phase

water molar mass Ml = Mv

massic volume vl = 0

cpl = cvl = cl = 4.218 103 J kg−1K−1(value at triple point Tt)

The identity between cpl and cvl is very well satisfied and is coherent with
the constancy of the massic volume. The fact that cl is constant is satisfied
with less than 1 % error in the temperature range [0◦C, 30◦C], but the error
grows for the negative temperatures and reaches 12.5 % at −40◦C.

7 Thermodynamics, solid phase

Mg =Ml

vg = vl

cpg = cvg = cg = 2.106 103 J kg−1K−1(value at Tt)

Actually, cg decreasing linearly with the temperature, the error introduced
is 13 % at −40◦C.

8 Thermodynamics, phase transition

triple point Tt = 273.16 K

8.1 Vaporization

Lv(T ) = Lv(Tt) + (cpv − cl)(T − Tt)

Lv(Tt) = 2.5008 106 J kg−1

It is supposed that Lv is independent of the pressure, which is accurate at
0.5 %, and is coherent with vl = 0.
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8.2 Sublimation

Ls(T ) = Ls(Tt) + (cpv − cg)(T − Tt)

Ls(Tt) = 2.8345 106 J kg−1

cpv−cg is an order of magnitude weaker than cpv−cl; however, to neglect the
variation of Ls with temperature, it would be necessary to write: cg = cpv .

8.3 Melting

Lf = Ls − Lv

9 Consequences on saturation

With vl = 0, Clapeyron’s equation becomes:

d ln(es)

dT
=

Lv

RvT 2

Using the expression of Lv, and integrating from:

(Tt, es(Tt) = 611.14 Pa )

yields:

ln(es) = αl −
βl
T

− γl lnT

with:

αl = ln(es(Tt)) +
βl
Tt

+ γl lnTt

βl = Lv(Tt)/Rv + γlTt

γl =
cl − cpv
Rv

In the presence of ice, the formula remains valid if the l are replaced by g.
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10 Thermodynamic functions

The thermodynamic functions are gathered in the block of declarations FCT-
TRM. They are divided into two groups: the first corresponds to the absolute
functions and to the second to the approximate functions whose approxima-
tions are consistent with the above statements. This module is inserted in all
the subroutines which require thermodynamic calculations. Thus coherence
between the various parts of the code is ensured.

Notations:

• Tt temperature of water triple point

• γl = (cl − cpv)/Rv

• γi = (ci − cpv)/Rv

• βl = Lv(Tt)/Rv + γlTt

• βi = Ls(Tt)/Rv + γiTt

• αl = ln es(Tt) + βl/Tt + γl lnTt

• αi = ln es(Tt) + βi/Tt + γi lnTt

• δ index for liquid/solid calculation: δ =

{
1 if liquid whatever T
0 if solid whatever T

• δT index of temperature positivity: δT =

{
1 if T ≥ Tt

0 otherwise

10.1 Absolute Functions

Latent heat of vaporization:

Lv(T ) = RLV(T ) = Lv(Tt) + (cpv − cl)(T − Tt)

Latent heat of sublimation:

Ls(T ) = RLS(T ) = Ls(Tt) + (cpv − ci)(T − Tt)

Latent heat of fusion:

Lf (T ) = RLF(T ) = Ls(T )− Lv(T )
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Saturation pressure above liquid water:

esl(T ) = ESW(T ) = exp

[
αl −

βl
T

− γl lnT

]

Saturation pressure above solid water:

esi(T ) = ESS(T ) = exp

[
αi −

βi
T

− γi lnT

]

Saturation pressure above liquid/solid water:

es(T ) = ES(T )

= exp

[
αl + (αi − αl)δT −

βl + (βi − βl)δT
T

− (γl + (γi − γl)δT ) lnT

]

10.2 Functions in the model parametrizations

Saturation pressure:

es(T, δ) = FOEW(T, δ)

= exp

[
αl + (αi − αl)δ −

βl + (βi − βl)δ

T
− (γl + (γi − γl)δ) lnT

]

Derivative of the logarithm of the saturation pressure:

∂ ln es
∂T

(T, δ) = FODLEW(T, δ) =
βl + (βi − βl)δ − (γl + (γi − γl)δ)T

T 2

Saturation specific moisture:

qs = FOQS(
es
p
) =

es/p

1 + (Rv/Ra − 1)max(0, 1− es/p)

This formulation makes it possible to have:

qs =





es/Rv

(p− es)/Ra + es/Rv
if es(T ) ≤ p

es
p

if es(T ) ≥ p
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Derivative saturation of specific moisture:

∂qs
∂T

= FODQS(qs,
es
p
,
∂ ln es
∂T

) =
qs − q2s
1− es/p

∂ ln es
∂T

Latent heat:

L(T, δ) = FOLH(T, δ)
= Rv [βl + (βi − βl)δ − (γl + (γi − γl)δ)T ]
= Lv(Tt) + [Ls(Tt)− Lv(Tt)] δ + [cpv − cl + (cl − ci)δ] (T − Tt)
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Dynamics equations

1 Introduction

Each equation of the model can generally write as:

dX

dt
= A+ F

where X is a prognostic variable, the evolution of which one wants to know.
A represents all the effects which can be explicitly represented for the current
resolution (often named “adiabatic effects”). They are:

• Coriolis force (momentum equation)

• pressure-gradient force term (momentum equation)

• conversion term (temperature equation)

• divergence term (continuity equation)

F represents all the sub-scale effects (often named “diabatic effects”) which
are calculated by physical parametrization routines. They are:

• radiation

• clouds and turbulence

• large-scale precipitations

• vertical diffusion
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• convection

• orographic gravity wave drag

• soil, snow and vegetation

The time derivative of X means the total temporal derivative, including
advection, also known as Lagrangian derivative.

2 Primitive equations in Eulerian form

Making the hydrostatic assumption, we use for vertical coordinate a hybrid
coordinate η(p, ps) derived from the pressure coordinate p and terrain fol-
lowing. It must satisfy:





η(0, ps) = 0
η(ps, ps) = 1
∂η

∂p
(p, ps) > 0

This vertical coordinate η is defined by two functions A(η) and B(η), in such
a way that the pressure at a given point is:

p = A(η) +B(η)ps

where ps is surface pressure. We have:

A(0) = 0 A(1) = 0
B(0) = 0 B(1) = 1

ensuring for η-surfaces to follow orography at the bottom and to be pressure
surfaces at the top. The model does not need to explicitly know the func-
tional form of A and B, only their values at the interface of the layers are
necessary.

The hydrostatic assumption leads to the equation:

∂Φ

∂η
= −

RT

p

∂p

∂η

which is used as a diagnostic equation to calculate geopotential Φ on level p
by an integral starting at the lower boundary condition Φ(ps) = Φs.
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The evolution of the parameters which define the state of the atmosphere,
horizontal wind ~v, temperature T and mass moisture ratio qv is controlled
by the following equations, where the total temporal derivative is written as:

dX

d t
=
∂X

∂t
+ ~v∇X + η̇

∂X

∂η
(1)

Momentum equation

d−→v

d t
+ 2Ω× ~v︸ ︷︷ ︸

Coriolis

+RT∇ ln p+∇Φ︸ ︷︷ ︸
pressure force

= −g
∂η

∂p

∂
−→
F~v
∂η

+
−→
S~v +

−→
K~v (2)

To conserve momentum in the vertical discretization, the acceleration term
due to the pressure force is transformed into:

∂η

∂p

(
Φ∇

∂p

∂η
−
∂Φ∇p

∂η

)
+∇Φ

Thermodynamics equation

d T

d t
− κT

ω

p︸ ︷︷ ︸
conversion

= −
g

cp

∂η

∂p

∂Fh

∂η
+ Sh +Kh (3)

Moisture equation

d qv
d t

= −g
∂η

∂p

∂Fqv

∂η
+ Sqv +Kqv (4)

In the above equations one takes:

R = qaRa + qvRv

cp = qacpa + qvcpv

κ =
R

cp

The terms in the right-hand members of Equations (2), (3) and (4) respec-
tively represent vertical fluxes (noted F ), sources (noted S) and horizontal
diffusion (noted K) of momentum, enthalpy, and specific moisture.

The continuity equation is written as:

∂

∂η

(
∂p

∂t

)
+∇ ·

(
~v
∂p

∂η

)
+

∂

∂η

(
η̇
∂p

∂η

)
= −g

∂Fp

∂η
(5)
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Fp is the mass flux, no source term being considered.

By integrating, one obtains the evolution equation of surface pressure:

∂ps
∂t

= −

∫ 1

0

∇ ·

(
~v
∂p

∂η

)
dη − gFp(1)

vertical velocity in pressure coordinate:

ω = −

∫ η

0

∇ ·

(
~v
∂p

∂η

)
dη + ~v · ∇p− gFp(η)

and vertical velocity:

η̇
∂p

∂η
= −

∂p

∂t
−

∫ η

0

∇ ·

(
~v
∂p

∂η

)
dη − gFp(η)

The momentum equations are integrated divergence and rotational form:

∂ζ

∂t
= ∇×

(
−→
H~v − g

∂η

∂p

∂
−→
F~v
∂η

+
−→
S~v

)
+Kζ

∂D

∂t
= ∇ ·

(
−→
H~v − g

∂η

∂p

∂
−→
F~v
∂η

+
−→
S~v

)
−∆(Φ + Ec) +KD

with:

Hu = (ζ + f)v − η̇
∂u

∂η
+
∂η

∂p

∂Φ

∂η

1

a

∂p

∂λ

Hv = −(ζ + f)u− η̇
∂v

∂η
+
∂η

∂p

∂Φ

∂η

(1− µ2)

a

∂p

∂µ

Ec =
1

2

(
u2 + v2

)

The wind is calculated from velocity potential χ and stream function ψ by:

~v = ∇χ+∇× ψ

Velocity potential and stream function are obtained from divergence and
vorticity by solving Poisson equations:
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χ = ∆−1D

ψ = ∆−1ζ

It is in these last three relations, the kernel of the Laplacian ∆ is implicitly
supposed to reduce to constant functions. It is then equivalent to know the
wind or divergence and vorticity pair. This property is true on the sphere
as well as on the torus.

3 Variable mesh

3.1 Stretched and tilted grid

Arpege makes it possible to increase the horizontal resolution on part of
the sphere, while preserving locally the isotropy (Courtier and Geleyn, 1988).
For that one uses a new set of coordinates (λ′, µ′). First, North Pole is shifted
at the point of coordinates (λ0, µ0) which becomes the new pole (or tilted
pole). One defines new coordinates (λb, µb) by:

µb = µ0µ+
√
1− µ20

√
1− µ2 cos(λ− λ0)

cosλb = (1− µ2b)
− 1

2 (µ
√
1− µ20 − µ0

√
1− µ2 cos(λ− λ0))

sinλb = (1− µ2b)
− 1

2

√
1− µ2 sin(λ0 − λ)

The origin longitude is the one which contains the geographical North Pole.
Reciprocally:

µ = µ0µb +
√
1− µ20

√
1− µ2b cosλb

cos(λ− λ0) = (1− µ2)−
1
2 (µb

√
1− µ20 − µ0

√
1− µ2b cosλb)

sin(λ0 − λ) = (1− µ2)−
1
2

√
1− µ2b sinλb

Then, one carries out a stretching of the latitudes (without modifying lon-
gitudes, λ′ = λb) obtained by homothety of a factor c on stereographic
projection at the pole of stretching. It comes:

µ′ =
(1− c2) + (1 + c2)µb
(1 + c2) + (1− c2)µb

and reciprocally:

µb =
(c2 − 1) + (c2 + 1)µ′

(c2 + 1) + (c2 − 1)µ′
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3.2 Impact on the equations

The conformal transform of η-surfaces described above changes the model
equations. The fields are represented by a base of functions defined on trans-
formed surfaces. The equations are integrated on original surfaces. However
modifications are necessary in the calculation of the horizontal derivative. It
consists of multiplying them by a scale factor m. In the case of the present
transform, this factor is:

m =
c2 + 1

2c
+
c2 − 1

2c
µ′

At the pole of dilation (µ′ = 1) this factor is c. At the pole of contraction
(µ′ = −1) it is 1/c. The horizontal wind thus becomes:

~v = m~v ′

and the horizontal gradient:

∇ = m∇′

In going from the real sphere to the transformed sphere, the velocity potential
χ and the stream function ψ, which are scalars, are invariant. The main
modification consists of solving Poisson equation in a more complicated form:

χ = ∆′−1 D

m2

ψ = ∆′−1 ζ

m2

where ∆′−1 is the same formal operator as ∆−1 but on the transformed
sphere. As a consequence, the state variable of the model is: ζ ′ = ζ/m2 and
D′ = D/m2 (or equivalently ψ and χ).

The equations become then:

∂ζ ′

∂t
= ∇′ ×

[
1

m

(
−→
H~v − g

∂η

∂p

∂
−→
F~v
∂η

+
−→
S~v

)]
+Kζ′

∂D′

∂t
= ∇′ ·

[
1

m

(
−→
H~v − g

∂η

∂p

∂
−→
F~v
∂η

+
−→
S~v

)]
−∆′(Φ + Ec) +KD′
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3.3 Impact on post-processing

The files produced by Arpege-climat for restarting as well as for post-
processing contain the model prognostic variables, even though, in the case
of post-processing, ψ and χ are transformed into ~v ′. This is also true for
momentum fluxes. As a consequence, both components of wind velocity or
surface stress have to be multiplied by m before any comparison with obser-
vations or other model outputs. This operation can be done, for example,
at the same time as the conversion from Arpege format to another format.

4 Lagrangian form of the primitive equations

The Lagrangian form of the equations of momentum, thermodynamics and
moisture are respectively (2), (3) and (4). The continuity equation (5) has
as a Lagrangian form:

d

dt

(
∂p

∂η

)
= −

∂p

∂η

(
D +

∂η̇

∂η

)
− g

∂Fp

∂η
(6)

It can take another form, more adapted to the semi-Lagrangian advection
method :

d

dt

[(
∂p

∂η

)
J

]
= −g

∂Fp

∂η
(7)

where J indicates the Jacobian of the transform which associates the position
of a point at time t with its position at a reference time to.

On the stretched and tilted sphere, the continuity equation (6) becomes:

d

dt

(
∂p

∂η

)
= −

∂p

∂η

(
m2D′ +

∂η̇

∂η

)
− g

∂Fp

∂η

and its Lagrangian form (7):

d

dt

[(
∂p

∂η

)
J ′

m2

]
= −g

∂Fp

∂η

The momentum equation (2) becomes:

dm~v ′

d t
+m

[
2Ω× ~v ′ +RT∇′ ln p+∇′Φ

]
= −g

∂η

∂p

∂
−→
F~v
∂η

+
−→
S~v +

−→
K~v

The equations for thermodynamics (3) and moisture (4) are formally un-
changed.
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pℓ̃+1 Φℓ̃+1

pℓ̃ Φℓ̃

pℓ̃−1 Φℓ̃−1

Φℓ+1, Tℓ+1pℓ+1

pℓ Φℓ, Tℓ

Figure 1: Position of variables on the vertical.

5 Vertical discretization

5.1 Model vertical levels

The atmosphere is vertically split into L layers, defined by the pressures at
their interfaces, which are calculated by:

pℓ̃ = Aℓ̃ +Bℓ̃ ps ℓ̃ = 0, . . . , L (8)

Aℓ̃ and Bℓ̃ are constants which define the vertical coordinate. The vertical
distribution of the variables is presented in Figure 1, indices ℓ relating to
the mid-layers (also named full levels) and indices ℓ̃ to the inter-layers (also
named half levels).

The values of Aℓ̃ and Bℓ̃ are imposed to the model. In earlier versions of
Arpege-climat they were calculated from analytical functions. In recent
cycles, one uses the same vertical discretization as in forecast models (Météo-
France or ECMWF).

5.2 Vertical discretization of the equations

The vertical discretization scheme is defined according to Simmons and Bur-
ridge (1981). One introduces the operator δ which represents the variation
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of a variable between the two ends of a layer:

δpℓ = pℓ̃ − pℓ̃−1

Index ℓ will be omitted when there is no ambiguity.

Continuity equation

The continuity equation is written as (Fm being the mass flux due to water
cycle):

∂

∂η

(
∂p

∂t

)
+∇ ·

(
~v
∂p

∂η

)
+

∂

∂η

(
η̇
∂p

∂η

)
= Fm

For a given layer, one writes it as:

∂(δp)

∂t
= −∇ · (~v δp)− δ

(
η̇
∂p

∂η

)
+ Fm

One will note, in the following, the physical term of the discretized equation
in the same way as the corresponding term of the continuous equation.

Summing on the vertical, one obtains the evolution equation of surface pres-
sure:

∂ps
∂t

= −

L∑

ℓ=1

[δpD + δB ~v · ∇ps]− g(P + E)

since:

∇δp = δB∇ps

The vertical speed is obtained by summing the continuity equation from the
top to the current level:

wℓ̃ =

(
η̇
∂p

∂η

)

ℓ̃

=
ℓ∑

k=1

[−δBk ~vk · ∇ps − δpkDk + Fmk]−Bℓ̃

∂ps
∂t
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Eulerian advection

The vertical advections in momentum, thermodynamics and moisture equa-
tions are calculated using the scheme:

(
w
∂X

∂p

)

ℓ

=
1

2δp

[
wℓ̃(Xℓ+1 −Xℓ) + wℓ̃−1

(Xℓ −Xℓ−1)
]

This scheme ensures conservation of X and X2. It results from the following
form of the vertical advection:

w
∂X

∂p
=
∂wX

∂p
−X

∂w

∂p

with the interpolation:

Xℓ̃ =
1

2
(Xℓ +Xℓ+1)

In the case of the semi-Lagrangian scheme, see Chapter ??.

Hydrostatic equation

The equation of hydrostatic balance is integrated by using the centered
scheme:

Φℓ̃−1
= Φℓ̃ −RℓTℓ ln

pℓ̃−1

pℓ̃

Which gives, summing from the surface:

Φℓ̃ = Φs +
ℓ+1∑

k=L

RkTk ln
pk̃
pk̃−1

where Φs indicates surface geopotential.

To calculate the geopotential in the mid-layers one writes:

Φℓ = Φℓ̃ + αℓRℓTℓ

where:



α1 = 1

αℓ = 1−
pℓ̃−1

δpℓ
ln

pℓ̃
pℓ̃−1

(9)

The expression of Φℓ is consistent with the discretization of the form:

Φ =
∂pΦ

∂p
+RT (10)
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Discretization of the pressure force

For conserving angular momentum, one writes the acceleration term due to
the pressure force as:

∇Φ+RT ∇ ln p =

[
∇

(
Φ
∂p

∂η

)
−
∂(Φ∇p)

∂η

](
∂p

∂η

)−1

= ∇Φ+

[
Φ∇

(
∂p

∂η

)
−
∂(Φ∇p)

∂η

](
∂p

∂η

)−1

The discretization of this term yields:

(RT∇ ln p)ℓ = RℓTℓ
1

δpℓ

[
δBℓ +

Cℓ

δpℓ
ln

pℓ̃
pℓ̃−1

]

︸ ︷︷ ︸
ZRTGR

·∇ps

with:

Cℓ = Aℓ̃Bℓ̃−1
−Aℓ̃−1

Bℓ̃

Term ZRTGR is also used in the calculation of the energy transformation
term. It can be written in the simpler form:

1

δp

[
αℓδBℓ +Bℓ̃−1

ln
pℓ̃
pℓ̃−1

]

Energy transformation term

The energy transformation term is written as:

RT

cp

ω

p

One writes:

ω

p
= ~v · ∇ ln p−

1

p

∫ η

0

[
~v · ∇

(
∂p

∂η

)
+D

∂p

∂η
+ Fm

]
dη
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The first term of the right-hand member is evaluated in the same way as the
corresponding term of the momentum equation:

(~v · ∇ ln p)ℓ =
1

δpℓ

[
δBℓ +

Cℓ

δpℓ
ln

pℓ̃
pℓ̃−1

]

︸ ︷︷ ︸
ZRTGR

~vℓ · ∇ps

and the second term:

−
1

δpℓ

[
αℓ (∇ · (~vℓδpℓ) + Fmℓ) +

(
ln

pℓ̃
pℓ̃−1

)
ℓ−1∑

k=1

(∇ · (~vkδpk) + Fmk)

]

where:

∇ · (~vℓ δpℓ) = ~vℓ · ∇δpℓ + δpℓDℓ

This discretization results from writing the last term in the form:

1

p

∫
Xdη =

(
∂p

∂η

)−1 ∂ ln p

∂η

∫
Xdη =

[
∂

∂η

(
ln p

∫
Xdη

)
−X ln p

](
∂p

∂η

)−1

in which one calculates the last logarithm of the pressure by:

ln p =
d

d p
(p ln p)− 1
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Spectral transforms

1 Introduction

Arpege-IFS is a spectral global model. One part of computations is made
in spectral space (semi-implicit scheme, horizontal diffusion scheme), the
other part in grid-point space on a grid defined by a Gaussian quadrature.
It is therefore necessary to perform spectral transforms from spectral space
to grid-point space or vice-versa. The present chapter aims at giving a brief
summary of the spectral method. For more algorithmic details on can report
to Rochas and Courtier (1992) or to Temperton (1991). Computation aspects
are described in details in Yessad (2007). Most subroutines are located in
an independent library named TFL.

For a global spectral model, spectral transforms are a combination of a Leg-
endre transform and a Fourier transform. A spectral limited-area model like
Aladin uses a double Fourier representation for spectral fields.

2 Spectral representation

2.1 Spherical harmonics

The spherical Laplacian operator ∆ on a sphere Σ of radius a admits as
eigenvalues family −n(n + 1)/a2 with an order of 2n + 1. The eigenvectors
are the surface spherical harmonics. An orthogonal base of an eigenspace is
given by:

Y m
n = Pm

n (µ)eimλ
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where µ is the sine of the latitude and λ longitude. The Pm
n (µ) are the

first-type Legendre polynomials. The standardization of the Pm
n (µ) is such

as:

∫∫

σ
Y m
n (λ, µ)Y m′

n′ (λ, µ)dσ = δn=n′δm=m′

∫∫

σ
dσ

One has then, for m ≥ 0:

Pm
n (µ) =

√
(2n+ 1)

(n−m)!

(n+m)!

1

2nn!
(1− µ2)m/2 d

n+m

dµn+m
(µ2 − 1)n (1)

And for m ≤ 0:

P−m
n (µ) = Pm

n (µ)

As mentioned above, the spherical harmonics satisfy:

∆Y m
n = −

n(n+ 1)

a2
Y m
n

The Laplacian operator is invariant by rotation, his eigenspaces are thus
also invariant by rotation. We deduce from it that under the effect of a
rotation i.e. a change of pole, the coefficients of the decomposition of a
field in spherical harmonics are exchanged at fixed n. For each n, there is a
linear transformation (thus a matrix) which makes it possible to make the
basic change. This property is preserved by the discretization if truncation
is triangular. This is why triangular truncation is said to be isotropic.

2.2 Collocation grid

A collocation grid is selected for non-linear calculations which cannot be
carried out directly on the coefficients of the spherical harmonics. At each
time step, one passes from the spectral coefficients to the grid-point values
and reciprocally. From the expression of the Y m

n , the E-W transforms are
Fourier transforms. To use fast Fourier transforms (FFT), one thus needs a
regular grid in longitude. In the N-S direction, one uses a Gauss quadrature
for the direct transform, therefore the latitudes are not equidistant.

At high latitudes, one takes less points on a latitude circle than Fourier
modes, in order to maintain the grid almost isotropic. The collocation grid
is said to be reduced (Hortal and Simmons, 1991). The grid is said to
be Gaussian quadratic (or simply Gaussian) when the number of latitude
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circles is large enough (for a given truncation) so that the Gauss quadrature
is exact for any product of two Legendre polynomials in the truncation.
This is useful in the case of the Eulerian advection (product of velocity by
gradient). When the approximate calculation of the integral is exact only
for the Legendre polynomials of the truncation, the grid is said to be linear
(Hortal, 1996).

2.3 Spectral transforms

To pass from the spectral coefficients to the grid points values, one uses the
two formulas of direct evaluation:

Am(µ) =
∞∑

n=|m|

Am
n P

m
n (µ)

and:

A(λ, µ) =
+∞∑

m=−∞

Am(µ)eimλ

where the Am are called the Fourier coefficients.

The horizontal derivatives are calculated exactly by using the derivatives of
the Legendre functions for the N-S direction and by multiplying by im for
the E-W direction.

From the grid point fields, the Fourier coefficients are determined by:

Am(µ) =
1

2π

∫ 2π

0

A(λ, µ) e−imλ dλ

a formula which ensures that A0(µ) is the average of field A along parallel
µ. Integration is carried out numerically by using a fast Fourier transform
(FFT). The integral in latitude is:

Am
n =

1

2

∫ 1

−1

Am(µ)Pm
n (µ) dµ

As mentioned above, we use a Gauss quadrature, discrete version of the
preceding integral:

Am
n =

K∑

k=1

ω(µk)Am(µk)P
m
n (µk)
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where the µk are the K roots of the Legendre polynomial of degree K and
the Gauss weights ω(µk) are given by:

ω(µk) =
1− µ2k

(NPN−1)2

Here, the Legendre polynomial is the one of the mathematicians, the squared
norm of which is 1/(2n+ 1).

3 Horizontal discretization

3.1 Spectral truncation

In practical the expression of A is limited to a finite set of harmonics cor-
responding to 0 ≤ n ≤ N and −n ≤ m ≤ n. That defines a triangular
truncation N . The truncated expansion of field A reads:

A(λ, µ) =
m=N∑

m=−N

n=N∑

n=|m|

Am
n P

m
n (µ)eimλ

Due to the properties of Pm
n (µ), expression of A becomes for a real scalar

field:

A(λ, µ) =
m=N∑

m=0

n=N∑

n=|m|

Am
n P

m
n (µ)eimλ

3.2 Horizontal derivatives

Meridional derivative relative to latitude θ

For a variable A, meridional derivative is discretized in spectral space by the
following formula:

(
cos θ

∂A

∂θ

)m

n
= −(n− 1)emn A

m
n−1 + (n+ 2)emn+1A

m
n+1

where e00 = 0 and:

emn =

√
n2 −m2

4n2 − 1
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Zonal derivative relative to longitude λ

For a variable A, zonal derivative is discretized in spectral space by the
following formula:

(
∂A

∂λ

)m

n
= imAm

n

Such a derivation can be made on Fourier coefficients by a multiplication by
im.

3.3 Spectral relationships for wind representation

The reduced components of the velocity are obtained by dividing the physical
components by the mapping factor M . Divergence and vorticity are divided
by M2. As reduced divergence D

′
is obtained from velocity potential χ by

a laplacian operator, and as reduced vorticity ζ
′
is obtained similarly from

stream function ψ, we have in spectral space:

D′m
n = −

n(n+ 1)

a2
χm
n

ζ ′mn = −
n(n+ 1)

a2
ψm
n

Relationship between U
′
, ψ and χ:

(U
′

a cos θ) =
∂χ

∂λ
− cos θ

∂ψ

∂θ

the spectral discretization of which is:

(U
′

a cos θ)mn = imχm
n + (n− 1)emn ψ

m
n−1 − (n+ 2)emn+1ψ

m
n+1

Relationship between V
′
, ψ and χ:

(V
′

a cos θ) =
∂ψ

∂λ
+ cos θ

∂χ

∂θ

the spectral discretization of which is:

(V
′

a cos θ)mn = imψm
n − (n− 1)emn χ

m
n−1 + (n+ 2)emn+1χ

m
n+1
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Relationship between D
′
, U

′
and V

′
:

D
′

=
1

a cos θ

(
∂U

′

∂λ
+
∂(V

′
cos θ)

∂θ

)

which can be rewritten:

D
′

=
1

a2 cos2 θ

(
∂(U

′
a cos θ)

∂λ
+ cos θ

∂(V
′
a cos θ)

∂θ

)

Relationship between ζ
′
, U

′
and V

′
:

ζ
′

=
1

a cos θ

(
∂V

′

∂λ
−
∂(U

′
cos θ)

∂θ

)

which can be rewritten:

ζ
′

=
1

a2 cos2 θ

(
∂(V

′
a cos θ)

∂λ
− cos θ

∂(U
′
a cos θ)

∂θ

)

Spectral discretizations allow to retrieve easily spectral components of fields
D

′
a2 cos2 θ and ζ

′
a2 cos2 θ, but not directly spectral components of D

′
and

ζ
′

(requiring inversion of a penta-diagonal matrix). In fact, the algorithm
involved to retrieve spectral coefficients of D

′
and ζ

′
once known values

of wind components is slightly different (requiring a division by a cos θ in
Fourier space), and is described in detail in Temperton (1991).

3.4 Relationship between dimension in spectral space and in
grid point space

Quadratic grid, linear grid

Spectral space is defined by a triangular truncation N . Grid point space has
ndgl latitudes and a maximum number of longitudes equal to ndlon. ndlon
and ndgl are always even integers: if ndlon is a multiple of 4, ndgl = ndlon/2;
if ndlon is not a multiple of 4, ndgl = ndlon/2+1. For a quadratic Gaussian
grid, there is a relationship between these parameters to avoid aliasing on
quadratic terms.

• If the stretching coefficient c is equal to 1 (no stretching), N is the
maximum integer verifying the relationship 3 ∗N ≤ (ndlon− 1).
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• If the stretching coefficient c is greater than 1 (stretching), N is the
maximum integer verifying the relationship 3 ∗ N ≤ min(2 ∗ ndgl −
3, ndlon− 1).

In a semi-Lagrangian scheme the advective quadratic terms disappear, so it
is possible to use a smaller grid-point space: a linear grid. It is characterized
by:

• If the stretching coefficient c is equal to 1 (no stretching), N is the
maximum integer verifying the relationship 2 ∗N ≤ (ndlon− 1).

• If the stretching coefficient c is greater than 1 (stretching), N is the
maximum integer verifying the relationship 2 ∗ N ≤ min(2 ∗ ndgl −
3, ndlon− 1).

In Arpege-climat with c > 1, some aliasing is allowed, and the same N is
taken as in the case c = 1.

Admissible dimensions for longitude

The current algorithm for FFT allows integers ndlon which can factorize as
21+p2 ∗ 3p3 ∗ 5p5 . That limits the possibility of choosing the dimensions in a
discontinuous subset of truncations and dimensions for Gaussian grid. In the
range compatible with climate multi-year integrations, the admissible sizes
(with even number of latitudes) are:

64 72 80 90 96 100 108 120 128 144 150 160 162 180 192 200 216 240 250
256 270 288 300 320 324 360 384 400 432 450 480 486 500 512 540 576 600
640 648 720

Reduced grid

To save memory and computation time (in particular in the physical param-
etrizations), the number of longitudes per latitude circle is reduced outside
the tropics, in order to maintain a quasi-isotropic grid (note that the spectral
triangular truncation allows an isotropic representation of the fields, despite
the accumulation of grid points near the poles). This optimization is done
at the expense of an aliasing error (Williamson and Rosinski, 2000). An
algorithm is proposed to compute for a given truncation, the number of
longitudes per latitude circle which is the best compromise between accuracy
in the spectral transform an isotropy in the physical parametrizations.
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Semi-lagrangian computations

1 Introduction.

1.1 General purpose of this documentation.

This chapter describes the set of equations used, and also the way to inte-
grate the dynamics of the model with the semi-Lagrangian method currently
implemented in ARPEGE/IFS. Equations will be written without horizontal
diffusion scheme (which is treated in spectral computations), and without
Rayleigh friction (which is done in grid-point space) in order to give a clearer
presentation of the discretised equations. For additional information about
horizontal diffusion scheme, report to documentation (IDDH). Extensions
to ALADIN (cycle AL37T1) are not described in detail, but differences are
briefly mentioned.

The following sets of equations will be described in this documentation:

• The 2D shallow-water equations model (configuration 201).

• The primitive equations hydrostatic model (configuration 1): thin layer
and deep layer (according to White and Bromley, 1995) formulations.

In the current version of this documentation, some points are partly de-
scribed:

• The option with finite element vertical discretisations LVERTFE=.T. .
When LVERTFE=.T., the main modifications in the semi-Lagrangian
part of the code are the following ones:



42 4. Semi-lagrangian computations

– η̇ ∂Π
∂η is directly computed at full levels so the way of computing η̇

to find the vertical displacement is modified.

– All the vertical integrals use a matricial multiplication with spe-
cial coefficients computed in the setup routine SUVERTFE1
or SUVERTFE3; the vertical integration is done by routine
VERINT.

– All the vertical derivatives use a matricial multiplication with spe-
cial coefficients computed in the setup routine SUVERTFE3D;
the vertical derivation is done by routine VERDER.

• The spline cubic vertical interpolations used when LVSPLIP=.T. (in
practical only for ozone, when YO3_NL%LVSPLIP=.T.). The de-
tail of calculation of the interpolation weights is not currently given.

• The “semi-Lagrangian horizontal diffusion" interpolations (SLHD) used
when LSLHD=.T. .

• Modified interpolations when L3DTURB=.T. .

1.2 Distributed memory code.

Some distributed code has been introduced for the semi-Lagrangian scheme,
for some convenience expressions such “DM-local" or “DM-global" will be
used to describe some distributed memory features.

• Expression “DM-local" for a quantity means “local to the couple of
processors (proca,procb)": each processor has its own value for the
quantity. Expression “DM-local computations" means that the com-
putations are made independently in each processor on “DM-local"
quantities, leading to results internal to each processor, which can be
different from a processor to another one.

• Expression “DM-global" for a quantity means that it has a unic value
available in all the processors. Expression “DM-global computations"
means that the computations are either made in one processor, then the
results are dispatched in all the processors, or the same computations
are made in all the processors, leading to the same results in all the
processors.

• In a routine description the mention “For distributed memory compu-
tations are DM-local" means that all calculations made by this rou-
tine are DM-local; the mention “For distributed memory computations
are DM-global" means that all calculations made by this routine are
DM-global; when no information is provided it means that a part of
calculations is DM-local and the other part is DM-global.
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1.3 Mass corrector.

Two different mass correctors are coded (but do not work in all configura-
tions), one used at ECMWF, the other one for METEO-FRANCE climatic
simulations. They are useful especially for climatic simulations, to correct
the lack of conservativity of the semi-Lagrangian scheme. They are not de-
scribed in this documentation.

1.4 Deep layer equations (according to White and Bromley,
1995).

They have been introduced in the hydrostatic model for the Eulerian scheme
and most options of the semi-Lagrangian scheme.
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2 Definition of Eulerian and semi-Lagrangian schemes.

2.1 Eulerian scheme.

In Eulerian form of equations, the time dependency equation of a variable X writes as:

∂X

∂t
= −U.∇3X + Ẋ (1)

where U is the 3D wind, ∇3 is the 3D gradient operator, Ẋ is the sum of the dynamical
and physical contributions. X(t+∆t) is computed knowing X(t−∆t) at the same grid-
point. Eulerian technique obliges to use a time-step that satisfies to the CFL (Courant
Friedrich Levy) condition everywhere.

• For the variable-mesh spectral global model ARPEGE, the horizontal CFL condi-
tion writes as:

M | V | Dt
2

√
N(N + 1)

r2
< 1 (2)

which can be rewritten:

M
| V |
r

Dt

2

√
N(N + 1) < 1 (3)

where M is the mapping factor, Dt is the time-step at the first integration step
and twice the time-step otherwise (leap-frog scheme), | V | is the horizontal wind
modulus, N is the truncation, r is the distance between the point and the centre
of the Earth.

• For the spectral limited area model ALADIN, the horizontal CFL condition writes
as:

M
| V |
r

Dt

2
(2π)

√
1

L2
x

a2N2
m

+
L2

y

a2N2
n

< 1 (4)

where M is the mapping factor, Dt is the time-step at the first integration step
and twice the time-step otherwise (leap-frog scheme), | V | is the horizontal wind
modulus, Nm is the zonal truncation, Nn is the meridian truncation, a is the mean
Earth radius, r is the distance between the point and the centre of the Earth, Lx

(resp. Ly) is the zonal (resp. meridian) length of the ALADIN domain taken on a
surface iso r = a.

The vertical CFL condition writes as:

| η̇ | Dt
2

∆η < 1 (5)

For a TL358L46 (triangular truncation 358, linear Gaussian grid, 46 levels) model with
stretching coefficient c=2.4, that gives ∆t ≃ 2 mn.
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2.2 Semi-Lagrangian scheme.

In semi-Lagrangian form of equations, the time dependency equation of a variableX writes
as:

dX

dt
= Ẋ (6)

In a three-time level semi-Lagrangian scheme X(t + ∆t) is computed at a grid-point F
knowing X(t−∆t) at the point O (not necessary a grid-point) where the same particle is
at the instant t−∆t. In a two-time level semi-Lagrangian scheme X(t+∆t) is computed
at a grid-point F knowing X(t) at the point O (not necessary a grid-point) where the
same particle is at the instant t. The semi-Lagrangian technique is more expensive for one
time-step than the Eulerian technique because it is necessary to compute the positions
of the origin point O and the medium point M along the trajectory and to interpolate
some quantities at these points (roughly 1.5 times the cost of the Eulerian scheme in the
TL358L46c2.4 model with full French physics). But it allows to use larger time-steps: the
stability condition is now the Lipschitz criterion (trajectories do not cross each other) and
is less severe than the CFL condition.

D is the divergence of the horizontal wind on the η-coordinates, η̇ = dη
dt

. Lipschitz criterion
writes for a three-time level semi-Lagrangian scheme:

| D +
∂η̇

∂η
| Dt

2
< 1 (7)

Lipschitz criterion writes for a two-time level semi-Lagrangian scheme:

| D +
∂η̇

∂η
| ∆t

2
< 1 (8)

Expressions “semi-Lagrangian scheme", “three-time level semi-Lagrangian scheme" and
“two-time level semi-Lagrangian scheme" will be from now on abbreviated into “SL scheme",
“3TL SL scheme" and “2TL SL scheme".



46 4. Semi-lagrangian computations

3 The 2D equations.

3.1 Notations for the 2D equations.

• V is the horizontal wind. Its zonal component (on the Gaussian grid) is denoted
by U . Its meridian component (on the Gaussian grid) is denoted by V .

• D is the horizontal wind divergence.

• ζ is the horizontal wind vorticity.

• Φ is the equivalent height. Φs is the surface geopotential height (i.e. the orography).
Φ∗ is a reference equivalent height which is only used in the semi-implicit scheme
and the linear model.

• Ω is the Earth rotation angular velocity.

• ∇ is the first order horizontal gradient on η-surfaces.

• a is the Earth radius.

• (λbne, θbne) are the longitude-latitude coordinates on a tilted and not stretched
geometry, the tilting being the same as the one of the computational sphere.

• k is the unit vertical vector. One can write:

k =
r

| r | =
r

a

3.2 The 2D shallow-water system of equations in spherical
geometry.

Momentum equation.

Coriolis force can be treated explicitly (δ~V =0) or implicitly (δ~V =1) in the Lagrangian
equation.

d
(
~V + δ~V (2

~Ω ∧ ~r)
)

dt
= [−2(1− δ~V )(

~Ω ∧ ~V )]−∇Φ (9)

Continuity equation.

• Conventional formulation.

d(Φ− (1− δTR)Φs)

dt
= −(Φ− Φs)D + δTR~V∇(Φs) (10)

• Lagrangian formulation.

d((Φ− Φs)J)

dt
= 0 (11)

J is a “Jacobian" quantity which satisfies to:

dJ

dt
= −JD (12)
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4 The 3D equations in spherical geometry (ARPEGE/IFS).

4.1 Notations for the 3D equations.

• V is the horizontal wind. Its zonal component (on the Gaussian grid) is denoted
by U . Its meridian component (on the Gaussian grid) is denoted by V .

• D is the horizontal wind divergence.

• ζ is the horizontal wind vorticity.

• T is the temperature.

• q is the humidity.

• qr: is the rain.

• Π is the hydrostatic pressure.

• Πs is the hydrostatic surface pressure.

• Ω is the Earth rotation angular velocity.

• (λbne, θbne) are the longitude-latitude coordinates on a tilted and not stretched
geometry, the tilting being the same as the one of the computational sphere.

• (λ, θ) are the geographical longitude-latitude coordinates.

• (Λ,Θ) are the computational sphere longitude-latitude coordinates.

• w is the z-coordinate vertical velocity: w = dz
dt

.

• ω = dΠ
dt

is the total temporal derivative of the hydrostatic pressure.

• p is the pressure, ps is the surface pressure.

• gz is the geopotential height.

• Φ is the total geopotential. Φ = gz in the thin layer equations, but not in the deep
layer equations formulation of White and Bromley.

• Φs = gzs is the surface geopotential (i.e. the orography).

• r is the vector directed upwards, the length of which is the Earth radius. The length
of this vector is r. In the deep layer equations according to (White and Bromley,
1995), one uses an approximation of this radius, only depending on the hydrostatic
pressure (“pseudo-radius").

• a is the average Earth radius near the surface.

• W = drs
dt

is the pseudo-vertical velocity used in some Coriolis and curvature terms
in the deep layer equations according to (White and Bromley, 1995). W = 0 in the
thin layer equations.

• i (resp. j) is the unit zonal (resp. meridian) vector on the Gaussian grid.

• k is the unit vertical vector. One can write:

k =
r

rs
=

r

r

• g is the gravity acceleration constant.

• In the case where vertical variations of g are taken into account, we denote by G
the reference value of g at rs = a.

• R is the gas constant for air and Rd the gas constant for dry air.

• cp is the specific heat at constant pressure for air and cpd is the specific heat at
constant pressure for dry air.

• cv is the specific heat at constant volume for air and cvd is the specific heat at
constant volume for dry air.

• ∇ is the first order horizontal gradient on η-surfaces.
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• αT is a vertical-dependent coefficient used to define a thermodynamic variable
T + δTR

αTΦs
RdTST

less sensitive to orography than temperature T . Expression of αT

is:

αT = B

(
−Rd
g

[
dT

dz

]
ST

)
TST

(
ΠST

Πs
st

)(−Rd
g [ dTdz ]ST

−1
)

(13)

where B is a vertically dependent and horizontally constant quantity which defines
the vertical hybrid coordinate (see later paragraph “Definition of the vertical coor-
dinate η", subsection (6.1)): B varies from 1 to 0 from bottom to top. Subscript
“st" stands for “standard atmosphere".

• ρ is the mass per volume unit of air.

• M is the mapping factor.

• M is a reference mapping factor for the semi-implicit scheme.

• D3 is the 3D divergence used in the NH model. Its expression is given by equation
(2).

• τ , γ, ν, L∗, ∂∗ are linear operators used in the semi-implicit scheme (for more
details, see documentation (IDSI) about semi-implicit scheme).

• T ∗ is a vertically-constant reference temperature which is used in the semi-implicit
scheme and in some non-hydrostatic equations. IF LSPRT=.T. (use of virtual
temperature in spectral transforms instead of real temperature), T ∗ is used as a
reference virtual temperature (same default value).

• T ∗
a is a cold vertically-constant reference temperature which is used in the semi-

implicit scheme in the NH vertical divergence equation; it is recommended to have
T ∗
a lower than the current temperature.

• TST is the reference standard atmosphere surface temperature (288.15 K).
[
dT
dz

]
ST

is the standard atmosphere tropospheric gradient of temperature (-0.0065 K/m).

• Π∗ is a reference hydrostatic pressure and Πs
∗ is a reference hydrostatic surface

pressure, which are used in the semi-implicit scheme and in some non-hydrostatic
equations. These reference quantities are vertically dependent and “horizontally"
(i.e. on η surfaces) constant. ∆Π∗ are layer depths corresponding to a surface
hydrostatic pressure equal to Πs

∗.

• Πs
st is a reference hydrostatic pressure equal to the surface pressure of the standard

atmosphere (101325 Pa, variable VP00). ΠST is a reference hydrostatic pressure
defined at full levels and half levels corresponding to the surface reference hydro-
static pressure Πs

st (stored in array STPRE).

• ∆Φ∗ is a reference geopotential depth computed on model layers, used in the non-
hydrostatic model (more exactly in the non-linear part of the true 3D divergence).
∆Φ∗ is vertically dependent and “horizontally" (i.e. on η surfaces) constant.

• In the Wood and Staniforth deep-layer NH equations, a mass vertically integrated
quantity Π̃ is introduced, in order to hide some metric terms, especially in the
continuity equation: Π̃ replaces Π in the adiabatic equations (Π becomes, if needed,
a diagnostic quantity). The definition of the hybrid vertical coordinate applies for
Π̃, not for Π. Quantities δ and α (depths of logarithm of hydrostatic pressure) are
replaced by δ̃ and α̃ (depths of logarithm of Π̃).

∂Π̃

∂Π
=
rs

2

a2
G

g
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4.2 The thin layer 3D primitive equation model: Lagrangian
formulation.

Momentum equation.

Vectorial form of momentum equation is used. Coriolis force can be treated explicitly
(δ~V =0) or implicitly (δ~V =1).

d
(
~V + δ~V (2

~Ω ∧ ~r)
)

dt
= −2(1− δ~V )(Ω ∧V)−∇Φ−RT∇(log Π) + FV (14)

FV is the physical contribution on horizontal wind.

Thermodynamic equation.

d
(
T + δTR

αTΦs
RdTST

)

dt
=
d
(
δTR

αTΦs
RdTST

)

dt
+
RT

cp

ω

Π
+ FT (15)

FT is the physical contribution on temperature. When δTR = 1 the Eulerian treatment of
orography is applied and the prognostic variable is replaced by one variable less sensitive
to the surface orography. This modification has been proposed by Ritchie and Tanguay

(1996). See equation (13) for definition of αT. Term
d
(
δTR

αTΦs
RdTST

)
dt

only contains advection
terms linked to horizontal variations of orography and vertical variations of the coefficient
αT.

Continuity equation.

The equation which is discretised is the vertically integrated Lagrangian formulation of
continuity equation.

∫ η=1

η=0
∂B
∂η

d
[
log Πs+δTR

Φs
RdTst

]
dt

dη =

∫ η=1

η=0
∂B
∂η

[
− 1

Πs

∫ η=1

η=0
∇
(
~V ∂Π
∂η

)
dη + ~V∇

[
log Πs + δTR

Φs

RdTst

]
− 1

Πs
g [Fm]η=1

]
dη(16)

Details leading to this formulation is given in part 6.2.3 of the documentation (IDEUL)
about model equations and Eulerian dynamics.

Variable δTR is 0 or 1; when δTR = 1 the new variable is less sensitive to the orography
(new variable proposed by Ritchie and Tanguay (1996) to reduce orographic resonance).

If one assumes that a volume of air occupied by rainfall drops is not replaced by dry
air when drops are falling (case δm = 0, variable NDPSFI is 0 in NAMPHY), Fm is
replaced by zero and

[
η̇ ∂Π
∂η

]
η=1

is equal to zero.

If one assumes that a volume of air occupied by rainfall drops is replaced by dry air when
drops are falling (case δm = 1, variable NDPSFI is 1 in NAMPHY), Fm (diabatic flux)
has to be taken in account and

[
η̇ ∂Π
∂η

]
η=1

is non-zero (more details are given in documen-

tation (IDEUL)).[
η̇ ∂Π
∂η

]
η=0

is non-zero only when there is an upper radiative boundary condition (LRUBC=.TRUE.).
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Advectable GFL variables: moisture, but also for example ozone,
liquid water, ice, cloud fraction, TKE, aerosols and extra GFL
variables equations.

Equation is written for moisture q, and is the same for the other advectable GFL variables.

dq

dt
= Fq (17)

Fq is the physical contribution on moisture.

Non advectable pseudo-historic GFL variables:

Equation is written for rain qr, and is the same for the other non-advectable GFL variables.
Since there is no advection, the SL equation is identical to the Eulerian equation.

∂qr
∂t

= Fqr (18)

4.3 The deep layer 3D primitive equation model according to
White and Bromley, 1995: Lagrangian formulation.

Deep layer equations: basics and new features.

The following modifications are done, according to (White and Bromley, 1995):

• One takes account to the fact, that the distance to the Earth center is no longer
a but a radius varying with the vertical. For conveniency (with the η vertical
coordinate), one approximates the radius by a pseudo-radius rs which depends
only on the hydrostatic pressure Π. Two vertical lines are no longer parallel, so the
section of a vertical column varies with the hydrostatic pressure.

• The vertical velocity is now taken in account in the Coriolis term through a pseudo-
vertical velocity W defined by W = drs

dt
. W also appears in some new curvature

terms.

• The total geopotential Φ, which appears in the RHS of the wind equation, is no
longer equal to the geopotential height gz.

Details about deep layer equations (definition and expression of rs, W , geopotential re-
lationships) is given in the documentation (IDEUL) about model equations and Eulerian
dynamics and is not detailed again here. All calculations giving the below formulation of
primitive equations is also given in the documentation (IDEUL).

Momentum equation.

Coriolis force can be treated explicitly (δ~V =0) or implicitly (δ~V =1) in the Lagrangian
equation.

d
(
~V + δ~V (2

~Ω ∧ ~r)
)

dt
= (1−δ~V )(−2Ω∧V−2Ω∧Wk)−W

rs
V−∇Φ−(RT+µsRdTr)∇(log Π)+FV(19)

FV is the physical contribution on horizontal wind. See documentation (IDEUL) for
definition of Φ and µs.
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Thermodynamic equation.

Lagrangian tendency:

d
(
T + δTR

αTΦs
RdTST

)

dt
=
d
(
δTR

αTΦs
RdTST

)

dt
+
RT

cp

ω

Π
+ FT (20)

FT is the physical contribution on temperature. When δTR = 1 the Eulerian treatment of
orography is applied and the prognostic variable is replaced by one variable less sensitive
to the surface orography. This modification has been proposed by Ritchie and Tanguay
(1996).

This equation is unchanged compared to its expression in the thin layer equations. The
only change is the diagnostic expression of ω (see documentation (IDEUL) for details
about expression and discretisation of ω).

Continuity equation.

The equation which is discretised is the vertically integrated Lagrangian formulation of
continuity equation.

∫ η=1

η=0

rs
2

a2
∂B
∂η

d
[
log Πs+δTR

Φs
RdTst

]
dt

dη =

∫ η=1

η=0

rs
2

a2
∂B
∂η

∂ log(Πs)
∂t

dη +
∫ η=1

η=0

rs
2

a2
∂B
∂η

a
rs
V
[
rs
a
∇
] [

log Πs + δTR
Φs

RdTst

]
dη (21)

where ∂ log(Πs)
∂t

is given by equation:

∂ log(Πs)
∂t

= −
[
a2

rs2

]
η=1

1
Πs

∫ η=1

η=0

[
rs
a
∇
] (

rs
a
V ∂Π

∂η

)
dη

− 1
Πs

[
η̇ ∂Π
∂η

]
η=1

+ 1
Πs

[
a2

rs2

]
η=1

[
rs

2

a2

]
η=0

[
η̇ ∂Π
∂η

]
η=0

− 1
Πs
g [Fm]η=1

[
a2

rs2

]
η=1

(22)

Advectable GFL variables.

These equations are identical to the thin layer model ones.

Non advectable pseudo-historic GFL variables.

These equations are identical to the thin layer model ones.
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5 Discretisation of the equations: general aspects.

This section does not describe in detail iterative centred-implicit schemes and describes
only non-iterative schemes in detail. For more details about iterative centred-implicit
schemes, see documentation (IDSI).

5.1 Notations.

∗ Upper index:

• First integration step: + (resp. m, o, −) for t+∆t (resp. t+ 0.5∆t, t, t) quantity.

• Following integration steps: + (resp. m, o, −) for t+∆t (resp. t+0.5∆t, t, t−∆t)
quantity.

∗ Lower index: F (resp. M and O) for final (resp. medium and origin) point.

∗ Particular case of the first timestep in a SL3TL scheme: Written
discretisations are valid from the second integration step. ∆t has to be replaced by ∆t

2
for

the first integration step (in this case the t−∆t quantities are equal to the t quantities).

∗ The different classes of prognostic variables: Prognostic variables can
be split into different classes:

• 3D variables, the equation RHS of which has a non-zero adiabatic contribution and
a non-zero semi-implicit correction contribution. They are called “GMV" in the
code (“GMV" means “grid-point model variables"). This class of variables includes
wind components, temperature (and the two additional non-hydrostatic variables
in a non-hydrostatic model). The sub-class of thermodynamic variables includes
T , and the two additional non-hydrostatic variables in a non-hydrostatic model.
There are NFTHER thermodynamic variables.

• 3D advectable “conservative" variables. The equation RHS of these variables has
a zero adiabatic contribution, only the diabatic contribution (and the horizontal
diffusion contribution) can be non-zero. They are called “GFL" in the code (“GFL"
means “grid-point fields"). This class of variables includes for example humidity,
liquid water, ice, cloud fraction, ozone, TKE, aerosols, and some extra fields. See
documentation (IDEUL) for a comprehensive list of advectable GFL.

• 3D non advectable pseudo-historic variables. The equation RHS of these variables
looks like the one of the 3D advectable “conservative" variables, but there is no
advection. They are included in the GFL variables. This class of variables includes
for example rain, snow, graupels, hail, convective precipitation flux, stratiform
precipitation flux, SRC (second-order flux for AROME), forcings, easy diagnostics,
greenhouse gases, reactive gases, moisture convergence, total humidity variation,
standard deviation of the saturation depression, convective vertical velocity. See
documentation (IDEUL) for a comprehensive list of non advectable pseudo-historic
GFL.

• 2D variables, the equation RHS of which mixes 3D and 2D terms, has a non-
zero adiabatic contribution and a non-zero semi-implicit correction contribution.
They are called “GMVS" in the code (“GMVS" means “grid-point model variables
for surface"). This class of variables includes the logarithm of surface pressure
(continuity equation).
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5.2 Discretisation for a 3D variable in a 3D model: general
case where the RHS has non-zero linear and non-linear
terms (GMV variables).

List of equations.

• Momentum equation.

• Temperature equation.

• Pressure departure variable (non-hydrostatic model only).

• Vertical divergence variable (non-hydrostatic model only).

Generic notations.

Generic notation N(X)LAG stands for:

• NWLAG for momentum equation.

• NTLAG for temperature equation.

• NSPDLAG for pressure departure variable (non-hydrostatic model only).

• NSVDLAG for vertical divergence (non-hydrostatic model only).

Generic notation P(X)L0, P(X)L9, P(X)T1 stands for:

• PUL0, PUL9, PUT1 for U-momentum equation.

• PVL0, PVL9, PVT1 for V-momentum equation.

• PTL0, PTL9, PTT1 for temperature equation.

• PSPDL0, PSPDL9, PSPDT1 for Q̂ equation.

• PSVDL0, PSVDL9, PSVDT1 for d equation.

Generic notation P(X)NLT9 stands for:

• PUNLT9 for U-momentum equation.

• PVNLT9 for V-momentum equation.

• PTNLT9 for temperature equation.

• PSPDNLT9 for Q̂ equation.

• PSVDNLT9 for d equation.

Generic notation for total term, linear term, non linear term, physics: A is the total
term (sum of dynamical contributions), B is the linear term (treated in the semi-implicit
scheme), the difference A − βB is the non-linear term. F is the sum of contributions
computed in the physical parameterizations.

Description stands for the general case where linear and non-linear terms are gathered in
the same buffer, and where no additional splitting is required to do diagnostics or to apply
SLHD interpolations to a subset of the terms interpolated by a high-order interpolation.
In some particular cases, additional splitting involving separate buffers may be required:

• In the NH model for options where linear terms must be separately interpolated
(controlled by variables LSLINL, LSLINLC1 and LSLINLC2). Linear terms
are stored in arrays, the name of them has appendix _SI, or in parts of PB1 with
pointers, the name of them has appendix _SI.
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• Separation between linear and non-linear terms may have to be done for some DDH
diagnostics too (if LRSIDDH=T).

• When some diagnostics (for example DDH) impose that evaluation of the dynamics
and of the physics at the origin point of the SL trajectory must be done separately
in two different buffers (controlled by variable NSPLTHOI set to -1). Buffer
P(X)LF9 is used instead of P(X)L9 to store quantities, the interpolation of which
is a non-SLHD high-order one.

• When SLHD interpolations, if switched on, are applied only to a subset of the
quantities interpolated by a high order interpolation (applied to X(t) or X(t−∆t)
but not to the other terms); in particuliar physics do not use a SLHD interpolation
in this case (controlled by variable NSPLTHOI set to 1). Buffer P(X)LF9 is used
instead of P(X)L9 to store quantities, the interpolation of which is a non-SLHD
high-order one.

Case N(X)LAG=4 is not described in detail: in this case diabatic terms are interpolated
by trilinear interpolations and they enter the buffer containing terms interpolated by
trilinear interpolations. Start from discretisations given for N(X)LAG=3 and move term
∆tF from P(X)L9 to P(X)L0.

Other points.

∗ High-order interpolations: In the following discretisations, “high-order inter-
polations" means 32 points interpolations for 3D terms (vertical interpolations are cubic),
12 points interpolations for 2D terms.

∗ Uncentering: ǫ is a first-order “uncentering factor". It allows to remove the noise
due to gravity waves (orographic resonance).

∗ Vectorial variables: The following discretisations are written for scalar variables.
For vectorial variables (for example the horizontal wind) a rotation operator R has to be
applied from interpolation point to final point:

• expression interpolated at O has to be replaced by ROF {this expression}O.

• expression interpolated at M has to be replaced by RMF {this expression}M .

3TL vertical interpolating SL scheme.

Equation

dX

dt
= A+ F (23)

is discretised as follows:

(X − (1 + ǫ)∆tβB)+F = {X− + (1− ǫ)∆t[A− βB]o + [(1− ǫ)∆tβB + 2∆tF ]−}O
+{(1 + ǫ)∆t[A− βB]o}F (24)

Buffers content before interpolations for N(X)LAG=2:
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• P(X)L0 is not used.

• P(X)L9: X− + (1− ǫ)∆t[A− βB]o + [(1− ǫ)∆tβB+2∆tF ]− for high-order inter-
polation at the origin point O.

• P(X)T1: (1+ǫ)∆t[A−βB]o then provisional add of quantity [(1+ǫ)∆tβB]o before
t+dt physics; evaluated at the final point F .

Buffers content before interpolations for N(X)LAG=3:

• P(X)L0: (1 − ǫ)∆t[A − βB]o + [(1 − ǫ)∆tβB]− for trilinear interpolation at the
origin point O.

• P(X)L9: X− + [2∆tF ]− for high-order interpolation at the origin point O.

• P(X)T1: (1+ǫ)∆t[A−βB]o then provisional add of quantity [(1+ǫ)∆tβB]o before
t+dt physics; evaluated at the final point F .

2TL vertical interpolating SL scheme: conventional discretisation
(LSETTLS=.F.) and first-order uncentering.

The t+ ∆t
2

non-linear term Am−βBm used in the 2TL SL scheme is computed by a linear
temporal extrapolation using the t and t−∆t quantities at the same location. At the first
time integration step, values at t + ∆t

2
are set equal to initial values. This discretisation

of the 2TL SL scheme follows (Mc Donald and Haugen, 1992). Quantity Ao − βBo has to
be saved in a buffer P(X)NLT9 to be available as A− − βB− for the following timestep.

Equation (10) is discretised as follows:

(X − (1 + ǫ)∆t
2
βB)+F = {Xo + (1− ǫ)∆t

2
[A− βB]m + [(1− ǫ)∆t

2
βB +∆tF ]o}O

+{(1 + ǫ)∆t
2
[A− βB]m}F (25)

which can be rewritten, once expanded the extrapolation:

(X − (1 + ǫ)∆t
2
βB)+F = [Xo + ∆t

2
(1− ǫ)Ao +∆tFo]O

+0.5(1− ǫ)∆t
2
[(A− βB)o − (A− βB)−]O + (1 + ǫ)∆t

2
[1.5(A− βB)o − 0.5(A− βB)−]F(26)

Buffers content before interpolations for N(X)LAG=2:

• P(X)L0 is not used.

• P(X)L9: Xo + ∆t
2
(1 − ǫ)Ao + 0.5(1 − ǫ)∆t

2
[(A − βB)o − (A − βB)−] + ∆tFo for

high-order interpolation at the origin point O.

• P(X)T1: (1+ ǫ)∆t
2
[1.5(A−βB)o−0.5(A−βB)−] then provisional add of quantity

[(1 + ǫ)∆t
2
βB]o before t+dt physics; evaluated at the final point F .

Buffers content before interpolations for N(X)LAG=3:

• P(X)L0: ∆t
2
(1−ǫ)Ao+0.5(1−ǫ)∆t

2
[(A−βB)o−(A−βB)−] for trilinear interpolation

at the origin point O.

• P(X)L9: Xo + [∆tF ]o for high-order interpolation at the origin point O.

• P(X)T1: (1+ ǫ)∆t
2
[1.5(A−βB)o−0.5(A−βB)−] then provisional add of quantity

[(1 + ǫ)∆t
2
βB]o before t+dt physics; evaluated at the final point F .
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2TL vertical interpolating SL scheme: conventional discretisation
(LSETTLS=.F.) and pseudo-second order uncentering.

One starts to remove uncentering ǫ from the nonlinear terms and to apply a second-order
uncentering ǫX to linear terms, that yelds a term B− in the discretisation. From property:

B− = 3Bo − 2Bm (27)

one can remove term B− and show that discretisation is equivalent to replace β by (1 +
ǫX )β. For more details, see part 5 (equations (37) and (38)) of (Simmons and Temperton,
1996). In equation (25), uncentering ǫ has to be replaced by zero, and β has to be replaced
by (1+ǫX )β. The t+ ∆t

2
non-linear term Am−(1+ǫX )βBm used in the 2TL SL scheme is

computed by a linear temporal extrapolation using the t and t−∆t quantities at the same
location. At the first time integration step, values at t+ ∆t

2
are set equal to initial values

and second-order uncentering is replaced by a first order uncentering. This discretisation
of the 2TL SL scheme follows (Mc Donald and Haugen, 1992). Quantity Ao− (1+ǫX )βBo
has to be saved in a buffer P(X)NLT9 to be available as A− − (1 + ǫX )βB− for the
following timestep.

Equation (10) is discretised as follows:

(X − (1 + ǫX )∆t
2
βB)+F = {Xo + ∆t

2
[A− (1 + ǫX )βB]m + [(1 + ǫX )∆t

2
βB +∆tF ]o}O

+{∆t
2
[A− (1 + ǫX )βB]m}F (28)

which can be rewritten, once expanded the extrapolation:

(X − (1 + ǫX )∆t
2
βB)+F = [Xo + ∆t

2
Ao +∆tFo]O + 0.5∆t

2
[(A− (1 + ǫX )βB)o − (A− (1 + ǫX )βB)−]O

+∆t
2
[1.5(A− (1 + ǫX )βB)o − 0.5(A− (1 + ǫX )βB)−]F (29)

Buffers content before interpolations for N(X)LAG=2:

• P(X)L0 is not used.

• P(X)L9: Xo+ ∆t
2
Ao+0.5∆t

2
[(A− (1+ ǫX )βB)o− (A− (1+ ǫX )βB)−] +∆tFo for

high-order interpolation at the origin point O.

• P(X)T1: ∆t
2
[1.5(A− (1 + ǫX )βB)o − 0.5(A− (1 + ǫX )βB)−] then provisional add

of quantity [(1 + ǫX )∆t
2
βB]o before t+dt physics; evaluated at the final point F .

Buffers content before interpolations for N(X)LAG=3:

• P(X)L0: ∆t
2
Ao + 0.5∆t

2
[(A − (1 + ǫX )βB)o − (A − (1 + ǫX )βB)−] for trilinear

interpolation at the origin point O.

• P(X)L9: Xo + [∆tF ]o for high-order interpolation at the origin point O.

• P(X)T1: ∆t
2
[1.5(A− (1 + ǫX )βB)o − 0.5(A− (1 + ǫX )βB)−] then provisional add

of quantity [(1 + ǫX )∆t
2
βB]o before t+dt physics; evaluated at the final point F .
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2TL vertical interpolating SL scheme: stable discretisation (LSET-
TLS=.T.) and first-order uncentering.

The t+ ∆t
2

non-linear term Am − βBm used in the 2TL SL scheme if LSETTLS=.F. is
replaced in the case LSETTLS=.T. by a linear spatio-temporal extrapolation comparable
to the one applied to the wind components for the research of trajectory (see formula (81)),
except the fact that there is an additional uncentering. Term Am − βBm is replaced by

0.5(1 + ǫ)[Ao − βBo]F + 0.5(2− ǫ)[Ao − βBo]O − 0.5[A− − βB−]O

This type of extrapolation is available only for N(X)LAG=3. At the first time integration
step, values at t+ ∆t

2
are set equal to initial values. Quantity Ao − βBo has to be saved

in a buffer P(X)NLT9 to be available as A− − βB− for the following timestep.

Equation (10) is discretised as follows:

(X − (1 + ǫ)∆t
2
βB)+F = {Xo + (2− ǫ)∆t

2
[A− βB]o − ∆t

2
[A− βB]− + [(1− ǫ)∆t

2
βB +∆tF ]o}O

+{(1 + ǫ)∆t
2
[A− βB]o}F (30)

which can be rewritten, once expanded the extrapolation:

(X − (1 + ǫ)∆t
2
βB)+F = [Xo + ∆t

2
(1− ǫ)Ao +∆tFo]O

+∆t
2
[(A− βB)o − (A− βB)−]O + [∆t

2
(1 + ǫ)(A− βB)o]F (31)

Buffers content before interpolations for N(X)LAG=3:

• P(X)L0: ∆t
2
(1− ǫ)Ao + ∆t

2
[(A− βB)o − (A− βB)−] for trilinear interpolation at

the origin point O.

• P(X)L9: Xo + [∆tF ]o for high-order interpolation at the origin point O.

• P(X)T1: ∆t
2
(1+ǫ)(A−βB)o then provisional add of quantity [(1+ǫ)∆t

2
βB]o before

t+dt physics; evaluated at the final point F .

2TL vertical interpolating SL scheme: stable discretisation (LSET-
TLS=.T.) and pseudo-second order uncentering.

In equation (30), uncentering ǫ has to be replaced by zero, and β has to be replaced by
(1 + ǫX )β. At the first time integration step, values at t + ∆t

2
are set equal to initial

values and second-order uncentering is replaced by a first order uncentering. Quantity
Ao−(1+ǫX )βBo has to be saved in a buffer P(X)NLT9 to be available as A−−(1+ǫX )βB−

for the following timestep.

Equation (10) is discretised as follows:

(X − (1 + ǫX )∆t
2
βB)+F

= {Xo +∆t[A− (1 + ǫX )βB]o − ∆t
2
[A− (1 + ǫX )βB]− + [(1 + ǫX )∆t

2
βB +∆tF ]o}O

+{∆t
2
[A− (1 + ǫX )βB]o}F (32)

which can be rewritten, once expanded the extrapolation:

(X − (1 + ǫX )∆t
2
βB)+F = [Xo + ∆t

2
Ao +∆tFo]O

+∆t
2
[(A− (1 + ǫX )βB)o − (A− (1 + ǫX )βB)−]O + [∆t

2
(A− (1 + ǫX )βB)o]F (33)

Buffers content before interpolations for N(X)LAG=3:
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• P(X)L0: ∆t
2
Ao + ∆t

2
[(A− (1 + ǫX )βB)o − (A− (1 + ǫX )βB)−] for trilinear inter-

polation at the origin point O.

• P(X)L9: Xo + [∆tF ]o for high-order interpolation at the origin point O.

• P(X)T1: ∆t
2
(A− (1 + ǫX )βB)o then provisional add of quantity [(1 + ǫX )∆t

2
βB]o

before t+dt physics; evaluated at the final point F .

Specific treatment for some options in the vertical divergence equa-
tion.

∗ Option LGWADV=.T. . When this option is activated, the SL scheme treats
the Lagrangian equation of w instead of the one of d (or d4). That implies the following
steps in the code:

• Change of variable from d or d4 to w.

• SL explicit treatment of the w equation. For finite difference vertical discretisation
(LVFE_GW=F) w is given at half levels: that means that the SL trajectory
must be computed also for trajectories ending at half levels. For finite element
vertical discretisation (LVFE_GW=T) w is given at full levels. There is a specific
treatment for wsurf (diagnostic condition at t+∆t).

• Calculation of the linear terms of the d equation for the semi-implicit scheme.

• Conversion from w+ into d+ or d4+. If LVFE_GW=T, this conversion is done
by applying the vertical derivation to the temporal increment of w to obtain the
temporal increment of d.

• Add the linear terms to d+ or d4+.

It is necessary to keep the prognostic variable d or d4 in the linear model: w in the linear
model would lead to linear instabilities.

This option allows to remove spurious chimneys above slopes, and also spurious noise in
some “bubble" tests.

∗ Option NVDVAR=4. In this case we must discretize the term dX
dt

, and this is
not done by a SL treatment of the equation of X (the RHS of this equation is not easy to
compute).
If there is no predictor-corrector scheme activated, this term is diagnosed as follows:

• Three-time level semi-Lagrangian scheme:

dX

dt
=

0.5XoF + 0.5XoO − X
−
O

∆t
(34)

• Two-time level semi-Lagrangian scheme:

dX

dt
=

X
m
M − X

o
O

0.5∆t
(35)

X
m
M is a symbolic denotation for the extrapolated t + 0.5∆t value of X. The way

of extrapolating depends on LSETTLS and is the same as for the other terms
evaluated at t+ 0.5∆t (there is no interpolation at M).

If LPC_FULL=.T. and LPC_NESC=.F. these discretisations also apply to the pre-
dictor step; in this case there are two options:

• Option 1 (ND4SYS=1): include all the contributions of the evolution of X in the
predictor-corrector scheme iterations.
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• Option 2 (ND4SYS=2): include only the advective contributions evolution of X in
the predictor-corrector scheme iterations; after the last step of the corrector step,
include the non advective processes.

In some cases (ECMWF configurations with lagged physics) option 1 may generate insta-
bilities above slopes.

∗ Assumptions at the surface (velocities). Calculation of dd
dt

for the layer
l = L requires the calculation of dwsurf

dt
. There are two options to compute dwsurf

dt
, con-

trolled by the variable LRDBBC of NAMDYN.

• For LRDBBC=.F., one simply discretizes equation (??) with a SL treatment. The
RHS of this equation contains dVsurf

dt
and Vsurf , and the assumptions currently done

about these quantities are:

. Vsurf = Vl=L

. dVsurf
dt

=
[
d~V
dt

]
l=L,adiab

, with an explicit treatment of the Coriolis term, even

if LADVF=.T. or LIMPF=.T. .

• An alternate discretisation (option LRDBBC=.T.) is to evaluate dwsurf
dt

by:

SL3TL:

dwsurf

dt
=
w+
F − w−

O

2∆t
(36)

SL2TL:

dwsurf

dt
=
w+
F − woO
∆t

(37)

which requires additional interpolations to compute wO.

This option allows to remove spurious chimneys above slopes.

w+ is computed by:
w+ = V

+
l=L,prov∇Φs

where V+
l=L,prov is the provisional t + ∆t value of Vl=L computed just after the

interpolations (this is this provisional value which is used as input for the lagged
physics).

The treatment of dd
dt

for the layer l = L is done according to the following steps:

Calculation of
[
dd
dt

]
l=L,lrdbbc=F

(as if LRDBBC were .F.),
[
dwsurf
dt

]
lrdbbc=F

and[
dwsurf
dt

]
lrdbbc=T

.

Calculation of
[
dd
dt

]
l=L,lrdbbc=T

by the following formula:

[
dd

dt

]
l=L,lrdbbc=T

=
[
dd

dt

]
l=L,lrdbbc=F

−
([
dwsurf

dt

]
lrdbbc=T

−
[
dwsurf

dt

]
lrdbbc=F

)[
gp

RdT∆Π

]o
l=L,MM

(38)

where MM is the decentered middle of O and F (that requires a specific interpo-

lation of
[

gp
RdT∆Π

]
l=L

at O).

For more details about these calculations and the additional interpolations required,
see documentation (IDVNH3), especially the parts 1 to 3.

The above formulae are valid for thin layer equations. For WS2003 deep-layer
equations change Π into Π̃, g into G, w into (rs

2/a2)w in the above formulae.
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5.3 Discretisation for a 3D variable in a 3D model: particular
case where the RHS has zero linear and non-linear terms
(advectable GFL variables).

List of equations.

Humidity equation, and for example:

• Ozone equation.

• Liquid water equation.

• Ice equation.

• Cloudiness equation.

• TKE.

• Aerosols equation.

• Extra GFL variables equations.

See documentation (IDEUL) for a comprehensive list of advectable GFL variables.

Generic notations.

Generic notation P(X)L9, P(X)T1 stands for:

• PGFLL9, PGFLT1 for GFL variables.

Generic notation for total term, linear term, non linear term, physics: A is the total
term (sum of dynamical contributions), B is the linear term (treated in the semi-implicit
scheme), the difference A − βB is the non-linear term. F is the sum of contributions
computed in the physical parameterizations. In the present case A and B are equal to
zero.

Description stands for the general case where diabatic and adiabatic terms are gathered in
the same buffer, and where no additional splitting is required to do diagnostics or to apply
SLHD interpolations to a subset of the terms interpolated by a high-order interpolation.
In some particular cases, additional splitting involving separate buffers may be required:

• When some diagnostics (for example DDH) impose that evaluation of the dynamics
and of the physics at the origin point of the SL trajectory must be done separately
in two different buffers (controlled by variable NSPLTHOI set to -1). Buffer
P(X)LF9 is used instead of P(X)L9 to store quantities, the interpolation of which
is a non-SLHD high-order one.

• When diabatic terms use a different interpolation from the adiabatic one. That
can be the case for non-zero values of NSPLTHOI, attribute LPHYLIN set
to T. Buffer P(X)LF9 is used instead of P(X)L9 to store diabatic terms to be
interpolated.

Other points.

∗ High-order interpolations: In the following discretisations, “high-order in-
terpolations" means: 32 points interpolations for 3D terms (vertical interpolations are
cubic), 12 points interpolations for 2D terms. For ozone, vertical cubic interpolations
can be replaced by vertical Hermite cubic interpolations (switch YO3_NL%LHV in
NAMGFL), or vertical spline cubic interpolations (switch YO3_NL%LVSPLIP in
NAMGFL).
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∗ Uncentering: ǫ is a first-order “uncentering factor". It allows to remove the noise
due to gravity waves (orographic resonance).

3TL vertical interpolating SL scheme.

Equation (10) is discretised as follows:

X+
F = {X− + [2∆tF ]−}O (39)

Buffers content before interpolations:

• P(X)L9: X− + [2∆tF ]− for high-order interpolation at the origin point O.

• P(X)T1 contains zero; evaluated at the final point F .

2TL vertical interpolating SL scheme.

At the first time integration step, values at t + ∆t
2

are set equal to initial values. This
discretisation of the 2TL SL scheme follows (Mc Donald and Haugen, 1992).

Equation (10) is discretised as follows:

X+
F = {Xo + [∆tF ]o}O (40)

Buffers content before interpolations:

• P(X)L9: Xo + [∆tF ]o for high-order interpolation at the origin point O.

• P(X)T1 contains zero; evaluated at the final point F .

∗ Remark for iterative centred-implicit schemes: For options where
this type of scheme involves the momentum equation (this is the case for the option
LPC_FULL=.T.) X+

F has to be recomputed at all iterations of the iterative centred-
implicit scheme since the origin point O is recomputed at each iteration.

Non advectable pseudo-historic GFL variables.

For these variables the discretization always writes (3TL SL and 2TL SL):

X+
F = {Xo + [∆tF ]o}F (41)

and there are never interpolations.
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5.4 Discretisation for a 2D variable in a 3D model (GMVS
variables, for example continuity equation).

The equation which is now discretised is:

[Rinte](top,surf)

〈
Wvei
∆η

dX

dt

〉
= [Rinte](top,surf)

〈
Wvei
∆η

A
〉
+[Rinte](top,surf)

〈
Wvei
∆η

F
〉

(42)

where:

[Rinte](top,surf)

〈
Wvei
∆η

〉
= 1 (43)

and [Rinte](top,surf) is the vertical integral matricial operator (the scalar product [Rinte](top,surf)〈X〉
is the discretisation of

∫ η=1

η=0
Xdη, 〈X〉 is the vector containing the layer values of X:

(X1;X2; ...;Xl; ...;XL)).

In the thin layer equations or in the Wood and Staniforth formulation of deep-layer equa-
tions, expression of Wvei at full levels is:

[Wvei]l = ∆Bl (44)

In the deep layer equations (White and Bromley, 1995), expression of Wvei at full levels
is:

[Wvei]l =




∆Bl

[
rs

2

a2

]
l

[Rinte](top,surf)
〈
∆B
∆η

rs2

a2

〉


 (45)

When the finite element vertical discretisation is activated (LVERTFE=.T.), [Rinte](top,surf)
is a vector tricky to compute, it is precomputed in the setup routine SUVERTFE1 or
SUVERTFE3 and stored in the array RINTE of YOMCVER. Vertical integrations
are done in routine VERINT. For more details see the part of the appendix of docu-
mentation (IDEUL) which explains the computation of matrix [Rinte]. When the finite
difference vertical discretisation is activated (LVERTFE=.F.), [Rinte](top,surf) is simply
the vector of coordinates ([∆η]1; [∆η]2; ...; [∆η]l; ...; [∆η]L) so:

• equation (42) rewrites:

L∑

l=1

[Wvei]l
(
dX

dt

)
l
=

L∑

l=1

[Wvei]lAl +

L∑

l=1

[Wvei]lFl (46)

• equation (45) rewrites:

[Wvei]l =




∆Bl

[
rs

2

a2

]
l∑k=L

k=1
[∆Bk]

[
rs2

a2

]
k


 (47)

• routine VERINT is not used in this case.

List of equations.

• Continuity equation.
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Generic notations.

Generic notation N(X)LAG stands for:

• NVLAG for continuity equation.

Generic notations P(X2D)9 (2D term), P(X)T1 (2D term), P(X3D)L9 (3D term),
stand for:

• PX9, PSPT1, PCL9 for continuity equation.

Generic notation P(X)NLT9 (3D term) stands for:

• PSPNLT9 for continuity equation.

Generic notation for total term, linear term, non linear term, physics:

• A is the total term (sum of dynamical contributions): it is assumed to be a 3D
term (sum of 3D and 2D contributions).

• B is the linear term (treated in the semi-implicit scheme): it is assumed to be a 2D
term (vertical integral of a 3D term).

• the difference A− βB is the non-linear term, considered as a 3D term.

• F is the sum of contributions computed in the physical parameterizations; it is
assumed to be a 2D term (vertical integral of a 3D term).

Description stands for the general case where linear and non-linear terms are gathered in
the same buffer, and where no additional splitting is required to do diagnostics or to apply
SLHD interpolations to a subset of the terms interpolated by a high-order interpolation.
In some particular cases, additional splitting involving separate buffers may be required
(see in part 5.2).

Other points.

∗ High-order interpolations: In the following discretisations, “high-order inter-
polations" means: 32 points interpolations for 3D terms (vertical interpolations are cubic),
12 points interpolations for 2D terms.

∗ Uncentering: ǫ is a first-order “uncentering factor". It allows to remove the noise
due to gravity waves (orographic resonance).

∗ Horizontal interpolation of 2D terms: Since the horizontal position of
the interpolation point is vertical dependent, horizontal interpolations of 2D quantities
have to be done for each layer. For example, when interpolating a 2D surface vari-

able at the origin point, [Rinte](top,surf)

〈[
Wvei
∆η

]
F
[surface quantity]O

〉
has no reason

to be equal to [surface quantity]O(η=1), these quantities are generally different: this is

[Rinte](top,surf)

〈[
Wvei
∆η

]
F
[surface quantity]O

〉
which has to be computed.

〈[
Wvei
∆η

]
F
[surface quantity]O

〉

is the vector containing
[
[Wvei]l
[∆η]l

]
F
[surface quantity]O(l), l = 1 to L. For LVERTFE=.F.

this is
∑L

l=1
[[Wvei]l]F [surface quantity]O(l).
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3TL vertical interpolating SL scheme.

Equation (42) is discretised as follows:

(X − (1 + ǫ)∆tβB)+F
= [Rinte](top,surf)

〈[
Wvei
∆η

]
F
{X− + (1− ǫ)∆t[A− βB]o + [(1− ǫ)∆tβB + 2∆tF ]−}O

〉

+{(1 + ǫ)∆t[A− βB]o}F (48)

Buffers content before interpolations for N(X)LAG=2:

• P(X3D)L9: (1− ǫ)∆t[A− βB]o + [(1− ǫ)∆tβB]− for high-order interpolation at
the origin point O(l).

• P(X2D)9: [X− + 2∆tF ]− for horizontal high-order interpolation at the origin
point O(l).

• P(X)T1: (1+ǫ)∆t[A−βB]o then provisional add of quantity [(1+ǫ)∆tβB]o before
t+dt physics; evaluated at the final point F .

Buffers content before interpolations for N(X)LAG=3:

• P(X3D)L9: (1− ǫ)∆t[A− βB]o+ [(1− ǫ)∆tβB]− for trilinear interpolation at the
origin point O(l).

• P(X2D)9: [X− + 2∆tF ]− for horizontal high-order interpolation at the origin
point O(l).

• P(X)T1: (1+ǫ)∆t[A−βB]o then provisional add of quantity [(1+ǫ)∆tβB]o before
t+dt physics; evaluated at the final point F .

2TL vertical interpolating SL scheme: conventional discretisation
(LSETTLS=.F.) and first-order uncentering.

The t+ ∆t
2

non-linear term Am−βBm used in the 2TL SL scheme is computed by a linear
temporal extrapolation using the t and t−∆t quantities at the same location. At the first
time integration step, values at t + ∆t

2
are set equal to initial values. This discretisation

of the 2TL SL scheme follows (Mc Donald and Haugen, 1992). Quantity Ao − βBo has to
be saved in a buffer P(X)NLT9 to be available as A− − βB− for the following timestep.

Equation (42) is discretised as follows:

(X − (1 + ǫ)∆t
2
βB)+F

= [Rinte](top,surf)

〈[
Wvei
∆η

]
F
{Xo + (1− ǫ)∆t

2
[A− βB]m + [(1− ǫ)∆t

2
βB +∆tF ]o}O

〉

+{(1 + ǫ)∆t
2
[A− βB]m}F (49)

which can be rewritten, once expanded the extrapolation:

(X − (1 + ǫ)∆t
2
βB)+F = [Rinte](top,surf)

〈[
Wvei
∆η

]
F
{Xo + ∆t

2
(1− ǫ)Ao +∆tFo}O

〉

+0.5[Rinte](top,surf)

〈[
Wvei
∆η

]
F
(1− ǫ)∆t

2
{(A− βB)o − (A− βB)−}O

〉

+∆t
2
(1 + ǫ)[1.5(A− βB)o − 0.5(A− βB)−]F (50)

Buffers content before interpolations for N(X)LAG=2:
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• P(X3D)L9: (1−ǫ)∆t
2
[1.5(A−βB)o−0.5(A−βB)−]+[(1−ǫ)∆t

2
βB]o for high-order

interpolation at the origin point O(l).

• P(X2D)9: Xo+ [∆tF ]o for horizontal high-order interpolation at the origin point
O(l).

• P(X)T1: (1+ ǫ)∆t
2
[1.5(A−βB)o−0.5(A−βB)−] then provisional add of quantity

[(1 + ǫ)∆t
2
βB]o before t+dt physics; evaluated at the final point F .

• remark: another possibility is to add all the content of P(X2D)9 to P(X3D)L9
in order to remove one horizontal interpolation.

Buffers content before interpolations for N(X)LAG=3:

• P(X3D)L9: (1− ǫ)∆t
2
[1.5(A−βB)o− 0.5(A−βB)−] + [(1− ǫ)∆t

2
βB]o for trilinear

interpolation at the origin point O(l).

• P(X2D)9: Xo+ [∆tF ]o for horizontal high-order interpolation at the origin point
O(l).

• P(X)T1: (1+ ǫ)∆t
2
[1.5(A−βB)o−0.5(A−βB)−] then provisional add of quantity

[(1 + ǫ)∆t
2
βB]o before t+dt physics; evaluated at the final point F .

2TL vertical interpolating SL scheme: conventional discretisation
(LSETTLS=.F.) and pseudo-second order uncentering.

One starts to remove uncentering ǫ from the nonlinear terms and to apply a second-order
uncentering ǫX to linear terms, that yelds a term B− in the discretisation. From property
given by formula (27), one can remove term B− and show that discretisation is equivalent
to replace β by (1 + ǫX )β. For more details, see part 5 (equations (37) and (38)) of
(Simmons and Temperton, 1996). In equation (49), uncentering ǫ has to be replaced by
zero, and β has to be replaced by (1+ǫX )β. The t+ ∆t

2
non-linear term Am−(1+ǫX )βBm

used in the 2TL SL scheme is computed by a linear temporal extrapolation using the t and
t−∆t quantities at the same location. At the first time integration step, values at t+ ∆t

2

are set equal to initial values and second-order uncentering is replaced by a first order
uncentering. This discretisation of the 2TL SL scheme follows (Mc Donald and Haugen,
1992). Quantity Ao− (1+ ǫX )βBo has to be saved in a buffer P(X)NLT9 to be available
as A− − (1 + ǫX )βB− for the following timestep.

Equation (42) is discretised as follows:

(X − (1 + ǫX )∆t
2
βB)+F

= [Rinte](top,surf)

〈[
Wvei
∆η

]
F
{Xo + ∆t

2
[A− (1 + ǫX )βB]m + [(1 + ǫX )∆t

2
βB +∆tF ]o}O

〉

+{∆t
2
[A− (1 + ǫX )βB]m}F (51)

which can be rewritten, once expanded the extrapolation:

(X − (1 + ǫX )∆t
2
βB)+F = [Rinte](top,surf)

〈[
Wvei
∆η

]
F
{Xo + ∆t

2
Ao +∆tFo}O

〉

+0.5[Rinte](top,surf)

〈[
Wvei
∆η

]
F

∆t
2
{(A− (1 + ǫX )βB)o − (A− (1 + ǫX )βB)−}O

〉

+∆t
2
[1.5(A− (1 + ǫX )βB)o − 0.5(A− (1 + ǫX )βB)−]F (52)

Buffers content before interpolations for N(X)LAG=2:
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• P(X3D)L9: ∆t
2
[1.5(A− (1 + ǫX )βB)o − 0.5(A− (1 + ǫX )βB)−] + [(1 + ǫX )∆t

2
βB]o

for high-order interpolation at the origin point O(l).

• P(X2D)9: Xo+ [∆tF ]o for horizontal high-order interpolation at the origin point
O(l).

• P(X)T1: ∆t
2
[1.5(A− (1 + ǫX )βB)o − 0.5(A− (1 + ǫX )βB)−] then provisional add

of quantity [(1 + ǫX )∆t
2
βB]o before t+dt physics; evaluated at the final point F .

• remark: another possibility is to add all the content of P(X2D)9 to P(X3D)L9
in order to remove one horizontal interpolation.

Buffers content before interpolations for N(X)LAG=3:

• P(X3D)L9: ∆t
2
[1.5(A− (1 + ǫX )βB)o − 0.5(A− (1 + ǫX )βB)−] + [(1 + ǫX )∆t

2
βB]o

for trilinear interpolation at the origin point O(l).

• P(X2D)9: Xo+ [∆tF ]o for horizontal high-order interpolation at the origin point
O(l).

• P(X)T1: ∆t
2
[1.5(A− (1 + ǫX )βB)o − 0.5(A− (1 + ǫX )βB)−] then provisional add

of quantity [(1 + ǫX )∆t
2
βB]o before t+dt physics; evaluated at the final point F .

2TL vertical interpolating SL scheme: stable discretisation (LSET-
TLS=.T.) and first-order uncentering.

The t+ ∆t
2

non-linear term Am − βBm used in the 2TL SL scheme if LSETTLS=.F. is
replaced in the case LSETTLS=.T. by a linear spatio-temporal extrapolation comparable
to the one applied to the wind components for the research of trajectory (see formula (81)),
except the fact that there is an additional uncentering. Term Am − βBm is replaced by

0.5(1 + ǫ)[Ao − βBo]F + 0.5(2− ǫ)[Ao − βBo]O(l) − 0.5[A− − βB−]O(l)

This type of extrapolation is available only for N(X)LAG=3. At the first time integration
step, values at t+ ∆t

2
are set equal to initial values. Quantity Ao − βBo has to be saved

in a buffer P(X)NLT9 to be available as A− − βB− for the following timestep.

Equation (42) is discretised as follows:

(X − (1 + ǫ)∆t
2
βB)+F

= [Rinte](top,surf)

〈[
Wvei
∆η

]
F
{Xo + (2− ǫ)∆t

2
[A− βB]o − ∆t

2
[A− βB]− + [(1− ǫ)∆t

2
βB +∆tF ]o}O

〉

+{(1 + ǫ)∆t
2
[A− βB]o}F (53)

which can be rewritten:

(X − (1 + ǫ)∆t
2
βB)+F

= [Rinte](top,surf)

〈[
Wvei
∆η

]
F
{Xo + (1− ǫ)∆t

2
A+∆tF ]o}O

〉

+[Rinte](top,surf)

〈[
Wvei
∆η

]
F

∆t
2
{[A− βB]o − [A− βB]−}O

〉

+{(1 + ǫ)∆t
2
[A− βB]o}F (54)

Buffers content before interpolations for N(X)LAG=3:

• P(X3D)L0 is not used.
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• P(X3D)L9: (2 − ǫ)∆t
2
[A − βB]o − ∆t

2
[A − βB]− + [(1 − ǫ)∆t

2
βB]o for trilinear

interpolation at the origin point O(l) (which can be rewritten: (1−ǫ)∆t
2
A+∆t

2
{[A−

βB]o − [A− βB]−}).
• P(X2D)0 is not used.

• P(X2D)9: Xo+ [∆tF ]o for horizontal high-order interpolation at the origin point
O(l).

• P(X)T1: (1+ǫ)∆t
2
[A−βB]o then provisional add of quantity [(1+ǫ)∆t

2
βB]o before

t+dt physics; evaluated at the final point F .

2TL vertical interpolating SL scheme: stable discretisation (LSET-
TLS=.T.) and pseudo-second order uncentering.

In equation (53), uncentering ǫ has to be replaced by zero, and β has to be replaced by
(1 + ǫX )β. At the first time integration step, values at t + ∆t

2
are set equal to initial

values and second-order uncentering is replaced by a first order uncentering. Quantity
Ao−(1+ǫX )βBo has to be saved in a buffer P(X)NLT9 to be available as A−−(1+ǫX )βB−

for the following timestep.

Equation (42) is discretised as follows:

(X − (1 + ǫX )∆t
2
βB)+F

= [Rinte](top,surf)

〈[
Wvei
∆η

]
F
{Xo +∆t[A− (1 + ǫX )βB]o − ∆t

2
[A− (1 + ǫX )βB]− + [(1 + ǫX )∆t

2
βB +∆tF ]o}O

〉

+{∆t
2
[A− (1 + ǫX )βB]o}F (55)

which can be rewritten:

(X − (1 + ǫX )∆t
2
βB)+F

= [Rinte](top,surf)

〈[
Wvei
∆η

]
F
{Xo + ∆t

2
A+∆tF ]o}O

〉

+[Rinte](top,surf)

〈[
Wvei
∆η

]
F

∆t
2
{[A− (1 + ǫX )βB]o − [A− (1 + ǫX )βB]−}O

〉

+{∆t
2
[A− (1 + ǫX )βB]o}F (56)

Buffers content before interpolations for N(X)LAG=3:

• P(X3D)L0 is not used.

• P(X3D)L9: ∆t[A − (1 + ǫX )βB]o − ∆t
2
[A − (1 + ǫX )βB]− + [(1 + ǫX )∆t

2
βB]o for

trilinear interpolation at the origin point O(l) (which can be rewritten: ∆t
2
A +

∆t
2
{[A− (1 + ǫX )βB]o − [A− (1 + ǫX )βB]−}).

• P(X2D)0 is not used.

• P(X2D)9: Xo+ [∆tF ]o for horizontal high-order interpolation at the origin point
O(l).

• P(X)T1: ∆t
2
[A− (1 + ǫX )βB]o then provisional add of quantity [(1 + ǫX )∆t

2
βB]o

before t+dt physics; evaluated at the final point F .

5.5 Discretisation for a 2D variable in a 2D model.

The content of the part (5.2) is generally valid, but there are particular remarks.
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List of equations.

• Momentum equation.

• Continuity equation.

Generic notations.

Generic notation N(X)LAG stands for:

• NWLAG for momentum equation.

• NVLAG for continuity equation. Negative values of NVLAG are used for La-
grangian formulation of continuity equation (the following discretisations apply to
the absolute value of NVLAG), only NVLAG=-2 is available in this case.

Generic notation P(X)L0, P(X)L9, P(X)T1 stands for:

• PUL0, PUL9, PUT1 for U-momentum equation.

• PVL0, PVL9, PVT1 for V-momentum equation.

• PSPL0, PSPL9, PSPT1 for continuity equation.

Generic notation P(X)NLT9 stands for:

• PUNLT9 for U-momentum equation.

• PVNLT9 for V-momentum equation.

• PSPNLT9 for continuity equation.

Generic notation for total term, linear term, non linear term: A is the total term (sum of
dynamical contributions), B is the linear term (treated in the semi-implicit scheme), the
difference A− βB is the non-linear term.

Other points.

∗ High-order interpolations: In the following discretisations, “high-order inter-
polations" means 12 points interpolations.

∗ Uncentering: ǫ is a first-order “uncentering factor". It allows to remove the noise
due to gravity waves (orographic resonance).

∗ Vectorial variables: The following discretisations are written for scalar variables.
For vectorial variables (for example the horizontal wind) a rotation operator R has to be
applied from interpolation point to final point:

• expression interpolated at O has to be replaced by ROF {this expression}O.

• expression interpolated at M has to be replaced by RMF {this expression}M .
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3TL SL scheme.

Equation:

dX

dt
= A (57)

is discretised as follows:

(X − (1 + ǫ)∆tβB)+F = {X− + [(1− ǫ)∆tA− (1− ǫ)∆tβB]o + [(1− ǫ)∆tβB]−}O
+{[(1 + ǫ)∆tA− (1 + ǫ)∆tβB]o}F (58)

Buffers content before interpolations for N(X)LAG=2:

• P(X)L0 is not used.

• P(X)L9: X− + [(1 − ǫ)∆tA − (1 − ǫ)∆tβB]o + [(1 − ǫ)∆tβB]− for high-order
interpolation at the origin point O.

• P(X)T1: [(1 + ǫ)∆tA− (1 + ǫ)∆tβB]o; evaluated at the final point F .

Buffers content before interpolations for N(X)LAG=3:

• P(X)L0: [(1− ǫ)∆tA− (1− ǫ)∆tβB]o + [(1− ǫ)∆tβB]− for bilinear interpolation
at the origin point O.

• P(X)L9: X− for high-order interpolation at the origin point O.

• P(X)T1: [(1 + ǫ)∆tA− (1 + ǫ)∆tβB]o; evaluated at the final point F .

2TL SL scheme: conventional discretisation (LSETTLS=.F.) and
first-order uncentering.

The t+ ∆t
2

non-linear term Am−βBm used in the 2TL SL scheme is computed by a linear
temporal extrapolation using the t and t−∆t quantities at the same location. At the first
time integration step, values at t + ∆t

2
are set equal to initial values. This discretisation

of the 2TL SL scheme follows (Mc Donald and Haugen, 1992). Quantity Ao − βBo has to
be saved in a buffer P(X)NLT9 to be available as A− − βB− for the following timestep,
when non-zero (i.e. only for continuity equation, if β=1).

Equation (57) is discretised as follows:

(X − (1 + ǫ)∆t
2
βB)+F = {Xo + [(1− ǫ)∆t

2
A− (1− ǫ)∆t

2
βB]m + [(1− ǫ)∆t

2
βB]o}O

+{[(1 + ǫ)∆t
2
A− (1 + ǫ)∆t

2
βB]m}F (59)

Buffers content before interpolations for N(X)LAG=2:

• P(X)L0 is not used.

• P(X)L9: Xo + [(1 − ǫ)∆t
2
A − (1 − ǫ)∆t

2
βB]m + [(1 − ǫ)∆t

2
βB]o for high-order

interpolation at the origin point O.

• P(X)T1: [(1 + ǫ)∆t
2
A− (1 + ǫ)∆t

2
βB]m; evaluated at the final point F .

Buffers content before interpolations for N(X)LAG=3:

• P(X)L0: [(1− ǫ)∆t
2
A− (1− ǫ)∆t

2
βB]m + [(1− ǫ)∆t

2
βB]o for bilinear interpolation

at the origin point O.

• P(X)L9: Xo for high-order interpolation at the origin point O.

• P(X)T1: [(1 + ǫ)∆t
2
A− (1 + ǫ)∆t

2
βB]m; evaluated at the final point F .
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∗ Remark for momentum equation: β can only take the value 1 and in
this case the non-linear term A − B is zero; simplifications are made in the code; arrays
PUNLT9 and PVNLT9 are useless and not allocated.

2TL SL scheme: stable discretisation (LSETTLS=.T.) and first-
order uncentering.

The t+ ∆t
2

non-linear term Am − βBm used in the 2TL SL scheme if LSETTLS=.F. is
replaced in the case LSETTLS=.T. by a linear spatio-temporal extrapolation comparable
to the one applied to the wind components for the research of trajectory (see formula (81)),
except the fact that there is an additional uncentering. Term Am − βBm is replaced by

0.5(1 + ǫ)[Ao − βBo]F + 0.5(2− ǫ)[Ao − βBo]O − 0.5[A− − βB−]O

This type of extrapolation is available only for N(X)LAG=3. At the first time integration
step, values at t+ ∆t

2
are set equal to initial values. Quantity Ao − βBo has to be saved

in a buffer P(X)NLT9 to be available as A− − βB− for the following timestep, when
non-zero (i.e. only for continuity equation, if β=1).

Equation (57) is discretised as follows:

(X − (1 + ǫ)∆t
2
βB)+F = {Xo + [(2− ǫ)∆t

2
A− (2− ǫ)∆t

2
βB]o − [∆t

2
A− ∆t

2
βB]− + [(1− ǫ)∆t

2
βB]o}O

+{[(1 + ǫ)∆t
2
A− (1 + ǫ)∆t

2
βB]o}F (60)

Buffers content before interpolations for N(X)LAG=3:

• P(X)L0: [(2−ǫ)∆t
2
A−(2−ǫ)∆t

2
βB]o−[∆t

2
A− ∆t

2
βB]−+[(1−ǫ)∆t

2
βB]o for bilinear

interpolation at the origin point O.

• P(X)L9: Xo for high-order interpolation at the origin point O.

• P(X)T1: [(1 + ǫ)∆t
2
A− (1 + ǫ)∆t

2
βB]o; evaluated at the final point F .

∗ Remark for momentum equation: β can only take the value 1 and in
this case the non-linear term A − B is zero; simplifications are made in the code; arrays
PUNLT9 and PVNLT9 are useless and not allocated.

2TL SL scheme: pseudo-second order uncentering.

In cycle 37T1 of ARPEGE/IFS the pseudo-second order uncentering is not coded in the
shallow-water model.

5.6 Additional vertical derivatives.

If δTR is non-zero, discretisation of temperature equation needs to compute the vertical
advection

(
η̇ dαT
dη

)
(at full levels) of αT. Layers values of αT (array RCORDIF) are used

to define T + δTR
αTΦs
RdTST

, but half level values of αT (array RCORDIH) are used to
compute vertical advection.

There is something similar in the Q̂ equation if δP is non-zero (Wood and Staniforth
deep-layer version of the NH-PDVD model, use of an array RCORPDH).

No longer existing option.
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5.7 Case when some variables are evaluated at half levels.

The prognostic variables and the RHS of equations are generally evaluated at full levels in
the discretisation. The previous general considerations valid to layer variables also apply
to half level variables, but a “half level" trajectory has now to be computed (the origin O
now matches a half level final point F ).

• Horizontal displacement at half levels: the coordinates of the half level-trajectory
interpolation point are computed as the average (with a vertical weight taking
account of η) of the coordinates of the adjacent full level-trajectory interpolation
points; this average is a lon-lat average on the computational sphere in spherical
geometry, and a x-y average on the projection plane in plane geometry (ALADIN).

• Vertical displacement at half levels: the vertical coordinate of the half level-trajectory
interpolation point is computed as the average (with a vertical weight taking ac-
count of η) of the vertical coordinates of the adjacent full level-trajectory interpo-
lation points; no vertical displacement if there is no vertical displacement for the
two adjacent full levels.

• No complete iterative recalculation of trajectory is done for half-level trajectories.

5.8 Remarks for spline cubic vertical interpolations.

In this case the vertical interpolation uses all model levels and can be written as the
product of two vertical interpolations: the first one uses all model levels and can be
done at F in the unlagged grid-point calculations (the intermediate quantity obtained is
stored in the array P(X)SPL9), the second one is a 4 points interpolation, done in the
lagged grid-point calculations in the interpolation routine. Interpolation routine uses both
P(X)SPL9 (for interpolations) and P(X)L9 to apply a monotonicity constraint.
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6 Computation of medium and origin points.

Preliminary remark: the subsections (6.1), (6.2) and (6.3) are detailed for a spherical
geometry and for the trajectory which is used in the advection of full level variables; the
subsection (6.4) gives informations about the other cases (for example plane geometry and
half level variables).

6.1 Medium point M (subroutines LARMES and LARMES2).

Trajectories are great circles on the geographical sphere. The computation of the
medium pointM location of the Lagrangian trajectory is performed by an iterative method
described by Robert (1981) and adapted to the sphere by M. Rochas. In a 3TL SL scheme,
the particle is at the point M at the instant t (t+∆t/2 for the first integration step). In a
2TL SL scheme, the particle is at the point M at the instant t+∆t/2. M is at the middle
position of the origin point O and the final point F . Algorithm is described for deep layer
equations; in the thin layer equations, replace simply rs by a in formulae. For conveniency
equations are written with the angular velocity V/rs but actually this is rather (a/rs)V
which is used in the code. Parts (6.1), (6.1) and (6.1) are valid for non implicit iterative
schemes. Part (6.1) is valid for a class of iterative centred-implicit schemes where the
momentum equation is treated in an iterative centred-implicit manner (this is the case of
the option LPC_FULL in ALADIN-NH).

∗ Notations:

• RMF is the rotation operator from medium point to final point (see section 9).

• ROF is the rotation operator from origin point to final point (see section 9).

• rF = CF (C Earth centre, F final point).

• rM = CM (M medium point).

• r = rsk.

• φMF : angle ( ̂CM,CF).

• θF ,λF : latitude, longitude on the geographical sphere of F .

• θM ,λM : latitude, longitude on the geographical sphere of M .

• VM : interpolated horizontal wind at M (wind at t in 3TL SL scheme, t+0.5∆t in
2TL SL scheme).

• VO: interpolated horizontal wind at O (wind at t in 3TL SL scheme, t+ 0.5∆t in
2TL SL scheme).

• a is the average Earth radius near the surface.

• ∆t: time-step.

• δt:

– In a 3TL SL scheme, δt = 0.5∆t at the first integration step, δt = ∆t at the
following integration steps (leap-frog scheme).

– In a 2TL SL scheme, δt = 0.5∆t.

• L: number of layers of the model.

• A, B define hydrostatic pressure on the η levels ( Π = A + BΠs, where Πs is the
hydrostatic surface pressure).

• Πs
st is a reference hydrostatic pressure equal to the surface pressure of the standard

atmosphere (variable VP00).

• ΠST is a reference hydrostatic pressure defined at full levels and half levels corre-
sponding to the surface reference hydrostatic pressure Πs

st ( ΠST = A + BΠs
st ):

stored in array STPRE.
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∗ Definition of the vertical coordinate η: Research of medium point needs
an exact definition of the vertical coordinate η. For the half level number l (l between 0
and L), η

l
is defined by:

η
l
=

A
l

Πs
st +B

l
(61)

if LREGETA=.F. (in namelist NAMCT0), and:

η
l
=

l

L
(62)

if LREGETA=.T. .
For the layer number l (l between 1 and L), ηl is defined by:

ηl = 0.5(η
l
+ η

l−1
) (63)

A specific definition of η may be required for the VFE operators if LVERTFE=.T.: it is
controled by the key LVFE_REGETA.

Conventional algorithm (always used for 3TL SL scheme, case
LSETTLST=LELTRA=.F. for 2TL SL scheme).

∗ Extrapolation of the wind for 2TL SL scheme: The quantity [V/rs]
at t + 0.5∆t used in the 2TL SL scheme is computed by a linear temporal extrapolation
using the t and t−∆t winds at the same location.

∗ Algorithm: The medium point is defined by the following iterative scheme: for the
iteration k + 1:

[r/rs]
M
k+1 = [r/rs]

F cosφk −
RMF ([V/rs]

M
k )

| [V/rs]Mk | sinφk (64)

where:

φk = δt | [V/rs]Mk | (65)

φ is a small angle:

sinφ ≃ φ− φ3

6
(66)

and:

cosφ ≃ 1− φ2

2
(67)

This approximation allows to simplify some calculations and avoids the occurrence of a
division by 0 in the formula defining rMk+1. Of course:

sinφ ≃ φ

(
1− φ2

6

)
≃| [V/rs] | δt

(
1− φ2

6

)
(68)
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thus:

[r/rs]
M
k+1 = [r/rs]

F

(
1− φ2

k

2

)
−RMF ([V/rs]

M
k )δt

(
1− φ2

k

6

)
(69)

On the vertical, for 3D model:

ηMk+1 = ηF − δtη̇Mk (70)

∗ First iteration: Let us start withM0 = F , [V/rs]M0 = [V/rs]
F , φ0 = δt | [V/rs]F |,

η̇M0 = η̇F . Horizontal wind V has components (u,v). Thus

sin θM1 = sin θF cosφ0 −
[v/rs]

F

| [V/rs]F | cos θ
F sinφ0 (71)

cos θM1 cos(λM1 − λF ) = cos θF cosφ0 +
[v/rs]

F

| [V/rs]F | sin θ
F sinφ0 (72)

cos θM1 sin(λM1 − λF ) = − [u/rs]
F

| [V/rs]F | sinφ0 (73)

ηM1 = ηF − δtη̇F0 (74)

This defines the coordinates of M1. Then [u/rs], [v/rs], η̇ are interpolated at this point,
that gives [V/rs]M1 and η̇M1 . Tri-linear interpolations are used in the 3D primitive equation
model, horizontal 12 points interpolations are used in the 2D shallow-water model (see
section 11).

∗ Following iterations: Let us denote by V
′

(u
′

, v
′

) = RMF (VM
k ).

sin θMk+1 = sin θF cosφk −
[v

′

/rs]

| [V′/rs] |
cos θF sinφk (75)

cos θMk+1 cos(λ
M
k+1 − λF ) = cos θF cosφk +

[v
′

/rs]

| [V′/rs] |
sin θF sinφk (76)

cos θMk+1 sin(λ
M
k+1 − λF ) = − [u

′

/rs]

| [V′/rs] |
sinφk (77)

ηMk+1 = ηF − δtη̇Mk (78)

This defines coordinates of Mk+1. Then, if it is not the last iteration, [u/rs], [v/rs], η̇
are interpolated at this point, that gives [V/rs]Mk+1 and η̇Mk+1. Tri-linear interpolations are
used in the 3D primitive equation model, horizontal 12 points interpolations are used in
the 2D shallow-water model (see section 11). This iterative algorithm quickly converges:
3 iterations are generally enough.
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Stable algorithm for 2TL SL scheme (LSETTLST=.T., LELTRA=.F.
in NAMDYN).

∗ Extrapolation of the wind: The previous algorithm with LSETTLST=.F.
can sometimes generate instability (especially when applied to the vertical displacement)
so a stable algorithm has been developed by M. Hortal at ECMWF. For more details
about theoretical aspects see (Hortal, 1998), (Hortal, 2002). The basic idea is to replace
the purely temporal extrapolation by a spatio-temporal extrapolation:

RMF [V/rs]
M (t+ 0.5∆t) = 1.5RNF [V/rs]

N (t)− 0.5ROF [V/rs]
O(t−∆t) (79)

where N is the position of the particle at time t for a particle which goes from the origin
point O at time t−∆t to M at time t+0.5∆t. Assuming that the wind is constant along
the trajectory one can write:

ON = 2NM = 0.5NF (80)

and evaluate the angular velocity RNF [V/rs]
N (t) by 2/3RMF [V/rs]

M (t)+1/3ROF [V/rs]
O(t)

or 1/3[V/rs]
F (t) + 2/3ROF [V/rs]

O(t). Expression of [V/rs]M (t+ 0.5∆t) becomes:

RMF [V/rs]
M (t+0.5∆t) = 0.5[V/rs]

F (t)+0.5ROF (2[V/rs]
O(t)−[V/rs]

O(t−∆t))(81)

The same type of extrapolation is done for the η-coordinate vertical velocity. The algo-
rithm of research of trajectory uses directly the RHS of this equation, and for all iterations
the origin point O is computed instead of the medium point M .

∗ Algorithm: The origin point is defined by the following iterative scheme: for the
iteration k + 1:

[r/rs]
O
k+1 = [r/rs]

F cosφk−
0.5[V/rs]

F (t) + 0.5ROF (2[V/rs]
O
k (t)− [V/rs]

O
k (t−∆t))

| 0.5[V/rs]F (t) + 0.5ROF (2[V/rs]Ok (t)− [V/rs]Ok (t−∆t)) | sinφk(82)

where:

φk = 2δt | 0.5[V/rs]F (t) + 0.5ROF (2[V/rs]
O
k (t)− [V/rs]

O
k (t−∆t)) | (83)

Approximations given by equations (66), (67) and (68) are still valid (change δt by 2δt in
(68)), thus:

[r/rs]
O
k+1 =

[r/rs]
F
(
1− φ2

k

2

)
− (0.5[V/rs]

F (t) + 0.5ROF (2[V/rs]
O
k (t)− [V/rs]

O
k (t−∆t)))(2δt)

(
1− φ2

k

6

)
(84)

On the vertical, for 3D model:

ηOk+1 = ηF − 2δt(0.5η̇F (t) + 0.5(2η̇Ok (t)− η̇Ok (t−∆t))) (85)

∗ First iteration: One starts with M0 = F , [V/rs]F (t) as a first guess for the spatio-
temporally extrapolated horizontal angular velocity, φ0 = 2δt | [V/rs]F (t) |, η̇F (t) as a
first guess for the spatio-temporally extrapolated η-coordinate vertical wind. Remark
that quantities at t are taken as a first guess and not quantities at (t + 0.5∆t), contrary
to the case LSETTLST=.F. . Use equations (71) to (74) replacing δt by 2δt and the
superscript M by O. This defines the coordinates of O1; (2[V/rs](t) − [V/rs](t − ∆t))
and (2η̇(t) − η̇(t − ∆t)) are interpolated at this point, that allows to compute the wind
components which will be used for the next iteration.
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∗ Following iterations: [V
′

/rs] (of coordinates ([u
′

/rs], [v
′

/rs]) ) is a generic no-
tation for (0.5[V/rs]

F (t) + 0.5ROF (2[V/rs]
O
k (t)− [V/rs]

O
k (t−∆t))). For horizontal dis-

placement use equations (75) to (77) replacing δt by 2δt and the superscript M by O. For
vertical displacement use equation

ηOk+1 = ηF − 2δt(0.5η̇F (t) + 0.5(2η̇Ok (t)− η̇Ok (t−∆t))) (86)

Alternate stable algorithm for 2TL SL scheme (LELTRA=.T. in
NAMDYN).

∗ Extrapolation of the horizontal angular velocity: The quantity [V/rs]
at t+0.5∆t used in the 2TL SL scheme is computed using the RHS of the [V/rs] equation
with explicit formulation of Coriolis term. We denote this RHS by RHSAV in subsub-
section (6.1). The extrapolated value of [V/rs] is given by:

[V/rs]ext = [V/rs](t) + 0.5∆tRHSAV (87)

∗ Extrapolation of the vertical velocity: The RHS is assumed to be zero,
so:

η̇ext = η̇(t) (88)

There is no extrapolation at all.

∗ Algorithm: The medium point is defined by the following iterative scheme: for the
iteration k+1, a provisional position of the origin point is computed using equations (64)
to (70), replacing “M" by “O" and “δt" by “∆t".

∗ First iteration: Let us start withO0 = F , [V/rs]O0 = [V/rs]
F
ext, φ0 = ∆t | [V/rs]Fext |,

η̇O0 = η̇Fext. Horizontal angular velocity [V/rs]ext has components (u/rs,v/rs). Use equa-
tions (71) to (74), replacing “M" by “O" and “δt" by “∆t" to define coordinates of O1.
Then u/rs,v/rs,η̇ are interpolated at this point, that gives [V/rs]

O
1 and η̇O1 (subscript

“ext" is omitted). Tri-linear interpolations are used in the 3D primitive equation model,
horizontal 12 points interpolations are used in the 2D shallow-water model (see section
11).

∗ Following iterations: Use equations (75) to (78), replacing “M" by “O" and “δt"
by “∆t" to define coordinates of Ok+1. Then u/rs,v/rs,η̇ are interpolated at this point,
that gives [V/rs]

O
k+1 and η̇Ok+1 (subscript “ext" is omitted). Tri-linear interpolations are

used in the 3D primitive equation model, horizontal 12 points interpolations are used in
the 2D shallow-water model (see section 11). This iterative algorithm quickly converges:
3 iterations are generally enough.

Algorithm used with the iterative centred-implicit schemes.

∗ Preliminar remarks: Iterative centred-implicit schemes are used to improve sta-
bility and it has been shown that this type of scheme has to be used when non-hydrostatic
equations are advected by a SL2TL scheme. There are several manners to do iterative
centred-implicit schemes; these schemes are not described in detail here; for some of them
which are not obsolescent, see documentation (IDSI). When the momentum equation is
treated by an iterative centred-implicit scheme, the semi-Lagrangian trajectory has to be
recomputed at each iteration of the iterative centred-implicit scheme and interpolations
have to be done again. In this case the algorithm of research trajectory is modified. The
case is currently encountered with a SL2TL scheme and LPC_FULL=.T. . The follow-
ing algorithm will be described for a SL2TL scheme but it can be extended to a SL3TL
scheme (replacing instant t by instant t−∆t).
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∗ Extrapolation of the wind if non-extrapolating option (LPC_NESCT=.T.):
No extrapolation is done. The first iteration of the iterative centred-implicit scheme uses
[V/rs](t) and η̇(t). The following iterations of the iterative centred-implicit scheme use
the [V/rs](t+∆t) and η̇(t+∆t) of the previous iteration to start the research of trajectory.
As for the “LSETTLST" option the algorithm computes the origin point O.

∗ Extrapolation of the wind if extrapolating option (LPC_NESCT=.F.):
The only difference with the previous case is for the first iteration of the iterative centred-
implicit scheme: the wind which is used is now 1.5[V/rs](t) − 0.5[V/rs](t − ∆t) and
1.5η̇(t)− 0.5η̇(t−∆t).

∗ Algorithm: One denotes by index “k" the numbering of the SL-trajectory research
algorithm iteration, and by index “(i)" the number of the iterative centred-implicit scheme
iteration (in variable NCURRENT_ITER).

The origin point is defined by the following iterative scheme: for the iteration k+1 of the
SL-trajectory research algorithm:

[
[r/rs]

O
k+1

]
(i)

= [r/rs]
F [cosφk](i)−

0.5ROF [V/rs]
O
k (t) + 0.5

[
[V/rs]

F (t+∆t)
]
(i−1)

| 0.5ROF [V/rs]Ok (t) + 0.5 [[V/rs]F (t+∆t)](i−1) |
[sinφk](i)(89)

where:

[φk](i) = 2δt | 0.5ROF [V/rs]
O
k (t) + 0.5

[
[V/rs]

F (t+∆t)
]
(i−1)

| (90)

Approximations given by equations (66), (67) and (68) are still valid (change δt by 2δt in
(68)), thus:

[
[r/rs]

O
k+1

]
(i)

= [r/rs]
F

(
1−

[
φ2
k

]
(i)

2

)
−

(
0.5ROF [V/rs]

O
k (t) + 0.5

[
[V/rs]

F (t+∆t)
]
(i−1)

)
(2δt)

(
1−

[
φ2
k

]
(i)

6

)
(91)

On the vertical, for 3D model:

[
ηOk+1

]
(i)

= ηF − 2δt
(
0.5η̇Ok (t) + 0.5

[
η̇F (t+∆t)

]
(i−1)

)
(92)

For i = 0: [[V/rs](t+∆t)](i=0) = [V/rs](t) and [η̇(t+∆t)](i=0) = η̇(t) if LPC_NESCT=.T. ;
[[V/rs](t+∆t)](i=0) = 2[V/rs](t)− [V/rs](t−∆t) and [η̇(t+∆t)](i=0) = 2η̇(t)− η̇(t−∆t)

if LPC_NESCT=.F. .

∗ First iteration of the research of SL trajectory: One starts with
M0 = F ,

[
[V/rs]

F (t+∆t)
]
(i−1)

as a first guess for the spatio-temporally extrapolated

horizontal wind, [φ0](i) = 2δt |
[
[V/rs]

F (t+∆t)
]
(i−1)

|,
[
η̇F (t+∆t)

]
(i−1)

as a first guess

for the spatio-temporally extrapolated η-coordinate vertical wind. Use equations (71) to
(74) replacing δt by 2δt and the superscript M by O in the SL-trajectory research. This
defines the coordinates of [O1](i); [V/rs](t) and η̇(t) are interpolated at this point, that
allows to compute the wind components which will be used for the next iteration of the
research of SL trajectory.
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∗ Following iterations of the research of SL trajectory: [V
′

/rs] (of co-
ordinates ([u

′

/rs], [v
′

/rs]) is a generic notation for 0.5ROF [V/rs]
O
k (t)+0.5

[
[V/rs]

F (t+∆t)
]
(i−1)

.

For horizontal displacement use equations (75) to (77) replacing δt by 2δt and the super-
script M by O otherwise. For vertical displacement use equation

[
ηOk+1

]
(i)

= ηF − 2δt
(
0.5η̇Ok (t) + 0.5

[
η̇F (t+∆t)

]
(i−1)

)
(93)

∗ Alternate stable algorithm for 2TL SL scheme (LELTRA=.T. in
NAMDYN): For each iteration of the iterative centred-implicit scheme the algorithm
is the same as for explicit schemes; at each iteration the RHS of the momentum equation
is updated with the “provisional" t+∆t information computed at the previous iteration.

6.2 Origin point O (subroutines LARMES and LAINOR2).

In a 3TL SL scheme, the particle is at the point O at the instant t−∆t (t for the first
integration step). In a 2TL SL scheme, the particle is at the point O at the instant t.

O is on the same great circle arc (on the geographical sphere) as M and F and the

length of OF is twice the length of MF . If angle ̂([r/rs]O, [r/rs]F ) is small (less than 10o,
what is generally satisfied), on can write for horizontal displacement:

[r/rs]
O − [r/rs]

F ≃ 2([r/rs]
M − [r/rs]

F ) (94)

For vertical displacement on can always write:

ηO − ηF = 2(ηM − ηF ) (95)

One denotes by:

• φ = ̂([r/rs]M , [r/rs]F )

• [V
′

/rs] (of coordinates ([u
′

/rs], [v
′

/rs])) the last interpolated horizontal velocity.

Using the following identities:

cos 2φ = 2 cos2 φ− 1 (96)

sin 2φ = 2 sinφ cosφ (97)

the origin point horizontal coordinates can be computed by:

sin θO = sin θF cos 2φ− 2 cosφ

[
[v

′

/rs]

| [V′/rs] |
cos θF sinφ

]
(98)

cos θO cos(λO − λF ) = cos θF cos 2φ+ 2 cosφ

[
[v

′

/rs]

| [V′/rs] |
sin θF sinφ

]
(99)

cos θO sin(λO − λF ) = −2 cosφ

[
[u

′

/rs]

| [V′/rs] |
sinφ

]
(100)

Terms in brackets are already computed to determine M .
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6.3 Refined recomputation of point O.

∗ Option L2TLFF for RW2TLFF=1: Option (switch L2TLFF in YOM-
DYN) controls recomputation of the origin point using the average between the angular
velocity at the origin point and the provisional t +∆t angular velocity, according to the
algorithm previously described. Only term (2Ω ∧ ak) is computed (always analytically)
at this improved position of O (so L2TLFF is active only if LADVF=.T. or LAD-
VFW=.T.). Refined recomputation of point O is available only in a limited set of options.
In the following sections 7, 8 and ?? discretised equations are written with notation O for
all quantities. Equations system is integrated to find a first guess of VF (t+∆t) and also
a first guess of Πs(t + ∆t) which provides rs(t + ∆t), then 0.5([V/rs]

F + ROF [V/rs]
O)

is used to recompute O. A correction (2Ω ∧ ak)(Oimproved)− (2Ω ∧ k)(O) is analytically
computed and added to wind equation to find the “improved" value of VF (t+∆t). In the
deep layer equations and in the cases where a multiplicative factor rs/a is required, this
factor remains interpolated at O and is never re-interpolated at the refined origin point
(this is too tricky to code and too expensive also). Computations are currently made in
routine LAPINEB and LADINE.

∗ Options L2TLFF for RW2TLFF between 0 and 1: In this case the
improved position ON of the origin point O is computed as a linear interpolation between
O and its position for RW2TLFF=1 on a great circle bow on geographical sphere. For
RW2TLFF=0. ON=O. For an idealised straight displacement with a wind of constant
acceleration and constant direction, one can show that the “exact" position of the origin
point is given by RW2TLFF=1/3 (Yessad, internal paper in French).

6.4 Remarks.

∗ Shallow water model: Computations remain valid for horizontal coordinates
(there is no vertical movement, equations containing η have not to be considered). There
are remaining some old features (compute M in LARMES2 even for LPC_FULL=.T.,
LELTRA=.T. or LSETTLST=.T., then O in LAINOR2).

∗ Trajectory going out of atmosphere for trajectories ending at a
layer final point: If the origin point O is found above the top of the atmosphere
(resp. under the ground) it is put on the top of the atmosphere (resp. on the ground).
Then the position of the medium point is recomputed (when necessary), that gives neces-
sary a point between the bottom and the top of the atmosphere. At last the origin point is
bounded by a vertical position ηO between the top of the atmosphere and the layer l = 1,
according to the namelist variable VETAON in NAMDYN (resp. between the layer
l = L and the ground, according to the namelist variable VETAOX in NAMDYN).
Upper bound of O is ηO = ηl=1 + (VETAON − 1)(ηl=1 − η

l=0
). Lower bound of O is

ηO = ηl=L + (1−VETAOX)(η
l=L

− ηl=L).

∗ Case of interpolations applied to half level variables: That produces
for example in the non-hydrostatic scheme when the half level variable w is advected
instead of the full level vertical divergence variable (option LGWADV=.T.). In this case
one needs to define an origin O(l) for a half level trajectory (which ends at a half level
final point F (l)). The following rules are applied to compute such a kind of trajectory:

• The horizontal displacement from F (l) is a weighted average of the horizontal dis-
placements from F (l − 1) and F (l) (see below for vertical displacement).

• At the top (resp. bottom) the horizontal displacement from F (l = 0) (resp. F (l =
L)) is equal to the horizontal displacement from F (l = 1) (resp. F (l = L)).
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• The rule applied to the horizontal displacement is also applied to the vertical dis-
placement for l between 1 and L− 1. For example, if l is between 1 and L− 1:

η
O(l)

= +

(
1−

η
O(l)

− ηO(l)

ηO(l+1) − ηO(l)

)
ηO(l) +

η
O(l)

− ηO(l)

ηO(l+1) − ηO(l)

ηO(l+1)

• A particle coming from the top or the bottom has no vertical displacement (that
assumes that η̇ = 0 at the top and the bottom, and so that excludes the options
LRUBC=.T., NDPSFI=1 and Πtop > 0 which are not consistent with the con-
straint (η̇top = 0; η̇surf = 0)).

• If the trajectory goes above the top of the atmosphere, it is bounded at the top of
the atmosphere.

• If the trajectory goes below the surface, it is bounded at the surface.

• Computation of the position of O(l) is done in routine LARCINHA.

∗ Plane geometry (ALADIN): Computation of the SL trajectory is made
on the projected plane geometry. ELARMES and ELARMES2 are called instead
of LARMES and LARMES2.

∗ Treatment of η̇ in the upper stratosphere: For some options of the code
the horizontal interpolations applied on η̇ are replaced by “least-square" interpolations;
that allows to remove some instabilities. See documentation (IDSVTSM) for more details.
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7 The SL discretisation of the 2D shallow-water sys-
tem of equations (spherical geometry).

7.1 Momentum equation.

∗ Definition of X, A and B.

X = ~V + δ~V (2
~Ω ∧ ~r) (101)

A = [−2(1− δ~V )(
~Ω ∧ ~V )]−∇Φ (102)

B = −∇Φ (103)

∗ Remarks.

• In the cycle 37T1 of ARPEGE/IFS Coriolis term can be treated explicitly (δ~V = 0)
or implicitly (δ~V = 1). Use switch LADVF in namelist NAMDYN. LADVF=.F.
corresponds to (δ~V = 0). LADVF=.T. corresponds to (δ~V = 1). If LADVF=.T.,
term (2Ω ∧ r) is analytically computed.

• For a limited set of options, term (2Ω ∧ r) can be recomputed at an improved
position of the origin point (RW2TLFF>0 in NAMDYN).

• Coriolis term can also be put in the semi-implicit scheme by tuning βCo (which
has a sense only if LADVF=.F.). Values βCo = 0 (LIMPF=.F. in namelist
NAMDYN) and βCo = 1 (LIMPF=.T.) are available in the cycle 37T1. Caution:
do not use LIMPF=.T. in variable resolution in cycle 37T1 (formulation of spectral
computations is not correct in this case for the semi-implicit scheme).

• If β=1, the non linear term ([−2(1− δ~V )(
~Ω ∧ ~V )]−∇Φ)− β(−∇Φ) is zero.

7.2 Continuity equation.

Conventional formulation (positive value of NVLAG in the namelist
NAMDYN).

∗ Definition of X, A and B.

X = (Φ− Φs) (104)

A = −(Φ− Φs)D + δTR~V∇(Φs) (105)

B = −Φ∗M
2
D

′

(106)

δTR = 1 plays the same role as the “Tanguay-Ritchie" modification for 3D model.
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Lagrangian formulation (negative value of NVLAG in the namelist
NAMDYN).

∗ Definition of X, A and B.

X = (Φ− Φs)J (107)

A = 0 (108)

B = −Φ∗M
2
D

′

J (109)

where J is a “Jacobian" quantity defined by its Lagrangian derivative (see equation (12)).

∗ Calculation of J if 3TL scheme. Jacobian quantities are computed by:
J− = (1−∆tDo)/(1 + ∆tDo), Jo = 1/(1 + ∆tDo) and J+ = 1.

∗ Discretisation if 2TL scheme. In cycle 37T1 of ARPEGE/IFS the option
NVLAG=-2 is not coded for the 2TLSL scheme.

7.3 Quantities to be interpolated.

When researching the medium point by an iterative algorithm, the interpolation at the
medium point (or the origin point LSETTLST=.T. in NAMDYN) of the two com-
ponents of the horizontal wind is needed: a 12 points interpolation is used. For other
quantities to be interpolated, see section 5. For more details about interpolations, see
section 11.
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8 The SL discretisation of the 3D primitive equation
model.

Remark: the detailed discretisation of each part of the RHS is given in the documentation
(IDEUL). Some notations used in the expression of linear term B (like τ , γ, µ, ν) are given
in the documentation (IDSI).

8.1 Thin layer formulation of the momentum equation.

∗ Definition of X, A, B and F , top and bottom values.

X = ~V + δ~V (2
~Ω ∧ ~r) (110)

A = −2(1− δ~V )(Ω ∧V)−∇Φ−RT∇(log Π) (111)

B = −∇
[
γT +

RdT
∗

Πs
∗ Πs

]
+ βCo[−2(1− δ~V )(

~Ω ∧ ~V )] (112)

F = FV (113)

Top:

Vη=0 = Vl=1 (114)

Bottom if δm = 0:

Vη=1 = Vl=L (115)

Bottom if δm = 1:

Vη=1 = 0 (116)

∗ Remarks.

• In the cycle 37T1 of ARPEGE/IFS Coriolis term can be treated explicitly (δ~V = 0)
or implicitly (δ~V = 1). Use switch LADVF in namelist NAMDYN. LADVF=.F.
corresponds to (δ~V = 0). LADVF=.T. corresponds to (δ~V = 1). If LADVF=.T.,
term (2Ω ∧ r) is analytically computed.

• For a limited set of options, term (2Ω ∧ r) can be recomputed at an improved
position of the origin point (RW2TLFF>0 in NAMDYN).

• Coriolis term can also be put in the semi-implicit scheme by tuning βCo (which
has a sense only if LADVF=.F.). Values βCo = 0 (LIMPF=.F. in namelist
NAMDYN) and βCo = 1 (LIMPF=.T.) are available in the cycle 37T1. Caution:
do not use LIMPF=.T. in variable resolution in cycle 37T1 (formulation of spectral
computations is not correct in this case for the semi-implicit scheme).
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8.2 White and Bromley deep layer formulation of the momen-
tum equation.

∗ Definition of X, A, B and F , top and bottom values.

X = ~V + δ~V (2
~Ω ∧ ~r) (117)

A = (1− δ~V )(−2Ω ∧V− 2Ω∧Wk)− W

rs
V−∇Φ− (RT + µsRdTr)∇(log Π)(118)

B = −M∇
′

[γT +RdT
∗ log(Πs)] + βCo[−2(1− δ~V )(Ω ∧V)] (119)

F = FV (120)

Top:

Vη=0 = Vl=1 (121)

Bottom if δm = 0:

Vη=1 = Vl=L (122)

Bottom if δm = 1:

Vη=1 = 0 (123)

∗ Remarks.

• In the cycle 37T1 of ARPEGE/IFS Coriolis term can be treated explicitly (δ~V = 0)
or implicitly (δ~V = 1). Use switches LADVF and LADVFW in namelist NAM-
DYN. (LADVF;LADVW)=(.F.;.F.) corresponds to (δ~V = 0). (LADVF;LADVW)=(.T.;.T.)
corresponds to (δ~V = 1). If (LADVF;LADVW)=(.T.;.F.) term (2Ω ∧ ak) is
treated implicitly and the remaining Coriolis term is treated explicitly. If (LADVF;LADVW)=(.F.;.T.)
term (2Ω∧(rs−a)k) is treated implicitly and the remaining Coriolis term is treated
explicitly. If at least LADVF=.T. or LADVFW=.T., term (2Ω∧ ak) is analyti-
cally computed. If LADVFW=.T., rs/a (at t−∆t if SL3TL or t if SL2TL) has to
be interpolated at O, and rs/a has also to be computed at t+∆t using a provisional
value of log Πs at t+∆t.

• For a limited set of options, term (2Ω ∧ ak) can be recomputed at an improved
position of the origin point (RW2TLFF>0 in NAMDYN).

• The horizontal part of the Coriolis term can also be put in the semi-implicit
scheme by tuning βCo (which has a sense only if LADVF=.F.). Values βCo = 0
(LIMPF=.F. in namelist NAMDYN) and βCo = 1 (LIMPF=.T.) are available
in the cycle 37T1. Caution: do not use LIMPF=.T. in variable resolution in
cycle 37T1 (formulation of spectral computations is not correct in this case for the
semi-implicit scheme). The combination (LIMPF;LADVW)=(.T.;.T.) is possible
but does not eliminate completely a residual explicit term linked to Coriolis force
in the RHS of the momentum equation.
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8.3 Thermodynamic equation.

∗ Definition of X, A, B and F , top and bottom values.

X = T + δTR
αTΦs

RdTST
(124)

A =
RT

cp

ω

Π
+ δTR

αT
RdTST

~V∇(Φs) + δTR
Φs

RdTST

(
η̇
dαT
dη

)
(125)

B = −τ(M2
D

′

) (126)

F = FT (127)

Top:

Tη=0 = Tl=1 (128)

Bottom if δm = 0:

Tη=1 = Tl=L (129)

Bottom if δm = 1 (output of physics):

Tη=1 = Ts (130)

8.4 Thin layer formulation of the continuity equation.

∗ Definition of X, A, B, and F .

X = logΠs + δTR
Φs

RdTst
(131)

A = − 1

Πs

∫ η=1

η=0

∇
(
~V
∂Π

∂η

)
dη + ~V∇

[
log Πs + δTR

Φs
RdTst

]
(132)

B = −M
2

M2
νD (133)

F =
(
Fm

Πs

)
(134)

∗ Remarks:

• A is a sum of 3D terms (the advection term) and 2D terms (the other terms).

• B and F are 2D terms (vertical integrals).
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8.5 White and Bromley deep layer formulation of the conti-
nuity equation.

∗ Definition of X, A, B, and F .

X = logΠs + δTR
Φs

RdTst
(135)

A = −

[
a2

rs2

]
η=1

1

Πs

∫
η=1

η=0

[
rs

a
∇

](
rs

a
V
∂Π

∂η

)
dη+

a

rs
V

[
rs

a
∇

][
log Πs + δTR

Φs

RdTst

]
−

1

Πs

[
η̇
∂Π

∂η

]
η=1

+
1

Πs

[
a2

rs2

]
η=1

[
rs

2

a2

B = −ν(M2
D

′

) (137)

F =
(
Fm

Πs

)
(138)

∗ Remarks:

• A is a sum of 3D terms (the advection term) and 2D terms (the other terms).

• B and F are 2D terms (vertical integrals).

8.6 Moisture equation.

∗ Definition of X, A, B and F , top and bottom values.

X = q (139)

A = 0 (140)

B = 0 (141)

F = Fq (142)

Top:

qη=0 = ql=1 (143)

Bottom if δm = 0:

qη=1 = ql=L (144)

Bottom if δm = 1 (see CPQSOL, relative humidity is the same for η = ηL and η = 1):

qη=1 = qsurf (145)
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8.7 Other advectable GFL variables.

Equations are discretised as for humidity equation. Vertical boundary conditions: quan-
tities are assumed constant above the middle of the upper layer and below the middle of
the lower layer in case δm = 0; quantities are assumed constant above the middle of the
upper layer in case δm = 1; quantities other than q are assumed to be zero at the surface
in case δm = 1.

8.8 Case of lagged physics.

All the previous discretisations have been written with not lagged physics (interpolated
at the origin point O).

• For lagged physics (LAGPHY=.T., LSLPHY=.F.): the previous discretisations
are done without physics, then the provisional

(X+ − (1 + ǫX )
∆t

2
βB+ + (1 + ǫX )

∆t

2
βBo)F

or

(X+ − (1 + ǫ)
∆t

2
βB+ + (1 + ǫ)

∆t

2
βBo)F

is used as input to the lagged physics.

• For split physics used at ECMWF (LEPHYS=.T., LAGPHY=.T., LSLPHY=.T.):
one part of the physics is interpolated at the origin point (t or t−∆t physics accord-
ing to LTWOTL), the remainder is evaluated at the final point (t+∆t physics).
The physical contribution is put in a separate interpolation buffer (name P(X)P9)
and tri-linearly interpolated. The way to compute the non-lagged contribution
is different than the way used at METEO-FRANCE: compute it at the previous
timestep as a lagged contribution, then saving it (by the routine GPSAVTEND)
from one timestep to the following one (where it is restored by calling the rou-
tine GPGETTEND and added to the interpolation buffer by calling the routine
GPADDSLPHY). Partition between the non-lagged and lagged contribution is
done by a linear partition of coefficient RSLWX.

8.9 Quantities to be interpolated (computation under subrou-
tine LACDYN).

Research of trajectory.

When researching the medium point by an iterative algorithm, the interpolation at the
medium point (or the origin point LSETTLST=.T., LELTRA=.T. or LPC_FULL=.T.)
of ([U/rs], [V/rs], η̇) is needed: a tri-linear interpolation is performed. For more details
about interpolations, see section 11.

RHS of equations.

The list of quantities to be interpolated has been described in subsections 5.2, 5.3 and 5.4
for each type of equation.
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Additional quantities to be interpolated at the origin point if RW2TLFF>0.

The two components of the [V/rs] at time t (if 2TL SL scheme) or t−∆t (if 3TL SL scheme)
when not available after the other interpolations (for example if not lagged physics). These
additional interpolations are useless if lagged physics (or adiabatic run) and NWLAG=3.
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9 R operator.

9.1 No tilting.

To transport a vector along a trajectory (part of a great circle) from an origin point O
to a final point F the following operator ROF is defined:

V
′

= ROF (V) (146)

where V
′

has coordinates (u
′

, v
′

), V has coordinates (u, v), and the relationship between
(u, v) and (u

′

, v
′

) is:

(
u

′

v
′

)
=

(
p q
−q p

)(
u
v

)
(147)

where:

p =
iF iO + jF jO

1 + kFkO
=

cos θF cos θO + (1 + sin θF sin θO) cos(λF − λO)

1 + cosφ
(148)

q =
iF jO + jF iO

1 + kFkO
=

(sin θF + sin θO) sin(λF − λO)

1 + cosφ
(149)

(Notations θO,θF ,λO,λF ,φ: see section 6.).

p and q verify the following identity:

p2 + q2 = 1 (150)

Computation of p and q is made in subroutine LARCHE.

9.2 Tilting.

The coordinates of V
′

and V are linked by the following relationship:

(
u

′

v
′

)
=

(
GNORDM GNORDL
−GNORDL GNORDM

)(
p q
−q p

)(
cosα − sinα
sinα cosα

)(
u
v

)
(151)

where:

cosα =
2c

A cosΘO
[sin θp cos θ

O − sin θO cos θp cos(λ
O − λp)] (152)

sinα =
2c

A cosΘO
[cos θp sin(λ

O − λp)] (153)

A = (1 + c2) + (1− c2)(sin θp sin θ
O + cos θp cos θ

O cos(λO − λp)) (154)

and where:
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• c is the stretching coefficient.

• ΘO is the latitude on the computational sphere of the origin point O.

• (θp, λp) are the latitude and longitude on the geographical sphere of the stretching
pole.

• p and q are computed like in the not tilted case (in subroutine LARCHE).

• cosα and sinα are also computed in subroutine LARCHE).

• (GNORDL,GNORDM) are the coordinates in the computational sphere of the
unit vector directed towards the true north, computed in subroutine SUGEM2.

9.3 Plane geometry (ALADIN).

The curvature of the Earth is now taken into account in computing an operator ROF

in the routine ELARCHE instead of computing curvature terms. Expressions of p and
q are different from the ones of ARPEGE and are not detailed here.
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10 Computation of longitudes and latitudes on the
computational sphere.

For interpolations it is necessary to compute (ΘO,ΛO), latitude and longitude of the
interpolation point O in the computational sphere. The iterative algorithm allowing to find
O gives (θO, λO), latitude and longitude in the geographical sphere (more exactly sin θO,
cos θO cosλO − λF and cos θO sinλO − λF where (θF , λF ) are the coordinates of the final
point on the geographical sphere). Transform formulae giving (Θ,Λ) on the computational
sphere once knowing (θ, λ) on the geographical sphere are given by equations (155) to
(157).

sinΘ =
(1− c2) + (1 + c2)(sin θp sin θ + cos θp cos θ cos(λ− λp))

A
(155)

cosΘ cosΛ =
2c(cos θp sin θ − sin θp cos θ cos(λ− λp))

A
(156)

cosΘ sinΛ =
2c cos θ sin(λ− λp)

A
(157)

where:

• A = (1 + c2) + (1− c2)(sin θp sin θ + cos θp cos θ cos(λ− λp))

• c is the stretching coefficient.

• (θp, λp) are the latitude and longitude on the geographical sphere of the stretching
pole.

• Computation of Θ, Λ is made in subroutine LARCHE.

∗ Plane geometry (ALADIN): The SL trajectory is already computed on the
computational grid, so equivalent transformation formulae from geographical space to
computational space are useless.
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11 Interpolations and weights computations.

11.1 Interpolation grid and weights (subroutine LASCAW).

Horizontal interpolation grid and weights for bi-linear interpola-
tions.

∗ Definitions: A 16 points horizontal grid is defined as it is shown in figure 11.1,
but only 4 of these 16 points are used in the interpolations. The interpolation point O
(medium or origin point) is between B1, C1, B2 and C2. Λ and Θ are the longitudes and
latitudes on the computational sphere. The following weights are defined as follows:

• zonal weight number 1:

ZDLO1 =
ΛO − ΛB1

ΛC1 − ΛB1

• zonal weight number 2:

ZDLO2 =
ΛO − ΛB2

ΛC2 − ΛB2

• meridian weight:

ZDLAT =
ΘO −ΘB1

ΘB2 −ΘB1

∗ Computations:

• The weights ZDLO1 and ZDLO2 are computed then stored in the array PDLO.

• The weight ZDLAT is computed then stored in the array PDLAT.

• The memory address (in SL arrays) of the data concerning the points A1 and A2

are computed then stored in the array KL0 or KLH0. Memory address of the data
concerning the points B1, B2, C1 and C2 can be easily computed in interpolations
routines knowing these ones of A1 and A2.

• Interpolations use data of points B1, B2, C1 and C2.

Vertical interpolation grid and weights for vertical linear interpo-
lations.

∗ Definitions: A 4 points vertical grid is defined as it is shown in figure 11.2, but
only 2 of these 4 points are used in the interpolations. The interpolation point O (medium
or origin point) is between Tl+1 and Tl+2. The vertical weight is defined by:

ZDV ER =
ηO − ηTl+1

ηTl+2 − ηTl+1

∗ Computations:

• The weight ZDV ER is computed then stored in the array PDVER.

• The level number l of Tl is stored in the array KLEV.

• Interpolations use data of points Tl+1 and Tl+2.

∗ Remark: The same formulae and computations are valid for half level data, simply
replace the layer index l by the half level index l.
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Horizontal interpolation grid and weights for 12 points cubic in-
terpolations.

∗ Definitions: A 16 points horizontal grid is defined as it is shown in figure 11.3,
but only 12 of these 16 points are used in the interpolations. The interpolation point O
(medium or origin point) is between B1, C1, B2 and C2. The following weights are defined
as follows:

• zonal linear weights for latitudes 0, 1, 2, 3:

ZDLO0 =
ΛO − ΛB0

ΛC0 − ΛB0

ZDLO1 =
ΛO − ΛB1

ΛC1 − ΛB1

ZDLO2 =
ΛO − ΛB2

ΛC2 − ΛB2

ZDLO3 =
ΛO − ΛB3

ΛC3 − ΛB3

• zonal cubic weights for latitude 1:

ZCLO11 = f1(ZDLO1)

ZCLO12 = f2(ZDLO1)

ZCLO13 = f3(ZDLO1)

where:

– f1(α) = (α+ 1)(α− 2)(α− 1)/2

– f2(α) = −(α+ 1)(α− 2)α/2

– f3(α) = α(α− 1)(α+ 1)/6

• zonal cubic weights for latitude 2:

ZCLO21 = f1(ZDLO2)

ZCLO22 = f2(ZDLO2)

ZCLO23 = f3(ZDLO2)

• meridian cubic weights:

ZCLA1 =
(ΘO −ΘB0)(ΘO −ΘB2)(ΘO −ΘB3)

(ΘB1 −ΘB0)(ΘB1 −ΘB2)(ΘB1 −ΘB3)

ZCLA2 =
(ΘO −ΘB0)(ΘO −ΘB1)(ΘO −ΘB3)

(ΘB2 −ΘB0)(ΘB2 −ΘB1)(ΘB2 −ΘB3)

ZCLA3 =
(ΘO −ΘB0)(ΘO −ΘB1)(ΘO −ΘB2)

(ΘB3 −ΘB0)(ΘB3 −ΘB1)(ΘB3 −ΘB2)

∗ Computations:

• The zonal linear weights ZDLO0, ZDLO1, ZDLO2 and ZDLO3 are computed
then stored in the array PDLO.

• The zonal cubic weights ZCLO11, ZCLO12, ZCLO13, ZCLO21, ZCLO22, ZCLO23
are computed then stored in the array PCLO.

• The meridian cubic weights ZCLA1, ZCLA2 and ZCLA3 are computed then
stored in the array PCLA. One can notice that the denominators of ZCLA1,
ZCLA2 and ZCLA3 do not depend on coordinates of O and can be pre-computed
in the subroutine SULEG, in array RIPI.

• The memory address (in SL arrays) of the data concerning the points A0, A1, A2

and A3 are stored in the array KL0 or KLH0. Once knowing these addresses one
can easily retrieve the other points addresses in the interpolations routines.

• Interpolations use data of the following 12 points B0, C0, A1, B1, C1, D1, A2, B2,
C2, D2, B3 and C3.
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∗ Extension to diffusive interpolations (SLHD): The way to take account
of the diffusive properties of interpolations has been redesigned, and now it is completely
contained in the calculation of cubic weights: we pass from conventional cubic interpo-
lations to diffusive SLHD cubic interpolations simply by changing the way of computing
the cubic weights. The comprehensive way of computing the SLHD cubic weights is not
provided in this documentation (because it leads to rather tricky formulae), but details
about the calculations can be found in documentation (IDSLIF2) and looking in routine
LASCAW (ELASCAW in ALADIN). We just give a sum-up of the way to compute the
cubic weights.

• Meridian diffusive cubic weights:

ZCLA1slhd = ZCLA1 + ZINCRM1

ZCLA2slhd = ZCLA2 + ZINCRM2

ZCLA3slhd = ZCLA3 + ZINCRM3

where each of increments ZINCRM1, ZINCRM2 and ZINCRM3 is a linear
combination of cubic Lagrangian weights ZCLA1, ZCLA2 and ZCLA3 and diffu-
sive weights (linear for LSLHD_OLD=.T., quadratic otherwise).
Coefficients of these linear combinations depend on:

– Constants in time Csldw, describing Laplacian smoother.

– A pre-computed quantity κ (computed in GP_KAPPA) depending on hori-
zontal flow deformation, ranging from 0 to 1; κ is equal to 1 if LSLHD_STATIC=T.

– Lower and upper bounds (κmin and κmax) respectively stored in variables
SLHDKMIN and SLHDKMAX, used to construct limit interpolators (0
- cubic Lagrange, 1 - linear/quadratic; they are not restricted to range 0-1).

• Zonal diffusive cubic weights for latitude number 1:

ZCLO11slhd = ZCLO11 + ZINCRL11

ZCLO12slhd = ZCLO12 + ZINCRL12

ZCLO13slhd = ZCLO13 + ZINCRL13

where each of increments ZINCRL11, ZINCRL12 and ZINCRL13 is a linear
combination of cubic Lagrangian weights ZCLO11, ZCLO12 and ZCLO13 and
diffusive weights (linear for LSLHD_OLD=.T., quadratic otherwise).
Coefficients of these linear combinations depend on:

– Constants like Cslhdepsh.

– κ (see above).

– Lower and upper bounds κmin and κmax (see above).

• Zonal diffusive cubic weights for latitude number 2:

ZCLO21slhd = ZCLO21 + ZINCRL21

ZCLO22slhd = ZCLO22 + ZINCRL22

ZCLO23slhd = ZCLO23 + ZINCRL23

where each of increments ZINCRL21, ZINCRL22 and ZINCRL23 is a linear
combination of cubic Lagrangian weights ZCLO21, ZCLO22 and ZCLO23 and
diffusive weights (linear for LSLHD_OLD=.T., quadratic otherwise).
Coefficients of these linear combinations depend on Cslddepsh, κ, κmin, κmax like the
zonal weights for latitude number 1.

Several options of SLHD smoothing are available, according to values of the keys LSL-
HDQUAD and LSLHD_OLD.

In part 11.2, cubic interpolations are written with conventional cubic weights: replace
conventional cubic weights by their SLHD counterpart for diffusive cubic interpolations.
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∗ Extension to 3D-turbulence: not described in detail; additional cubic weights
are computed if L3DTURB=T.

Vertical interpolation grid and weights for vertical cubic 4 points
interpolations.

A 4 points vertical grid is defined as it is shown in figure 11.2. The interpolation point O
(medium or origin point) is between Tl+1 and Tl+2. The vertical weights are defined by:

ZCV E1 =
(ηO − ηTl

)(ηO − ηTl+2)(ηO − ηTl+3)

(ηTl+1 − ηTl
)(ηTl+1 − ηTl+2)(ηTl+1 − ηTl+3)

ZCV E2 =
(ηO − ηTl

)(ηO − ηTl+1)(ηO − ηTl+3)

(ηTl+2 − ηTl
)(ηTl+2 − ηTl+1)(ηTl+2 − ηTl+3)

ZCV E3 =
(ηO − ηTl

)(ηO − ηTl+1)(ηO − ηTl+2)

(ηTl+3 − ηTl
)(ηTl+3 − ηTl+1)(ηTl+3 − ηTl+2)

∗ Computations:

• The vertical weights ZCV E1, ZCV E2 and ZCV E3 are computed then stored in
the array PVINTW. One can notice that the denominators of ZCV E1, ZCV E2
and ZCV E3 do not depend on coordinates of O and can be pre-computed in the
subroutine SUVERT, in the array VCUICO.

• The level number l of Tl is stored in the array KLEV.
• Interpolations use data of points Tl, Tl+1, Tl+2 and Tl+3.

∗ Remark: The same formulae and computations are valid for half level data, simply
replace the layer index l by the half level index l, and use array VCUICOH.

∗ Extension to diffusive interpolations (SLHD): Like we do for horizontal
weights, the semi-Lagrangian diffusion can be taken into account by modifying vertical
cubic weights as follow:

ZCV E1slhd = ZCV E1 + ZINCRV 1

ZCV E2slhd = ZCV E2 + ZINCRV 2

ZCV E3slhd = ZCV E3 + ZINCRV 3

Expressions giving vertical increments ZINCRV 1 to ZINCRV 3 have a shape similar to
those of horizontal increments, and still depend on quantities like κ, κmin, κmax.

In part 11.2, cubic interpolations are written with conventional cubic weights: replace
conventional cubic weights by their SLHD counterpart for diffusive cubic interpolations.

Vertical interpolation grid and weights for vertical cubic Hermite
interpolations.

This part is valid only for interpolations of full level data.

A 4 points vertical grid is defined as it is shown in figure 11.2. The interpolation point O
(medium or origin point) is between Tl+1 and Tl+2.

First weights to compute vertical derivatives at layers l + 1 and l + 2 are computed.
For a variable X, ∂X

∂η
is computed as close as possible as

(
η̇ ∂X
∂η

)
/η̇, but with additional

approximations allowing to avoid horizontal interpolations for term
(
η̇ ∂Π
∂η

)
.
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• For layers other than the first or the last layer, discretisation follows:
(
∂X

∂η

)

l+1

=
0.5(Xl+2 −Xl)

η
l+1

− η
l

(158)

• For layer l = 1, discretisation assumes that
(
η̇ ∂Π
∂η

)
l=0

= 0 (valid only if LRUBC=.F.);
discretisation follows:

(
∂X

∂η

)

l=1

=
(Xl=2 −Xl=1)

η
l=1

− η
l=0

(159)

• For layer l = L, discretisation assumes that
(
η̇ ∂Π
∂η

)
l=L

= 0; discretisation follows:
(
∂X

∂η

)

l=L

=
(Xl=L −Xl=L−1)

η
l=L

− η
l=L−1

(160)

The following weights are computed:

• For an interpolation point included between layers 2 and L−1 (l ≥ 1 and l ≤ L−3)
:

V DERW11 =
0.5(ηl+2 − ηl+1)

η
l+1

− η
l

V DERW21 =
0.5(ηl+2 − ηl+1)

η
l+1

− η
l

V DERW12 =
0.5(ηl+2 − ηl+1)

η
l+2

− η
l+1

V DERW22 =
0.5(ηl+2 − ηl+1)

η
l+2

− η
l+1

• For an interpolation point included between layers 1 and 2:

V DERW11 = 0

V DERW21 =
(ηl=2 − ηl=1)

η
l=1

− η
l=0

V DERW12 =
0.5(ηl=2 − ηl=1)

η
l=2

− η
l=1

V DERW22 =
0.5(ηl=2 − ηl=1)

η
l=2

− η
l=1

such case is extended to the case where the interpolation point is between the top
and the first layer; in this case the interpolation becomes an extrapolation.

• For an interpolation point included between layers L− 1 and L:

V DERW11 =
0.5(ηl=L − ηl=L−1)

η
l=L−1

− η
l=L−2

V DERW21 =
0.5(ηl=L − ηl=L−1)

η
l=L−1

− η
l=L−2

V DERW12 =
(ηl=L − ηl=L−1)

η
l=L

− η
l=L−1

V DERW22 = 0

such case is extended to the case where the interpolation point is between the last
layer and the ground; in this case the interpolation becomes an extrapolation.
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∗ Computations:

• The vertical weights V DERW11, V DERW21, V DERW12 and V DERW22 are
computed then stored in the array PVDERW.

• The weight ZDV ER is computed then stored in the array PDVER (see subsub-
section 11.1).

• Functions fH1(ZDV ER) to fH4(ZDV ER) (involved in any Hermite cubic interpo-
lation), where:

– fH1(α) = (1− α)2(1 + 2α)

– fH2(α) = α2(3− 2α)

– fH3(α) = α(1− α)2

– fH4(α) = −α2(1− α)

are computed and stored in array PHVW.
• The level number l of Tl is stored in the array KLEV.
• Interpolations use data of points Tl, Tl+1, Tl+2 and Tl+3.

Vertical interpolation grid and weights for vertical cubic spline
interpolations.

This part is valid only for interpolations of full level data.

A 4 points vertical grid is defined as it is shown in figure 11.2. The interpolation point O
(medium or origin point) is between Tl+1 and Tl+2. The algorithm of calculation of the
vertical weights will be given in a later version of the documentation.

∗ Computations:

• Vertical interpolation is the product of two operators. The first one uses all the
layers and is done in the unlagged part of the grid-point calculations by a routine
VSPLTRANS and needs to compute top and bottom values and vertical deriva-
tives of the field to be interpolated, and also the inversion of a tridiagonal matrix
(routine TRIDIA); for this operation it is necessary to use some coefficients stored
in the arrays RVSPTRI and RVSPC and pre-computed in the set-up subroutine
SUVSPLIP; the original field is stored in the buffer P(X)L9 and the intermediate
result after this first part is stored in the buffer P(X)SPL9. The second part uses
4 points and is done in the interpolation routine itself.

• The vertical weights ZCV E0, ZCV E1, ZCV E2 and ZCV E3 necessary for the
second part are computed then stored in the array PVINTWS. Some part of the
calculations can be pre-computed in the set-up subroutine SUVSPLIP (arrays
RFAA, RFBB, RFCC and RFDD).

• The level number l of Tl is stored in the array KLEV.
• Interpolations use data of points Tl, Tl+1, Tl+2 and Tl+3, stored in the intermediate

array P(X)SPL9.

Interpolation grid and weights for tri-linear interpolations.

A 64 points grid is defined as it is shown in figure 11.4, but only 8 of these 64 points are
used in the interpolations. The interpolation point O (medium or origin point) is between
B1,l+1, C1,l+1, B2,l+1, C2,l+1, B1,l+2, C1,l+2, B2,l+2 and C2,l+2. For the two levels l+1 and
l+2 see subsubsection 11.1 corresponding to bi-linear horizontal interpolations for weights
computations. For weights needed for vertical interpolations (ZDV ER) see subsubsection
11.1 corresponding to linear vertical interpolations.

• The memory address (in SL arrays) of the data concerning the points A0,l, A1,l,
A2,l and A3,l is computed then stored in the array KL0. Once knowing these
addresses one can easily retrieve the other points addresses in the interpolations
routines.

• Interpolations use data of points B1,l+1, C1,l+1, B2,l+1, C2,l+1, B1,l+2, C1,l+2,
B2,l+2 and C2,l+2.



98 4. Semi-lagrangian computations

∗ Remark: The same formulae and computations are valid for half level data, simply
replace the layer index l by the half level index l.

Interpolation grid and weights for 32 points interpolations.

A 64 points grid is defined as it is shown in figure 11.4, but only 32 (48 if vertical spline
cubic interpolations) of these 64 points are used in the interpolations. The interpolation
point O (medium or origin point) is between B1,l+1, C1,l+1, B2,l+1, C2,l+1, B1,l+2, C1,l+2,
B2,l+2 and C2,l+2. For the two levels l and l + 3 see subsubsection 11.1 corresponding
to bi-linear horizontal interpolations for weights computations. For the two levels l + 1
and l + 2 see subsubsection 11.1 corresponding to 12 points horizontal interpolations for
weights computations. For weights needed for vertical interpolations see subsubsection
11.1 for vertical cubic interpolations, see subsubsection 11.1 for vertical Hermite cubic
interpolations, see subsubsection 11.1 for vertical spline cubic interpolations.

• The memory address (in SL arrays) of the data concerning the points A0,l, A1,l,
A2,l and A3,l is computed then stored in the array KL0. Once knowing these
addresses one can easily retrieve the other points addresses in the interpolations
routines.

• Interpolations use data of the following 32 points B1,l, C1,l, B2,l, C2,l, B0,l+1,
C0,l+1, A1,l+1, B1,l+1, C1,l+1, D1,l+1, A2,l+1, B2,l+1, C2,l+1, D2,l+1, B3,l+1, C3,l+1,
B0,l+2, C0,l+2, A1,l+2, B1,l+2, C1,l+2, D1,l+2, A2,l+2, B2,l+2, C2,l+2, D2,l+2, B3,l+2,
C3,l+2, B1,l+3, C1,l+3, B2,l+3 and C2,l+3.

∗ Remarks:

• The same formulae and computations are valid for half level data, simply replace
the layer index l by the half level index l.

• For vertical spline cubic interpolations a 12 points grid is used on each level l, l+1,
l + 2, l + 3 (total = 48 points used).

Horizontal interpolation grid and weights for 16 points linear least-
square fit interpolations.

A 16 points horizontal grid is defined as it is shown in figure 11.3. The interpolation point
O (medium or origin point) is between B1, C1, B2 and C2. The interpolation is replaced
by a linear least-square fit minimisation of a first order polynomial in each direction (first
zonal interpolations, then meridian interpolations).

The weights used are the same ones as for the 4 points bilinear horizontal interpolation,
but the zonal linear weights are required for the 4 latitudes of the 16 points grid (ZDLO0,
ZDLO1, ZDLO2, ZDLO3, ZDLAT ). The actual weights used in one direction (for
example the meridian direction) are respectively: 0.4 − 0.3ZDLAT , 0.3 − 0.1ZDLAT ,
0.2 + 0.1ZDLAT , 0.1 + 0.3ZDLAT .

∗ Computations:

• The weights ZDLO0, ZDLO1, ZDLO2 and ZDLO3 are computed then stored in
the array PDLO.

• The meridian weight ZDLAT is computed then stored in the array PDLAT.

• The memory address (in SL arrays) of the data concerning the points A0, A1, A2

and A3 are stored in the array KL0 or KLH0. Once knowing these addresses one
can easily retrieve the other points addresses in the interpolations routines.

• Interpolations use data of the following 16 points A0, B0, C0, D0, A1, B1, C1, D1,
A2, B2, C2, D2, A3, B3, C3, D3.
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Horizontal interpolation grid and weights for 32 points linear least-
square fit interpolations.

A 32 points grid is defined as it is shown in figure 11.4 where only the two intermediate
layers are retained. The interpolation point O (medium or origin point) is between B1,l+1,
C1,l+1, B2,l+1, C2,l+1, B1,l+2, C1,l+2, B2,l+2 and C2,l+2. For the two levels l + 1 and
l + 2 see subsubsection 11.1 corresponding to 16 points linear least-square fit horizontal
interpolations for weights computations. For weights needed for vertical interpolations,
only the linear weight ZDV ER is required; see subsubsection 11.1 for vertical linear
interpolations.

• The memory address (in SL arrays) of the data concerning the points A1,l and A2,l

is computed then stored in the array KL0. Once knowing these addresses one can
easily retrieve the other points addresses in the interpolations routines.

• Interpolations use data of the following 32 points A0,l+1, B0,l+1, C0,l+1, D0,l+1,
A1,l+1, B1,l+1, C1,l+1, D1,l+1, A2,l+1, B2,l+1, C2,l+1, D2,l+1, A3,l+1, B3,l+1, C3,l+1,
D3,l+1, A0,l+2, B0,l+2, C0,l+2, D0,l+2, A1,l+2, B1,l+2, C1,l+2, D1,l+2, A2,l+2, B2,l+2,
C2,l+2, D2,l+2, A3,l+2, B3,l+2, C3,l+2, D3,l+2.

∗ Remarks:

• The same formulae and computations are valid for half level data, simply replace
the layer index l by the half level index l.

Plane geometry (ALADIN).

All previous formulae for weight computation can be used for an irregular latitude
spacing and a different number of points on each longitude. The ALADIN grid has a
horizontal regular spacing, so the previous formulae can be simplified and array RIPI is
no longer necessary. ELASCAW is called instead of LASCAW and is cheaper in CPU
time.

11.2 Interpolations.

Bilinear interpolation (subroutine LAIDLI).

See figure 11.1 and subsubsection 11.1 for definition of ZDLO1, ZDLO2, ZDLAT and
points B1, C1, B2 and C2.

For a quantity X, are computed successively:

• a linear interpolation on the longitude number 1:
X1 = XB1 + ZDLO1(XC1 −XB1).

• a linear interpolation on the longitude number 2:
X2 = XB2 + ZDLO2(XC2 −XB2).

• a meridian linear interpolation:
Xinterpolated = X1 + ZDLAT (X2 −X1).

Tri-linear interpolation (subroutine LAITLI).

For layers l + 1 and l + 2 (see figure 11.4) bilinear horizontal interpolations give two
interpolated values Xl+1 and Xl+2 (see subsubsection 11.2). Then the final interpolated
value is given by the following expression:

Xinterpolated = Xl+1 + ZDV ER(Xl+2 −Xl+1)
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∗ Remark: The same formulae and computations are valid for half level data, simply
replace the layer index l by the half level index l.

Horizontal 12 points interpolation (subroutine LAIDDI).

See figure 11.3 and subsubsection 11.1 for definition of ZDLO0, ZDLO1, ZDLO2,
ZDLO3, ZCLA1, ZCLA2 and ZCLA3 and points B0, C0, A1, B1, C1, D1, A2, B2, C2,
D2, B3 and C3.

For a quantity X, are computed successively:

• a linear interpolation on the longitude number 0:
X0 = XB0 + ZDLO0(XC0 −XB0).

• a cubic 4 points interpolation on the longitude number 1:
X1 = XA1 + ZCLO11(XB1 −XA1) + ZCLO12(XC1 −XA1) + ZCLO13(XD1 −XA1).

• a cubic 4 points interpolation on the longitude number 2:
X2 = XA2 + ZCLO21(XB2 −XA2) + ZCLO22(XC2 −XA2) + ZCLO23(XD2 −XA2).

• a linear interpolation on the longitude number 3:
X3 = XB3 + ZDLO3(XC3 −XB3).

• a meridian cubic 4 points interpolation:
Xinterpolated = X0 + ZCLA1(X1 −X0) + ZCLA2(X2 −X0) + ZCLA3(X3 −X0).

There is a shape-preserving option: after cubic 4 points interpolations on longitudes
number 1 and 2, X1 is bounded between XB1 , and XC1 and X2 is bounded between XB2

and XC2 ; after meridian cubic 4 points interpolation Xinterpolated is bounded between X1

and X2. Use of switches LQMW (momentum equation), LQMT (temperature equa-
tion), LQMP (continuity equation), LQMSPD (pressure departure variable equation),
LQMSVD (vertical divergence equation), Y[X]_NL%LQM for GFL variables allow to
use shape-preserving option.

Cubic 4 points vertical interpolation.

See figure 11.2 and subsubsection 11.1 for definition of ZCV E1, ZCV E2 and ZCV E3.
The cubic 4 points vertical interpolation gives the final interpolated value:

Xinterpolated = Xl + ZCV E1(Xl+1 −Xl) + ZCV E2(Xl+2 −Xl) + ZCV E3(Xl+3 −Xl)

∗ Remark: The same formulae and computations are valid for half level data, simply
replace the layer index l by the half level index l.

Cubic Hermite vertical interpolation.

This part is valid for interpolations of full level variables. See figure 11.2 and sub-
subsection 11.1 for definition of V DERW11, V DERW21, V DERW12 and V DERW22.
See subsubsection 11.1 for definition of ZDV ER. See subsubsection 11.1 for definition of
functions fH1 to fH4. The cubic Hermite vertical interpolation gives the final interpolated
value:

Xinterpolated = fH1(ZDV ER)Xl+1 + fH2(ZDV ER)Xl+2

+fH3(ZDV ER)(V DERW11(Xl+1 −Xl) + V DERW21(Xl+2 −Xl+1))

+fH4(ZDV ER)(V DERW12(Xl+2 −Xl+1) + V DERW22(Xl+3 −Xl+2))
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Spline cubic 4 points vertical interpolation.

This part is valid for interpolations of full level variables. See figure 11.2 and subsub-
section 11.1 for definition of ZCV E0, ZCV E1, ZCV E2 and ZCV E3. The spline cubic
4 points vertical interpolation gives the final interpolated value:

Xinterpolated = ZCV E0∗XRPl+ZCV E1∗XRPl+1+ZCV E2∗XRPl+2+ZCV E3∗XRPl+3

where XRP is the re-profiled version of X available in P(X)SPL9. A monotonic con-
straint can be added, bounding Xinterpolated between Xl+1 and Xl+2.

32 points 3D interpolation with vertical cubic 4 points interpola-
tion (subroutine LAITRI).

For layers l and l + 3 (see figure 11.4) bilinear horizontal interpolations give two inter-
polated values Xl and Xl+3 (see subsubsection 11.2). For layers l+1 and l+2 (see figure
11.4) 12 points horizontal interpolations give two interpolated values Xl+1 and Xl+2 (see
subsubsection 11.2). The final interpolated value Xinterpolated is a cubic 4 points vertical
interpolation of Xl, Xl+1, Xl+2 and Xl+3 (see subsubsection 11.2).

There are shape-preserving options for horizontal or both horizontal and vertical inter-
polations.

Use of switches LQMW (momentum equation), LQMT (temperature equation), LQMP
(continuity equation), LQMSPD (pressure departure variable equation), LQMSVD
(vertical divergence equation), Y[X]_NL%LQM (GFL equations), allows to use shape-
preserving option for both horizontal and vertical interpolations.

Use of switches LQMHW (momentum equation), LQMHT (temperature equation),
LQMHP (continuity equation), LQMHSPD (pressure departure variable equation),
LQMHSVD (vertical divergence equation), Y[X]_NL%LQMH (GFL equations), al-
lows to use shape-preserving option for horizontal interpolations.

∗ Remark: The same formulae and computations are valid for half level data, simply
replace the layer index l by the half level index l.

32 points 3D interpolation with vertical cubic Hermite interpola-
tion (subroutine LAIHVT).

This part is valid for interpolations of full level variables. For layers l and l + 3 (see
figure 11.4) bilinear horizontal interpolations give two interpolated values Xl and Xl+3

(see subsubsection 11.2). For layers l + 1 and l + 2 (see figure 11.4) 12 points horizontal
interpolations give two interpolated values Xl+1 and Xl+2 (see subsubsection 11.2). The
final interpolated value Xinterpolated is a cubic Hermite vertical interpolation of Xl, Xl+1,
Xl+2 and Xl+3 (see subsubsection 11.2).

There are shape-preserving options for horizontal or both horizontal and vertical inter-
polations.

Use of switch Y[X]_NL%LQM (GFL equations), allows to use shape-preserving option
for both horizontal and vertical interpolations.

Use of switch Y[X]_NL%LQMH (GFL equations), allows to use shape-preserving op-
tion for horizontal interpolations.
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48 points 3D interpolation with vertical cubic spline interpolation
(subroutine LAITVSPCQM).

This part is valid for interpolations of full level variables. This type of interpolation is
activated for GFL variables when Y[X]_NL%LVSPLIP=.T. in NAMGFL (currently
for ozone only). Contrary to what is done for the other 32 points interpolations routines,
the vertical interpolations are performed first. 12 vertical interpolations are done on the
verticals matching the following points: B0,l+1, C0,l+1, A1,l+1, B1,l+1, C1,l+1, D1,l+1,
A2,l+1, B2,l+1, C2,l+1, D2,l+1, B3,l+1, C3,l+1. A monotonic constraint is added for the
lower levels (currently the 9 lower levels). The projection horizontal plane on the level
of the interpolation point provides a 12-points grid. A 12 points interpolation is done on
this projection (see part 11.2). A final monotonic constraint is added: the interpolated
value of X is bounded between the value of X at the points B1,l+1, C1,l+1, B2,l+1, C2,l+1,
B1,l+2, C1,l+2, B2,l+2, C2,l+2, and the overshoots/undershoots found are dispatched on
upper levels to ensure as possible it can be done conservation properties.

Horizontal 16 points linear least-square fit interpolation.

See figure 11.3 and subsubsection 11.1 for definition of ZDLO0, ZDLO1, ZDLO2,
ZDLO3, ZDLAT and points A0, B0, C0, D0, A1, B1, C1, D1, A2, B2, C2, D2, A3, B3,
C3, D3. Let us define:

• f1(α) = 0.4− 0.3α

• f2(α) = 0.3− 0.1α

• f3(α) = 0.2 + 0.1α

• f4(α) = 0.1 + 0.3α

For a quantity X, are computed successively:

• a linear least-square fit 4 points interpolation on the longitude number lon for
lon = 0, 1, 2, 3:
Xlon = +f1(ZDLOlon)XAlon

+ f2(ZDLOlon)XBlon
+ f3(ZDLOlon)XClon

+ f4(ZDLOlon)XDlon
.

• a meridian linear least-square fit 4 points interpolation:
Xinterpolated = +f1(ZDLAT )X0 + f2(ZDLAT )X1 + f3(ZDLAT )X2 + f4(ZDLAT )X3.

32 points 3D interpolation with linear least-square fit horizontal
interpolations and vertical linear interpolations (subroutine LAIS-
MOO).

For layers l + 1 and l + 2 (see figure 11.4) 16 points linear least-square fit horizontal
interpolations give two interpolated values Xl+1 and Xl+2 (see subsubsection 11.2). The
final interpolated value is then given by the following expression:

Xinterpolated = Xl+1 + ZDV ER(Xl+2 −Xl+1)

∗ Remark: In the current usage of this interpolation (for η̇ in the upper stratosphere)
there is an additional smoothing done in routine LAISMOA before the interpolation by
LAISMOO.

∗ For more information: See the internal paper (IDSVTSM).

11.3 Code structures to store weights.

Two structures have been created in module intdyn_mod.F90:

• structure TLSCAW for linear weights.
• structure TRSCAW for non-linear weights.
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Figure 11.1: Interpolation horizontal grid for bilinear interpolations.
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Figure 11.2: Interpolation vertical grid for linear and cubic vertical interpolations.
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Figure 11.3: Interpolation horizontal grid for 12 points interpolations.
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Figure 11.4: Interpolation grid for tri-linear and 32 points interpolations.
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12 Computation of η̇ at full levels.

∗ General expression: η̇ is needed to find the height of the medium and origin
points.

η̇ can be written:

η̇ =

(
η̇
∂Π

∂η

)
∂η

∂Π
(161)

∗ Discretisation at full levels for LVERTFE=.F.:
(
η̇ ∂Π
∂η

)
is provided at

half levels, and ∆η and ∆Π are provided at full levels. Discretisation of (161) is:

η̇l = 0.5

[(
η̇
∂Π

∂η

)

l

+

(
η̇
∂Π

∂η

)

l−1

]
[∆η]l
[∆Π]l

(162)

∗ Discretisation at full levels for LVERTFE=.T.:
(
η̇ ∂Π
∂η

)
is provided at

full levels, and ∆η and ∆Π are provided at full levels. Discretisation of (161) is:

η̇l =

(
η̇
∂Π

∂η

)

l

[∆η]l
[∆Π]l

(163)
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13 Lateral boundary conditions.

13.1 Extra longitudes.

Let us denote by LX the number of longitudes (in the array NLOENG for each latitude
in the code). For a quantity X, let us define:

X(longitude number 0)=X(longitude number LX).

X(longitude number LX+1)=X(longitude number 1).

X(longitude number LX+2)=X(longitude number 2).

These extra computations are necessary for all interpolated fields. For distributed memory
computations are done when making the halo (routine SLCOMM+SLCOMM2A which
exchange data with other processors).

13.2 Extra latitudes.

Let us denote by lx the number of latitudes (NDGLG in the code): latitudes number
-1,0,lx+ 1,lx+ 2 are respectively the symmetric of latitudes number 2,1,lx,lx− 1. These
extra computations are necessary for all interpolated fields. For distributed memory com-
putations are done in SLEXTPOL.

13.3 Vertical boundary conditions in the 3D model.

∗ Vertical linear interpolations for layer variables at the medium
point: The medium point has a vertical coordinate always included between η

l=0
and

η
l=L

in case of vertical interpolating scheme. Therefore no extrapolated values are needed.

∗ Vertical cubic 4 points interpolations for layer variables at the
origin point: When the origin point is above the layer number 2 (resp. below the
layer number L − 1), the vertical cubic 4 points interpolations using data of the layers
number 1, 2, 3 (resp. L − 2, L − 1, L) and the extra-layer number 0 (resp. L + 1) are
degenerated into linear interpolations between the layers number 1 and 2 (resp. L − 1
and L). The extrapolated values at the extra-layer number 0 (resp. L + 1) are always
multiplied by a weight equal to 0 and are set to 0 in subroutine LAVABO. This algorithm
extends itself to the case where the origin point is between the top (resp. surface) and
the layer number 1 (resp. L), but in this case the interpolation using data of the layers
number 1 and 2 (resp. L− 1 and L) becomes an extrapolation.

∗ Vertical cubic 4 points interpolations for half level variables at
the origin point: When the origin point is above the half level number 1 (resp.
L−1), the vertical cubic 4 points interpolations using data of the half levels number -1, 0,
1, 2 (resp. L− 2, L− 1, L and L+ 1) are degenerated into linear interpolations between
the half levels numbers 0 and 1 (resp. L− 1 and L).
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∗ Vertical cubic Hermite interpolations for layer variables at the
origin point: When the origin point is above the layer number 2 (resp. L − 1),
interpolation is still a vertical cubic Hermite one, computation of vertical derivatives is
modified for layer number 1 (resp. L). This algorithm extends itself to the case where the
origin point is between the top (resp. ground) and the layer number 1 (resp. L), but in
this case the interpolation using data of the layers number 1 and 2 (resp. L − 1 and L)
becomes an extrapolation. For more details see subsubsection 11.1.

∗ Vertical cubic spline interpolations for layer variables at the ori-
gin point: Some top and bottom values are computed (the algorithm of computation
will be provided in a later version of this documentation) and the vertical interpolation
always uses 4 points.
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14 Some distributed memory features.

14.1 Case LEQ_REGIONS=F.

Calculations packets.

∗ Grid-point computations: The total number of processors involved in the
A-level parallelisation is NPRGPNS. The total number of processors involved in the
B-level parallelisation is NPRGPEW. One processor treats NGPTOT points (a part of
the Gaussian grid points). The total amount of grid-points for all the processors is NG-
PTOTG. The maximum value of NGPTOT is NGPTOTMX. In the grid-point space
there is a subdivision of the current processor grid-points into NGPBLKS=int[(NGPTOT+NPROMA-
1)/NPROMA] packets of length NPROMA (the useful number of values in each packet
is lower or equal than NPROMA). These packets do not contain neither extra-longitudes
nor polar or extra-polar latitudes data. A NPROMA-packet does not always contain
a set of complete latitudes. This subdivision into NPROMA-packet both concern not
lagged and lagged computations. Currently all the not lagged calculations are made for
the int[(NGPTOT+NPROMA-1)/NPROMA] packets of length NPROMA before
calling the lagged computations for the int[(NGPTOT+NPROMA-1)/NPROMA]
packets of length NPROMA. int[(NGPTOT+NPROMA-1)/NPROMA] is stored
in the variable NGPBLKS. More details will be given later for the data transmission
for horizontal interpolations. One 2D field has NGPTOTG points divided into NPRG-
PNS*NPRGPEW sets of NGPTOT points treated by each processor. NGPTOT
does not take account of the extra-longitudes and the extra-polar latitudes. All these
variables take account of the reduced Gaussian grid. It is assumed and hardcoded that
there are one western extra-longitude and two eastern extra-longitudes. The DM-global
longitude jlon = 1 is always the “Greenwich" meridian of the computational sphere. All
the vertical levels and the variables corresponding to a same grid-point are treated by
the same processor. There are necessary transpositions (reorganisation of data) between
grid point computations and Fourier transforms because Fourier transforms need complete
latitudes.

∗ Additional remarks about the LEQ_REGIONS environment vari-
ables. Variables N_REGIONS_NS, N_REGIONS and N_REGIONS_EW
are used even when LEQ_REGIONS=F but in this case:

• N_REGIONS_NS=NPRGPNS.

• N_REGIONS=NPRGPEW everywhere.

• N_REGIONS_EW=NPRGPEW.

Transmission of data necessary for semi-Lagrangian horizontal in-
terpolations from the non lagged grid-point computations towards
the lagged grid-point computations: interpolation buffers.

Description is done for the 3D model (the 2D model uses an obsolescent dataflow struc-
ture and does not work any longer).

First one associates to each interpolation point, which is generally not a model grid-
point, an “associated" model grid-point which currently satisfies to the following rule: for
the semi-Lagrangian scheme one associates to the interpolation point the corresponding
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arrival point of the SL trajectory. This associated model grid-point is always between
the latitudes 1 and NDGLG (it is never a pole or an extra-polar latitude point). The
processor which treats the interpolation point is the processor which treats this associated
model grid-point.

Interpolations use data of points which are not necessary on the same latitude and
longitude as the interpolation point and the arrival grid-point of the semi-Lagrangian
trajectory. Thus interpolation routines need to have access to a limited number of sur-
rounding latitudes and longitudes which are not necessary treated by the current proces-
sor. First the not lagged computations are done for the int[(NGPTOT+NPROMA-
1)/NPROMA] packets of length NPROMA, then the lagged computations are done
for the int[(NGPTOT+NPROMA-1)/NPROMA] packets of length NPROMA in-
terpolation points. The number of surrounding latitudes and longitudes rows necessary
for interpolations but which do not belong to the current processor is precomputed in the
subroutine SUSC2B (variable NSLWIDE). This is a sort of “halo" belonging to some
other processors. Due to the “halo" there is still need to split calculations into not lagged
ones and lagged ones. Quantities to be interpolated are computed in the non-lagged part
and interpolations are performed in the lagged part. In the non-lagged part, only data of
the current processor (without any extra-longitudinal data nor polar and extra-polar data)
are computed. For all the NPROMA-packages treated by the current processor these
data are stored in the arrays PB1 in CPG (corresponding to local array ZSLBUF1 in
the routine GP_MODEL). The first dimension of PB1 is NASLB1, which is the total
number of points one needs for the interpolations (NASLB1 is greater than NGPTOT).
The second dimension of PB1 is NFLDSLB1: this is the number of 2D quantities to
be interpolated. Inside CPG, an intermediate array ZSLBUF1AU is used and data
are transferred in PB1: this memory transfer uses a precomputed intermediate array
NSLCORE. Then some communication routines are called in CALL_SL to constitute
the halo. SLCOMM does processor communication to fill the halo (receives and sends
data from some other processors). When all the NASLB1 dataset is constituted, the
lagged part CALL_SL is called which do horizontal interpolations for all the data to be
interpolated for the current processor.

∗ Particular case of the “on demand" processor communication:
SLCOMM and SLEXTPOL are still called with specific options, and do the com-
munications only on the part of the buffer which contains the information to find the
semi-Lagrangian displacement. For the RHS of equations, the interpolations need to
communicate a subset of points, this subset can be known only when all the interpola-
tions grids have been computed (in LASCAW): communications are currently done by
SLCOMM2A and SLEXTPOL called by CALL_SL just before the interpolations.
SLCOMM2A and SLEXTPOL have less points to exchange so the model integration
is slightly less expensive.

Terms which must be evaluated at F are stored in GFLT1, GMVT1, GMVT1S (for
the RHS of equations) and PB2 (ZSLBUF2 in GP_MODEL) for additional interme-
diate terms. See documentation (IDEUL) for more details about PB2 and the dataflow
in the grid-point calculations.

14.2 Case LEQ_REGIONS=T.

This case is relevant only when NPRGPEW>1 (B-level parallelisation at least in the
grid-point calculations). This is an optimised version of the LEQ_REGIONS=F case
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which is well designed for reduced Gaussian grid and it improves the load balance in this
case. A comprehensive description can be found in (Mozdzynski, 2006). To sum-up, we
can say that:

• the A-level grid-point distribution splits the Earth into N_REGIONS_NS bands.
N_REGIONS_NS can be slightly different from NPRGPNS.

• for each band jroca, the B-level grid-point distribution splits the band into N_REGIONS(jroca)
zones: the minimum value of N_REGIONS is at the poles of the computational
sphere (equal to 1 in the examples provided by Mozdzynski); the maximum value of
N_REGIONS is at the equator of the computational sphere and this maximum
is equal to N_REGIONS_EW. The meridian variations of N_REGIONS are
highly correlated to those of NLOENG.

• In the examples provided by Mozdzynski, NPRGPNS=NPRGPEW=NPRTRW=NPRTRV
and we notice that N_REGIONS_NS is slightly below NPRGPNS, and that
N_REGIONS_EW is slightly below 2∗NPRGPEW.
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Semi-implicit spectral

computations and

predictor-corrector schemes

1 Introduction.

1.1 Interest of semi-implicit and iterative centred-implicit schemes.

For both hydrostatic and non-hydrostatic models it is necessary to treat implicitly the
linear terms source of (fast moving) gravity waves to ensure a good stability; hence the
resolution of equations involve the inversion of a linear system leading to a Helmholtz
equation: inversion of such a system is more convenient to do in spectral space. For non-
hydrostatic models the semi-implicit scheme is generally not sufficient (especially for a
two-time level semi-Lagrangian scheme) and some non-linear terms have also to be treated
implicitly; for that one uses an iterative centred-implicit (abbreviated into “ICI") scheme.
The iterative centred-implicit schemes are often called “predictor-corrector" schemes, but
in a theoretical point of view one has normally to reserve this appellation for a subset of
iterative centred-implicit schemes with only one iteration. The iterative centred-implicit
scheme can have an incremental formulation or a non-incremental formulation. The one
which is coded in ARPEGE/ALADIN (for both hydrostatic and non-hydrostatic models)
and which will be retained and described is a non-incremental one. All the additional
calculations generated by an iterative centred-implicit scheme are mainly done in the
grid-point calculations and in the spectral transforms.

1.2 Distributed memory.

Some distributed memory features are now introduced in the code and will be briefly
described. For convenience one uses some generic appellations.
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• Expression “DM-local" for a quantity means “local to the couple of processors
(proca,procb)": each processor has its own value for the quantity. Expression “DM-
local computations" means that the computations are done independently in each
processor on “DM-local" quantities, leading to results internal to each processor,
which can be different from a processor to another one.

• Expression “DM-global" for a quantity means that it has a unic value available in
all the processors. Expression “DM-global computations" means that the compu-
tations are either done in one processor, then the results are dispatched in all the
processors, or the same computations are done in all the processors, leading to the
same results in all the processors.

• In a routine description the mention “For distributed memory computations are
DM-local" means that all calculations done by this routine are DM-local; the men-
tion “For distributed memory computations are DM-global" means that all calcula-
tions done by this routine are DM-global; when no information is provided it means
that a part of calculations are DM-local and the other part is DM-global.

• Expression “main" processor currently refers to the processor number 1: (proca,procb)=(1,1).

1.3 The different models described.

• 2D shallow-water model.

• 3D primitive equations model (denoted as HYD).

1.4 Other restrictions of this documentation.

• Linear systems are written for thin layer equations: in practical, they don’t change
for deep layer equations because the radius r is linearised around a reference value
equal to a.
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2 Notations.

• M is the mapping factor. M is a reference mapping factor for semi-implicit compu-
tations. M = c (stretching factor) if semi-implicit scheme with reduced divergence
(LSIDG=.F. in YOMDYN). M = M (mapping factor) if semi-implicit scheme
with unreduced divergence (LSIDG=.T. in YOMDYN).

• a is the Earth mean radius.

• r is the radius. The reference value of r for the linearisation is the mean radius a.
In the thin layer equations, r = a everywhere. In the LVERCOR=T (White and
Bromley, 1995) deep-layer equations, r is replaced by a pseudo-radius rs depending
only on the hydrostatic pressure. All the equations involving the radius will be
written with the denotation r.

• V is the horizontal geographical wind. Its zonal component is U . Its meridian
component is V .

• D is the unreduced divergence of horizontal wind, D
′

is the reduced divergence. D
and D

′

are linked by the relationship D = (a/r) ∗M2 ∗D′

.

• ζ is the unreduced vorticity of horizontal wind, ζ
′

is the reduced vorticity. ζ and
ζ
′

are linked by the relationship ζ = (a/r) ∗M2 ∗ ζ′

.

• w is the z-coordinate vertical velocity: w = dz
dt

.

• T is the temperature. T ∗ is a vertically-constant reference temperature which is
used in the semi-implicit scheme and in some non-hydrostatic equations. Default
value is 300 K or 350 K according to configuration (for more details see subsection
?? for variable SITR). IF LSPRT=.T. (use of virtual temperature in spectral
transforms instead of real temperature), T ∗ is used as a reference virtual tempera-
ture (same default value).
T ∗
a is a cold vertically-constant reference temperature which is used in the semi-

implicit scheme in the NH vertical divergence equation; it is recommended to have
T ∗
a lower than the current temperature.

• q is the humidity.

• Π is the hydrostatic pressure, Πs is the hydrostatic surface pressure. Π∗ is a refer-
ence hydrostatic pressure and Πs

∗ is a reference hydrostatic surface pressure, which
are used in the semi-implicit scheme and in some non-hydrostatic equations. These
reference quantities are vertically dependent and “horizontally" (i.e. on η surfaces)
constant. Default value of Πs

∗ is generally between 800 hPa and 1000 hPa. ∆Π∗

are layer depths corresponding to a surface hydrostatic pressure equal to Πs
∗.

• Πs
st is a reference hydrostatic pressure equal to the surface pressure of the standard

atmosphere (variable VP00). Default value is 101325 Pa.

• ω = dΠ
dt

is the total temporal derivative of the hydrostatic pressure (vertical velocity
in hydrostatic pressure coordinate).

• p is the pressure, ps is the surface pressure.

• Q̂ is the pressure departure variable. Expression of Q̂ is:

Q̂ = log
p

Π
(1)

• gz is the geopotential height.

• Φ is the total geopotential (equivalent height in the shallow-water model), Φs is the
surface geopotential (i.e. the orography). In the thin layer equations, Φ = gz. Φs

is assumed to be always equal to gzs. Φ∗ is a reference equivalent height which is
only used in the shallow-water model (semi-implicit scheme). Default value of Φ∗

is 100000 J/kg. ∆Φ∗ is a reference geopotential depth computed on model levels.
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• Ω is the Earth rotation angular velocity.

• r is the vector directed upwards, the length of which is the Earth radius a.

• g is the gravity acceleration constant, assumed to be vertically constant in the cur-
rent documentation. For the (Wood and Staniforth, 2003) deep-layer NH equations
with vertical variations of g, only the reference value of g (vertically constant) is
taken into account in the semi-implicit scheme.

• R is the gas constant for air and Rd the gas constant for dry air.

• cp is the specific heat at constant pressure for air and cpd is the specific heat at
constant pressure for dry air.

• cv is the specific heat at constant volume for air and cvd is the specific heat at
constant volume for dry air.

• ∇ is the unreduced first order horizontal gradient on η-surfaces. ∇′

is the reduced
first order horizontal gradient. These two operators are linked by the relationship
∇ = (a/r) ∗M ∗ ∇′

.

• D3 is the true 3D divergence. In the thin layer equations, expression of D3 is:

D3 = ∇~V +
p

∂Π
∂η
RT

∇Φ

(
∂V

∂η

)
− gp

∂Π
∂η
RT

(
∂w

∂η

)
(2)

• d is the vertical divergence. In the thin layer equations, the relationship between d
and the height-coordinate vertical velocity w is:

d = − gp
∂Π
∂η
RdT

(
∂w

∂η

)
(3)

• Variable d4 = d+ p
∂Π
∂η
RT

∇Φ
(
∂V
∂η

)
can be also used as prognostic variable.

• L: number of layers of the model.

• A, B define hydrostatic pressure on the η levels ( Π = A + BΠs, where Πs is the
hydrostatic surface pressure).

• β coefficient for the semi-implicit scheme (between 0 and 1).

• γ, τ , ν, µ, ∂∗, L∗ and T∗ are generic notations for linear operators (see subsection
4.2).

• H, C, N are intermediate constants used in the semi-implicit scheme of the non-
hydrostatic model. Definitions are respectively:

H =
RdT

∗

g
(4)

C = RdT
∗ cpd

cvd
(5)

N =
g√
cpdT

∗
(6)

• For a variableX defined at full levels, 〈X〉 is the vector of coordinates (X1; ...;Xl; ...;XL).

• Rinte is the vertical integration operator used in the case LVERTFE=.T. :

–
∫ η=1

η=0
Xdη is discretised by [Rinte](top,surf) 〈X〉.

–
∫ η=ηl
η=0

Xdη is discretised by [Rinte](top,l) 〈X〉.

–
∫ η=1

η=ηl
Xdη is discretised by [Rinte](l,surf) 〈X〉.

• Rderi is the vertical first-order derivative operator used in the case where VFE are
also applied to derivatives.
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3 General considerations.

3.1 Advection schemes.

∗ Explicit Eulerian equations: In Eulerian form of equations, the time depen-
dency equation of a variable X writes as:

∂X

∂t
= −U.∇3X +A+ F (7)

where U is the 3D wind, ∇3 is the 3D gradient operator, A is the dynamical contribution,
and F is the physical contribution. X(t+∆t) is computed knowing X(t−∆t) at the same
grid point.

∗ Explicit semi-Lagrangian equations: In semi-Lagrangian form of equa-
tions, the time dependency equation of a variable X writes as:

dX

dt
= A+ F (8)

In a three-time level semi-Lagrangian scheme (abbreviated into 3TL SL scheme) X(t+∆t)
is computed at a grid point F knowing X(t − ∆t) at the point O (not necessary a grid
point) where the same particle is at t −∆t. In a two-time level semi-Lagrangian scheme
(abbreviated into 2TL SL scheme) X(t+∆t) is computed at a grid point F knowing X(t)
at the point O (not necessary a grid point) where the same particle is at t.

3.2 Semi-implicit treatment of linear terms (case where there
is no iterative centred-implicit scheme).

∗ Adding of a semi-implicit correction: In all cases the linear terms source
of gravity waves must be treated implicitly, in order to allow time-steps compatible with
an operational use of the model. Expression of the linear terms is obtained assuming a
definition of a reference state. The reference state is defined by a dry resting isotherm
atmosphere in hydrostatic balance, reference orography is zero. Equations (7) and (8)
become respectively (9) and (10):

• Eulerian scheme:

∂X

∂t
= −U.∇3X +A+ F + [SIcorrection] (9)

• Semi-Lagrangian scheme:

dX

dt
= A+ F + [SIcorrection] (10)

∗ Discretisation of equations (9) and (10): Equations (9) and (10) give
the following discretized equations, where ∆t is the time step, B is the linear term source
of gravity waves, β is a tunable parameter (β = 0 corresponds to an explicit formulation,
β = 1 to an implicit formulation):
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• Eulerian scheme:

[SIcorrection] = −βBt + β

2
Bt−∆t +

β

2
Bt+∆t (11)

Xt+∆t−β∆tBt+∆t = Xt−∆t+2∆t(−U.∇3X+A+F)−2β∆tBt+β∆tBt−∆t(12)

all computations are done at the same grid point.

• Three-time level semi-Lagrangian (3TL SL) scheme (without uncentering factor):

[SIcorrection] = −βBt + β

2
Bt−∆t +

β

2
Bt+∆t (13)

Xt+∆t − β∆tBt+∆t = Xt−∆t + 2∆t(A+ F)− 2β∆tBt + β∆tBt−∆t (14)

where Xt+∆t−β∆tBt+∆t is computed at the final grid point of the semi-Lagrangian
trajectory, Xt−∆t and β∆tBt−∆t are computed at the origin point of the semi-
Lagrangian trajectory, −2β∆tBt is computed as an average between the origin
and final points of the trajectory, A is computed either at the medium point or
as an average between the origin and final points of the trajectory. If there is a
uncentering factor ǫ replace ∆t by (1 − ǫ)∆t for terms at the origin point, ∆t by
(1 + ǫ)∆t for terms at the final point. For more details see documentation (IDSL)
about the semi-Lagrangian scheme.

• Two-time level semi-Lagrangian (2TL SL) scheme (without uncentering factor):

[SIcorrection] = −βBt+0.5∆t +
β

2
Bt + β

2
Bt+∆t (15)

Xt+∆t − 0.5β∆tBt+∆t = Xt +∆t(A+ F)− β∆tBt+0.5∆t + 0.5β∆tBt (16)

where Xt+∆t − 0.5β∆tBt+∆t is computed at the final grid point of the semi-
Lagrangian trajectory, Xt and 0.5β∆tBt are computed at the origin point of the
semi-Lagrangian trajectory, −β∆tBt+0.5∆t and A are computed either at the medium
point or as an average between the origin and final points of the trajectory. If there
is a first-order uncentering factor ǫ replace ∆t by (1− ǫ)∆t for terms at the origin
point, ∆t by (1 + ǫ)∆t for terms at the final point. For more details see documen-
tation (IDSL) about the semi-Lagrangian scheme.

Bt+0.5∆t, Bt and Bt−∆t are computed in grid point space. The right-hand side members
of equations (12), (14) and (16) are computed in grid point space, then transformed into
spectral space. Entering spectral space a system of equations of the following type must
be solved:

Xt+∆t − β∆tBt+∆t = X ∗ (17)

for a leap-frog scheme, and:

Xt+∆t − 0.5β∆tBt+∆t = X ∗ (18)

for a two-time level semi-Lagrangian scheme, where X ∗ is known and Xt+∆t is unknown.
Now the spectral computations to solve this system of equations are described for a prim-
itive equations 3D model, a 2D shallow water model and several NH 3D models.
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3.3 Iterative centred-implicit schemes and combination with
semi-implicit schemes.

Purpose.

In some cases (especially in the non-hydrostatic models), the model with a semi-implicit
treatment of linear terms may remain unstable, hence a treatment by an iterative centred-
implicit scheme may be necessary. In the following description one sticks to non-incremental
formulations.

Iterative centred-implicit scheme.

∗ Algorithm: The total number of iterations is denoted by Nsiter.

• The iteration number (i = 0) computes an estimation Xt+∆t
(i=0)

of Xt+∆t with a
normal semi-implicit scheme. Horizontal diffusion can be done optionally at this
stage.

• Iterations (i > 0): the i-th iteration (i > 0) computes Xt+∆t
(i) (after inversion of

Helmholtz equation) knowing Xt+∆t
(i−1). Horizontal diffusion is always done at the

last iteration, it can be done optionally at the other iterations. The final value of
Xt+∆t is equal to Xt+∆t

(i=Nsiter)
.

• In the cycle 37T1 of ARPEGE/IFS and the cycle AL37T1 of ALADIN, this scheme
is controlled by the key LPC_FULL=.T. . and is coded in the Eulerian scheme
and the two-time level semi-Lagrangian scheme only. It is compulsory for the non-
hydrostatic model with a SL2TL scheme to ensure stability (but not compulsory
with the hydrostatic model with the two-time level semi-Lagrangian scheme).

• For unlagged physics, the physics has to be computed for the iteration (i = 0) only.
For lagged physics, there are several possible options in test, but in practical the
only one which works is:

– adiabatic treatment of iterations 0 to Nsiter − 1.

– diabatic treatment of iteration Nsiter.

∗ Discretisation of algorithm:

• First iteration (i = 0): One has to start from the discretisations of equations for a
model with no iterative centred-implicit formulation (see documentations (IDEUL)
and (IDSL)). For a leap-frog scheme the calculations are the same ones. For a two-
time level semi-Lagrangian scheme, (A − β∆tB)t+0.5∆t

(i=0) is assumed to be equal to

(A− β∆tB)t if no extrapolation is done (case LPC_NESC=.T.), and to 1.5(A−
β∆tB)t−0.5(A−β∆tB)t−∆t if extrapolation is done (case LPC_NESC=.F.). For
a SL2TL case with no uncentering factor that yields the following discretisations
(physics is assumed to be unlagged):

– no extrapolation:

(Xt+∆t
(i=0)−0.5∆tβBt+∆t

(i=0))F = [0.5∆tAt−0.5∆tβBt]F+[Xt+0.5∆tAt−0.5∆tβBt+0.5∆tβBt+∆tF t]O(i=0)

(O(i = 0) and F are respectively the origin and final points of the semi-
Lagrangian trajectory), which can be rewritten:

(Xt+∆t
(i=0)−0.5∆tβBt+∆t

(i=0))F = [0.5∆tAt−0.5∆tβBt]F+[Xt+0.5∆tAt+∆tF t]O(i=0)



124 5. Semi-implicit spectral computations and predictor-corrector schemes

– extrapolation: discretisation is identical to the case with no iterative centred-
implicit scheme and conventional extrapolation (type LSETTLS=.F.); the
RHS terms other than Xt and F t can be replaced by a “spatio-temporal"
average; see documentation (IDSL).

• Following iterations (i > 0): The general iteration writes (no uncentering, unlagged
physics):

– Eulerian scheme (ADV stands for advection terms):

Xt+∆t
(i) −∆tβBt+∆t

(i)

= Xt−∆t+2∆tADV t+[∆tAt+∆t
(i−1)−∆tβBt+∆t

(i−1)]+[∆tAt−∆t−∆tβBt−∆t]+∆tβBt−∆t+2∆tF t−∆t

which can be rewritten:

Xt+∆t
(i) −∆tβBt+∆t

(i) = ∆tAt+∆t
(i−1)−∆tβBt+∆t

(i−1)+[Xt−∆t+2∆tADV t+∆tAt−∆t+2∆tF t−∆t]

– Three-time level semi-Lagrangian scheme (without uncentering factor):

[Xt+∆t
(i) −∆tβBt+∆t

(i) ]F

= Xt−∆t
O(i) +[∆tAt+∆t

(i−1)−∆tβBt+∆t
(i−1)]F+[∆tAt−∆t−∆tβBt−∆t]O(i)+[∆tβBt−∆t+2∆tF t−∆t]O(i)

which can be rewritten:

[Xt+∆t
(i) −∆tβBt+∆t

(i) ]F = Xt−∆t
O(i) +[∆tAt+∆t

(i−1)−∆tβBt+∆t
(i−1)]F+[∆tAt−∆t+2∆tF t−∆t]O(i)

The iterative centred-implicit algorithm also applies to re-compute the semi-
Lagrangian trajectory (see documentation (IDSL) for more details), the po-
sition of the origin point at the i-th (resp i − 1-th) iteration is O(i) (resp.
O(i− 1)).

– Two-time level semi-Lagrangian scheme (without uncentering factor):

[Xt+∆t
(i) − 0.5∆tβBt+∆t

(i) ]F

= Xt
O(i)+[0.5∆tAt+∆t

(i−1)−0.5∆tβBt+∆t
(i−1)]F+[0.5∆tAt−0.5∆tβBt]O(i)+[0.5∆tβBt+∆tF t]O(i)

which can be rewritten:

[Xt+∆t
(i) −0.5∆tβBt+∆t

(i) ]F = Xt
O(i)+[0.5∆tAt+∆t

(i−1)−0.5∆tβBt+∆t
(i−1)]F+[0.5∆tAt+∆tF t]O(i)

The iterative centred-implicit algorithm also applies to re-compute the semi-
Lagrangian trajectory (see documentation (IDSL) for more details), the po-
sition of the origin point at the i-th (resp i − 1-th) iteration is O(i) (resp.
O(i − 1)). Remark: when the iterative centred-implicit scheme is used, the
stable extrapolation LSETTLS=.T. is never involved.

∗ Cheap version of this algorithm: In a semi-Lagrangian scheme, it is possible
not to iterate the position of the origin point O (i.e O(i) = O(i = 0)): this cheap version
is activated if LPC_CHEAP=.T. . It is coded only for a non-extrapolating SL2TL
scheme. In this case the quantity to be interpolated (i.e. [0.5∆tAt + ∆tF t]O) needs to
be interpolated at the predictor step only. It is then stored in a buffer and re-used at the
corrector steps without any interpolation.

3.4 Introduction of uncentering for semi-Lagrangian schemes.

Averages along the semi-Lagrangian trajectory will be weighted by (1 − ǫ) at the origin
point and (1+ ǫ) at the final point. If the uncentering coefficient ǫ is horizontally constant
the algorithms remain valid, replacing β by (1 + ǫ)β.
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3.5 Plane geometry (ALADIN).

Particular features of ALADIN when differing from ARPEGE/IFS are not described in
detail, only brief comments are mentioned. For more details see ALADIN documentation.
Concerning the semi-implicit and iterative centred-implicit algorithms one can consider
that the major part of this documentation is still valid for ALADIN; the main differences
with ARPEGE/IFS are:

• The shallow-water model is not coded in ALADIN.

• Option LESIDG=.T. replaces LSIDG=.T. in ALADIN, and is available only
with the tilted-rotated Mercator projection. This option is useful only when the
horizontal variations of the mapping factor are significant. See (IDESIDG) about
its implementation.

• Option LIMPF=.T. is not coded in ALADIN.

• In the hydrostatic (resp. NH) model, spectral part of the semi-implicit scheme is
performed in routine ESPCSI instead of SPCSI (resp. ESPNHSI instead of
SPNHSI) in ALADIN; the algorithm is the same as in ARPEGE but the trunca-
tion of the spectral representation is elliptic and not triangular.

3.6 Finite elements on the vertical.

The option with finite element vertical discretisations is coded for the hydrostatic model
and partly for the NH models. For VFE, the main modifications in the semi-implicit
scheme are the following ones:

• The discretisation of Π, α and δ at full levels is different.

• The model avoids as possible to compute quantities at half levels; all vertical inte-
grals directly provide quantities at full levels.

• The vertical integrals contained in some linear operators (γ, τ and ν) are discretised
differently, as a matricial multiplication with special coefficients (contained in the
matrix Rinte) computed in the setup routine SUVERTFE1 or SUVERTFE3;
the vertical integration is done by routine VERINT.
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4 Prognostic variables and quantities involved in the
semi-implicit scheme.

4.1 Prognostic variables.

Prognostic variables can be split into different classes:

• 3D variables, the equation RHS of which has a non-zero adiabatic contribution and
a non-zero semi-implicit correction contribution. They are called “GMV" in the
code (“GMV" means “grid-point model variables"). This class of variables includes
the components of the horizontal wind V, temperature T , and the two additional
non-hydrostatic variables in a non-hydrostatic model.

• 3D “conservative" variables. The equation RHS of these variables has a zero adi-
abatic contribution, only the diabatic contribution (and the horizontal diffusion
contribution) can be non-zero. They are called “GFL" in the code (“GFL" means
“grid-point fields"). This class of variables includes for example humidity q, liquid
water, ice, cloud fraction, ozone, and some extra fields.

• 2D variables, the equation RHS of which mixes 3D and 2D terms, has a non-
zero adiabatic contribution and a non-zero semi-implicit correction contribution.
They are called “GMVS" in the code (“GMVS" means “grid-point model variables
for surface"). This class of variables includes the logarithm of surface pressure
(continuity equation).

Only the GMV and GMVS variables appear in the semi-implicit scheme. In the shallow-
water 2D model, only GMV variables exist, this class of variables includes the components
of the horizontal wind V, and the equivalent height Φ− Φs (continuity equation).

4.2 Quantities used for vertical discretisations and linear op-
erators.

∗ Operators “alpha" and “delta": these operators are used for discretisations
of some vertical integrals. They have a different expression according to the value of
variables NDLNPR, LVERTFE.

• For LVERTFE=.F., NDLNPR=0 and a layer l between 2 and L (and also l = 1
if the pressure at the top of the model is not zero), α∗ and δ∗ are discretised as
follows at full levels:

α∗
l = 1−

Π∗

l−1

∆Π∗
l

log

(
Π∗

l

Π∗

l−1

)
(19)

δ∗l = log

(
Π∗

l

Π∗

l−1

)
(20)

• For LVERTFE=.F., NDLNPR=0 and the layer l = 1 if the pressure at the top
of the model is zero:

– α∗
l=1 = 1 at METEO-FRANCE.

– α∗
l=1 = log(2) at ECMWF.

– δ∗l=1 has in theory an infinite value, but in the code it is computed with a top
pressure equal to 0.1 Pa to provide a finite value.
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• For LVERTFE=.F., NDLNPR=1 and a layer l between 2 and L (and also l = 1
if the pressure at the top of the model is not zero), α∗ and δ∗ are discretised as
follows at full levels:

α∗
l = 1−

√
Π∗

l−1

Π∗

l

= 1− Π∗
l

Π∗

l

(21)

δ∗l =
∆Π∗

l

Π∗
l

=
∆Π∗

l√
Π∗

l−1
Π∗

l

(22)

Π∗ is discretised as follows at full levels:

Π∗
l =
√

Π∗
l
Π∗

l−1
(23)

Notation α∗

l−1
is used for quantity 1−

Π∗

l−1

Π∗
l

instead of notation β∗
l of (Bubnová et

al., 1995).

• For LVERTFE=.F., NDLNPR=1 and the layer l = 1 if the pressure at the top
of the model is zero:

– α∗
l=1 = 1 and α∗

l=0
= 1.

– δ∗l=1 = 1 +
cpd
Rd

.

– Π∗
l=1 =

∆Π∗
l=1

δ∗
l=1

.

• For LVERTFE=.T., NDLNPR=0 and a layer l between 1 and L, α∗ and δ∗ are
discretised as follows at full levels:

α∗
l =

Π∗

l
−Π∗

l

Π∗
l

(24)

δ∗l =
∆Π∗

l

Π∗
l

(25)

where Π∗
l = Al + BlΠs

∗. See documentation (IDEUL) for computation of Al and
Bl in this case. Formulae (24) and (25) provide finite values of α∗

1 and δ∗1 even if
the pressure at the top of the model is zero. α∗

l is not used in the SI scheme in
this case because vertical integrals are directly provided at full levels without the
intermediate state of interlayer data.

∗ Linear operator “γ": this operator is applied to temperature and pressure de-
parture variable to compute linear term in momentum equation. Denotation γ has the
same meaning as the denotation Rd ∗G∗ of (Bubnová et al., 1995) or (IDNH2.1). For a
variable Z, (γZ) is a discretisation of vertical integral

∫ 1

η

(
∂Π∗

∂η

)

Π∗
RdZdη

Expression of this discretisation is:

• Case LVERTFE=.T.:

(γZ)l = [Rinte](l,surf)

〈
RdZδ

∗

∆η

〉
(26)

• Case LVERTFE=.F.:

(γZ)l = α∗
lRdZl +

L∑

k=l+1

RdZkδ
∗
k (27)

Remark: if LSPRT=.T., γ is applied to virtual temperature instead of real temperature.
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∗ Linear operator “τ": this operator is applied to divergence to compute linear
term in temperature equation. Denotation τ has the same meaning as the denotation
RdT

∗

cpd
∗ S∗ of (Bubnová et al., 1995) and (IDNH2.1). For a variable Z, (τZ) is the dis-

cretisation of vertical integral RdT
∗

cpdΠ
∗

∫ η
0
∂Π∗

∂η
Zdη. Expression of (τZ) is:

• Case LVERTFE=.T.:

(τZ)l =
RdT

∗

cpd

δ∗l
∆Π∗

l

[Rinte](top,l)

〈
∆Π∗Z

∆η

〉
(28)

Remark: according to the expression of δ∗l in this case, this equation can be rewrit-
ten:

(τZ)l =
RdT

∗

cpd

1

Π∗
l

[Rinte](top,l)

〈
∆Π∗Z

∆η

〉

• Case LVERTFE=.F.:

(τZ)l =
RdT

∗

cpd

[
α∗
l Zl +

δ∗l
∆Π∗

l

l−1∑

k=1

∆Π∗
kZk

]
(29)

Remark: if LSPRT=.T., RdT
∗ becomes

R2
d
R
T ∗ in expression of (τZ).

∗ Linear operator “ν": this operator is applied to divergence to compute linear
term in continuity equation. Denotation ν has the same meaning as the denotation Πs

∗N∗

of (Bubnová et al., 1995) and (IDNH2.1). For a variable Z, definition of (νZ) is:

• Case LVERTFE=.T.:

(νZ) =
1

Πs
∗ [Rinte](top,surf)

〈
∆Π∗Z

∆η

〉
(30)

• Case LVERTFE=.F.:

(νZ) =
1

Πs
∗

L∑

l=1

∆Π∗
l Zl (31)

(νZ) is the discretisation of vertical integral 1
Πs

∗

∫ 1

0
∂Π∗

∂η
Zdη.

∗ Linear operator “µ": This operator is applied to log(Πs) to compute linear term
in momentum equation. For a variable Z, Definition of (µZ) is:

(µZ) = RdT
∗Z (32)

(µZ) is applied to log(Πs).

Remarks:

• if LSPRT=.T., RdT
∗ becomes

R2
d
R
T ∗ in expression of (µZ).

• In some documentations one sometimes finds the expanded expression RdT
∗
I in-

stead of µ (where I is the identity matrix).
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4.3 Relationships between some linear operators.

In the NH-PDVD model, operators ν, γ and τ SHOULD be linked by the following
relationship if one wants the complete elimination of variables in order to provide a “one
variable" Helmholtz equation computing the vertical divergence, and all the following parts
of this documentation assumes that this condition is fulfilled. For more details see section
4 of (IDNH2.1) where this condition is denoted by “C1". The adimensioned formulation
of constraint “C1" writes:

ν =
1

Rd
γ +

cpd

RdT ∗
τ − cpd

R2
dT

∗
γτ (33)

This equation can be multiplied by cpd/cvd and rewritten as follows:

COR = 0 (34)

where:

COR =
cvd
R2

dT
∗
γτ − cvd

Rdcpd

γ − cvd
RdT ∗

τ +
cvd
cpd

ν (35)

Note that this condition is fulfilled at least for LVERTFE=.F. (FD discretisation of
operators ν, γ and τ) and NDLNPR=1 (this is the reason of using the NDLNPR=1
discretisation in a NH model), and is SURELY NOT fulfilled for LVERTFE=.F. and
NDLNPR=0.

For LVERTFE=.T., this condition is not fulfilled. This is the reason why there is a
possibility to keep LVERTFE=.F. and NDLNPR=1 in the linear model, even if VFE
are switched on in the explicit model.

Additional studies (see for example Bénard, 2004) show that, when the constraint C1 is
not fulfilled, it is not possible to fulfill it simply by changing the definition of one of the
operators ν, γ or τ .

• Changing the definition of ν to match formula (33) does not ensure any longer the
fact that ν is a 2D operator.

• Changing the definition of γ to match COR = 0 does not work because that
provides an expression with the inverse of a non-invertible matrix.

• Changing the definition of τ to match COR = 0 has none of the shortcomings
of the two previous proposals, but provides a linear operator generating spurious
noise.



130 5. Semi-implicit spectral computations and predictor-corrector schemes

5 Semi-implicit scheme, no Coriolis term in the semi-
implicit scheme.

Equations are written for a leap-frog scheme (Eulerian scheme of three-time level semi-
Lagrangian scheme). For a two-time level semi-Lagrangian scheme replace ∆t by 0.5∆t.

5.1 3D hydrostatic primitive equations model.

∗ Expression of the linear term B for GMV and GMVS variables:

• Continuity equation (X = log(Πs)):

B = −ν(M2
D

′

) (36)

• Divergence equation (X = D
′

):

B = −∇
′2(γT + µ log Πs) (37)

• Vorticity equation (X = ζ
′

):

B = 0 (38)

• Temperature equation (X = T ):

B = −τ(M2
D

′

) (39)

∗ System to be solved: Equations are written for log(Πs) as a prognostic variable
for continuity equation.

log(Πs)t+∆t + β∆tM
2
νD

′

t+∆t = P∗ (40)

D
′

t+∆t + β∆t∇
′2(γTt+∆t + µlog(Πs)t+∆t) = D

′∗ (41)

Tt+∆t + β∆tM
2
τD

′

t+∆t = T ∗ (42)

P∗, D′∗, T ∗ correspond to X ∗ defined in equation (17) and are available in spectral arrays
(SPSP, SPDIV, SPT) at the beginning of the spectral computations. Equations (40)
to (42) yield (43) (Helmholtz equation):

(I− β2∆t2 B ∇
′2M

2
)D

′

t+∆t = D
′∗ − β∆t∇

′2(γT ∗ + µP∗) (43)

where B = γτ + µν is a matricial operator L ∗ L (precomputed in routines SUDYN,
SUBMAT and stored in the array SIB).

When M = M (cases LSIDG=.T. or LESIDG=.T.) it is more convenient to rewrite
equation (43) as:

(∇
′−2 − β2∆t2 B M2)D

′

t+∆t = ∇
′−2D

′∗ − β∆t(γT ∗ + µP∗) (44)

which shows a symmetric matricial operator in the left hand side.
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∗ Spectral computations to solve system of equations (40) to (42).
Algorithm works zonal wave number by zonal wave number m (| m | varies between 0 and
the truncation Ns) and performed in the routine SPCSI before all horizontal diffusion
schemes. For a given zonal wave number m:

• After a preliminary memory transfer the right-hand side member of equation (43)
is computed for all total wave numbers n between m and Ns.

• Inversion of Helmholtz equation for the case “reduced divergence" (case LSIDG=.F.
and LESIDG=.F.) and method via a diagonalisation in the eigenmodes space.

– First the diagonalisation of B is used: B = Q
−1

A Q, where A is a diagonal
L ∗ L matrix, the diagonal coefficients al of which are stored in the array
SIVP. Q is a L ∗ L matrix stored in the array SIMI, Q−1 is stored in the
array SIMO. Note that the vertical operators ν, µ, τ , γ, B , Q commute with
the horizontal operator ∇′2.

– Helmholtz equation (43) becomes, for each eigenmode l:

(I− β2∆t2al∇
′2M

2
)QD

′

t+∆t = Q(D
′∗ − β∆t∇

′2(γT ∗ + µP∗)) (45)

– For each eigenmode l and each zonal wave number m: (I− β2∆t2al∇
′2M

2
)

is a diagonal matricial operator (Ns + 1− | m |) ∗ (Ns + 1− | m |): spectral
coefficients of the right-hand side member of (45) are simply divided by the
diagonal coefficients of this matrix. The result is then multiplied by Q.

• Inversion of Helmholtz equation for the case “unreduced divergence" (case LSIDG=.T.
in ARPEGE, LESIDG=.T. in ALADIN): in this case M = M . Inversion of
Helmholtz equation is more complicated than in the case of semi-implicit scheme
with reduced divergence because the left-hand side member of Helmholtz equation
contains values of the divergence for all levels and five total wave numbers (n − 2
to n + 2). Of course M2 is a symmetric pentadiagonal matrix, for a given zonal
wave number m. Pay attention to the fact that M2 does not commute with the
diagonal operator ∇′2.

– First the diagonalisation of B is used: B = Q
−1

A Q, where A is a diagonal
L ∗ L matrix, the diagonal coefficients al of which are stored in the array
SIVP. Q is a L ∗ L matrix stored in the array SIMI, Q−1 is stored in the
array SIMO. Note that the vertical operators ν, µ, τ , γ, B , Q commute with
the horizontal operators ∇′2 and M2.

– Helmholtz equation (43) (resp. (44)) becomes, for each eigenmode l:

(I− β2∆t2al∇
′2M2)QD

′

t+∆t = Q(D
′∗ − β∆t∇

′2(γT ∗ + µP∗)) (46)

resp.:

(∇
′−2 − β2∆t2alM

2)QD
′

t+∆t = Q(∇
′−2D

′∗ − β∆t(γT ∗ + µP∗)) (47)

– For each eigenmode l and each zonal wave number m: (∇′−2−β2∆t2alM
2) is

a symmetric pentadiagonal matricial operator (Ns+1− | m |)∗(Ns+1− | m |).
The factorisation LU of this matrix is computed, where L is a lower triangular
tridiagonal matrix, U is a upper triangular tridiagonal matrix with coefficients
equal to 1 on the main diagonal. All useful coefficients of L, U are computed
in the set-up routine SUHEG and stored in the array SIHEG.

– The right-hand side member of (47) is computed, then multiplied by the
inverse of the symmetric pentadiagonal operator (∇′−2 − β2∆t2M2al) (res-
olution of two tridiagonal triangular systems by routine MXTURS). That
yields QD

′

t+∆t. Multiplying by Q
−1 one obtains D

′

t+∆t.
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– For the zonal wave number m = 0 equation (46) is used rather than (47)
because, for the total wave number n = 0, ∇′2 is equivalent to a multiplication
by 0 and ∇′−2 is equivalent to a division by 0. The only difference is that the
pentadiagonal but non-symmetric operator (I−β2∆t2al∇

′2M2) is factorised
and inverted. All useful coefficients of L, U are computed in the set-up routine
SUHEG and stored in the arrays SIHEG and SIHEG2.

• Once known D
′

t+∆t equation (40) provides log(Πs)t+∆t and equation (42) provides
Tt+∆t. For the case LSIDG=.T. only (resp. LESIDG=.T. in ALADIN), spectral
multiplications by M2 are performed by the product of a symmetric pentadiagonal
matrix of dimensions (Ns+1− | m |)∗ (Ns+1− | m |) (useful coefficients computed
in routine SUSMAP (resp. SUESMAP in ALADIN) and stored in the array
SCGMAP (resp. ESCGMAP in ALADIN)) by a vector containing spectral
coefficients (m,n) for n varying from | m | to Ns.

• Semi-implicit scheme ends by a final memory transfer.

5.2 2D shallow-water model.

∗ Expression of the linear term B:

• Continuity equation (X = Φ):

B = −Φ∗M
2
D

′

(48)

• Divergence equation (X = D
′

):

B = −∇
′2(Φ) (49)

• Vorticity equation (X = ζ
′

):

B = 0 (50)

∗ System to be solved:

Φt+∆t + β∆tM
2
Φ∗D

′

t+∆t = H∗ (51)

D
′

t+∆t + β∆t∇
′2(Φt+∆t) = D

′∗ (52)

H∗, D′∗ correspond to X ∗ defined in equations (17) and are available in spectral arrays
(SPSP, SPDIV) at the beginning of the spectral computations. Equations (51) and (52)
yield (53) (Helmholtz equation):

(1− β2∆t2Φ∗∇
′2M

2
)D

′

t+∆t = D
′∗ − β∆t∇

′2(H∗) (53)

When M =M (case LSIDG=.T.) it is more convenient to rewrite equation (53) as:

(∇
′−2 − β2∆t2Φ∗M2)D

′

t+∆t = ∇
′−2D

′∗ − β∆t(H∗) (54)

which shows a symmetric matricial operator in the left hand side.
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∗ Spectral computations to solve system of equations (51) and (52).
Algorithm works zonal wave number by zonal wave number m (| m | varies between 0 and
the truncation Ns) and performed in the routine SPC2 before all horizontal diffusion
schemes. For a given zonal wave number m:

• After a preliminary memory transfer the right-hand side member of equation (53)
is computed for all total wave numbers n between m and Ns.

• Inversion of Helmholtz equation for the case “reduced divergence" (case LSIDG=.F.):
For each zonal wave number m: (1 − β2∆t2Φ∗∇′2M

2
) is a diagonal matricial op-

erator (Ns +1− | m |) ∗ (Ns +1− | m |). Spectral coefficients of the right-hand side
member of (53) are simply divided by the diagonal coefficients of this matrix.

• Inversion of Helmholtz equation for the case “unreduced divergence" (case LSIDG=.T.):
Inversion of Helmholtz equation is more complicated than in the case of semi-
implicit scheme with reduced divergence because the left-hand side member of
Helmholtz equation contains values of the divergence for all levels and five total
wave numbers (n− 2 to n+ 2).

– For each zonal wave number m: (∇′−2 −β2∆t2M2Φ∗) is a symmetric penta-
diagonal matricial operator (Ns+1− | m |)∗(Ns+1− | m |). The factorisation
LU of this matrix is computed, where L is a lower triangular tridiagonal ma-
trix, U is a upper triangular tridiagonal matrix with coefficients equal to 1 on
the main diagonal. All useful coefficients of L, U are computed in the set-up
routine SUHEG and stored in the array SIHEG.

– The right-hand side member of (54) is multiplied by the inverse of the sym-
metric pentadiagonal operator (∇′−2−β2∆t2Φ∗M2) (resolution of two tridi-
agonal triangular systems by routine MXTURS). That yields D

′

t+∆t.

– For the zonal wave number m = 0 equation (53) is used preferably than (54)
because, for the total wave number n = 0, ∇′2 is equivalent to a multiplication
by 0 and ∇′−2 is equivalent to a division by 0. The only difference is that the
pentadiagonal but non-symmetric operator (1−β2∆t2Φ∗∇′2M2) is factorised
and inverted. All useful coefficients of L, U are computed in the set-up routine
SUHEG and stored in the arrays SIHEG and SIHEG2.

• Once known D
′

t+∆t equation (51) provides Φt+∆t. For the case “unreduced diver-
gence" (case LSIDG=.T.) only, spectral multiplications by M2 are performed by
the product of a symmetric pentadiagonal matrix of dimensions (Ns + 1− | m |
) ∗ (Ns + 1− | m |) (useful coefficients computed in routine SUSMAP and stored
in the array SCGMAP) by a vector containing spectral coefficients (m,n) for n
varying from | m | to Ns.

• Semi-implicit scheme ends by a final memory transfer.

5.3 Plane geometry.

For 3D models, semi-implicit calculations are done in ESPCSI, ESPNHSI, ESPNHSI_GEOGW
instead of SPCSI, SPNHSI and SPNHSI_GEOGW.

Option LSIDG=.T. has an equivalent LESIDG=.T. in the cycle AL37T1 of ALADIN,
coded only for a tilted-rotated Mercator projection.

5.4 Shortcomings of the formulation of the semi-implicit scheme
with “reduced divergence" (LSIDG=.F.) in case of stretch-
ing.

∗ ARPEGE/IFS: In the grid points computations for some equations (for example
temperature and continuity equation in the 3D hydrostatic model), the linear term B
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contains the reduced quantity (M
2
D

′

). This quantity is added to geographical quantities.
That is no problem near the high resolution pole. This reduced quantity becomes very

large near the low resolution pole: if the stretching coefficient is c, M
2

M2 = c4 at the low
resolution pole, which is equal to 33.2 if c = 2.4. Thus the order of magnitude of the semi-
implicit correction tendency becomes too high and physically absurd in the low resolution
zone (gravity waves are no longer treated implicitly). That leads to instabilities in regions
of the low resolution zone with high orography, in adiabatic eulerien runs, or in semi-
Lagrangian runs with time-steps above the limit imposed by the Courant-Friedrich-Levy
condition. In Eulerian runs with physics, the combination of physics and small time-
steps inhibits this instability (at least in the hydrostatic model), but scores are degraded,
especially far from the high resolution pole. In order to avoid this instability, we have
implemented a new formulation of the semi-implicit scheme which allows to avoid mixing
of reduced and geographical quantities in the grid-point computations, and which gives an
implicit treatment of the gravity waves everywhere on the sphere and not only near the
high resolution pole. This formulation is a formulation with unreduced divergence (simply
by replacing the quantity M by the mapping factor M).
Remark: in the deep layer equations, the implicit treatment involves in this case the
quantity M2D

′

and not D. The small residual term D−M2D
′

= (a/r− 1)M2D
′

has an
explicit treatment.

∗ ALADIN: The previous point is not an issue in most applications of ALADIN
where the mapping factor M has small variations in the forecast domain (which is not too
large). It can become an issue for large domains (use of large domains with a tilted-rotated
Mercator projection), and option LESIDG becomes useful in this case.
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6 Inclusion of Coriolis term in the semi-implicit scheme.

Although this term is non linear, it is added to linear terms in the semi-implicit scheme.
Equations are written for a leap-frog scheme (Eulerian scheme of three-time level semi-
Lagrangian scheme). For a two-time level semi-Lagrangian scheme replace ∆t by 0.5∆t. In
ARPEGE/IFS this option is coded for both Eulerian and semi-Lagrangian schemes (3D
model and shallow-water model). This option is available only in unstretched untilted
spherical geometry, in setting LIMPF=.T. in namelist NAMDYN. The reason to use
such option is accuracy for longe range forecasts (but not stability issues: LIMPF=.F. is
as stable as LIMPF=.T. but may lead to sligntly degraded scores for long-range forecasts).

6.1 Semi-implicit scheme including Coriolis term in the 3D
hydrostatic model.

Thin layer equations.

∗ Expression of the linear term B: Equations (37) and (38) become respec-
tively:

• Divergence equation (X = D
′

):

B = −∇
′2(γT + µ log Πs)− 2∇

′

(Ω ∧V) (55)

• Vorticity equation (X = ζ
′

):

B = −2k.[∇
′

∧ (Ω ∧V)] (56)

∗ System to be solved: Equations (40) and (42) are unchanged. Equation (41) is
replaced by the two following equations, for divergence and vorticity.

D
′

t+∆t + β∆t∇
′2(γTt+∆t + µlog(Πs)t+∆t) + β∆t(2∇

′

(Ω ∧V)) = D
′∗ (57)

ζ
′

t+∆t + β∆t(2k.[∇
′

∧ (Ω ∧V)]) = ζ
′∗ (58)

D′∗, ζ∗ correspond to X ∗ defined in equation (17) and are available in spectral arrays
(SPDIV, SPVOR) at the beginning of the spectral computations.

∗ Restriction to not stretched and not tilted model: Inclusion of Coriolis
term im the semi-implicit scheme will be treated only in not stretched and not tilted
geometry for different reasons, including the following considerations:

• In not stretched and not tilted geometry, Coriolis parameter f = 2Ω sin θ writes as a
first degree polynomial of the sinus of computational sphere latitude. This property
leads to invert pentadiagonal matrices in the algorithm which will be described.

• In stretched and not tilted geometry, Coriolis parameter f = 2Ω sin θ writes an ho-
mographical function of the sinus of computational sphere latitude. This property
leads to invert full matrices in the algorithm which will be described (which in our
case is very expensive in memory).

• In stretched and tilted geometry, Coriolis parameter f = 2Ω sin θ depends on the
computational sphere longitude and latitude. This property leads to a coupling
between all spectral coefficients and obliges to solve the semi-implicit system in the
spectral space of geographical sphere, which is very expensive in memory and cost.
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• There is another way to treat implicitly Coriolis term in the semi-Lagrangian
scheme which works as well in the two-time level semi-Lagrangian scheme, replacing
the prognostic variable V by V+2Ω∧ r, where r is the vertical vector from Earth
centre to computational point (r = ak), and keeping the semi-implicit scheme un-
changed. Contrary to inclusion of Coriolis term in the semi-implicit scheme, this
method does not increase difficulty in stretched or tilted geometry.

In not stretched and not tilted geometry, equations (57) and (58) become:

Dt+∆t + β∆t∇2(γTt+∆t + µlog(Πs)t+∆t) + β∆t(2∇(Ω ∧V)) = D∗ (59)

ζt+∆t + β∆t(2k.[∇∧ (Ω ∧V)]) = ζ∗ (60)

∗ Divergence and vorticity in spherical geometry: For a vector Y of
horizontal components Yx and Yy, the divergence and vertical component of vorticity
write as:

∇Y =
1

a cos θ

[
∂Yx

∂λ
+
∂(Yy cos θ)

∂θ

]
(61)

k.(∇∧Y) =
1

a cos θ

[
∂Yy

∂λ
− ∂(Yx cos θ)

∂θ

]
(62)

∗ Helmholtz equation: Using relations (61) and (62) in equations (59) and (60)
lead to the following equations:

Dt+∆t+β∆t∇2(γTt+∆t+µlog(Πs)t+∆t)+β∆t(−2Ω sin θ)ζt+∆t+β∆t
(
2Ω cos θ

a

)
Ut+∆t = D∗(63)

ζt+∆t + β∆t(2Ω sin θ)Dt+∆t + β∆t
(
2Ω cos θ

a

)
Vt+∆t = ζ∗ (64)

The four following expressions are used, for each complex spectral coefficient:

• Relationship between divergence and velocity potential χ:

D = ∇2χ (65)

• Relationship between vorticity and stream function ψ:

ζ = ∇2ψ (66)

• (65) and (66) can be rewritten, for each complex spectral component:

D(m,n) = −n(n+ 1)

a2
χ(m,n) (67)

ζ(m,n) = −n(n+ 1)

a2
ψ(m,n) (68)

• Relationship between U , ψ and χ:

(Ua cos θ)(m,n) = imχ(m,n)+(n−1)e(m,n)ψ(m,n−1)−(n+2)e(m,n+1)ψ(m,n+1)(69)
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• Relationship between V , ψ and χ:

(V a cos θ)(m,n) = imψ(m,n)−(n−1)e(m,n)χ(m,n−1)+(n+2)e(m,n+1)χ(m,n+1)(70)

where e(0,0) = 0 and:

e(m,n) =

√
n2 −m2

4n2 − 1
(71)

Equations (67) to (70) allow to eliminate Ut+∆t and Vt+∆t in equations (63) and (64).

[
1− i 2Ωβ∆tm

n(n+1)

]
D(m,n),t+∆t + β∆t∇2(γT(m,n),t+∆t + µlog(Πs)(m,n),t+∆t)− β∆t(2Ω(sin θ)ζ)(m,n),t+∆t

−β∆t 2Ωe(m,n)

n
ζ(m,n−1),t+∆t + β∆t

2Ωe(m,n+1)

n+1
ζ(m,n+1),t+∆t = D∗

(m,n) (72)

[
1− i 2Ωβ∆tm

n(n+1)

]
ζ(m,n),t+∆t + β∆t(2Ω(sin θ)D)(m,n),t+∆t + β∆t

2Ωe(m,n)

n
D(m,n−1),t+∆t

−β∆t 2Ωe(m,n+1)

n+1
D(m,n+1),t+∆t = ζ∗(m,n) (73)

Multiplication by sin θ is eliminated by using the following relationship valid for any
variable X, in not stretched and not tilted geometry:

[(sin θ)X](m,n) = e(m,n)X(m,n−1) + e(m,n+1)X(m,n+1) (74)

Equations (72) and (73) become:

[
1− i 2Ωβ∆tm

n(n+1)

]
D(m,n),t+∆t + β∆t∇2(γT(m,n),t+∆t + µlog(Πs)(m,n),t+∆t)− β∆t

2Ωe(m,n)(n+1)

n
ζ(m,n−1),t+∆t

−β∆t 2Ωe(m,n+1)n

n+1
ζ(m,n+1),t+∆t = D∗

(m,n) (75)

[
1− i 2Ωβ∆tm

n(n+1)

]
ζ(m,n),t+∆t + β∆t

2Ωe(m,n)(n+1)

n
D(m,n−1),t+∆t + β∆t

2Ωe(m,n+1)n

n+1
D(m,n+1),t+∆t

= ζ∗(m,n) (76)

ζ is eliminated in equation (75) by using (76) in replacing n by n − 1 then by n + 1.
Equation (75) becomes:

[
I− i 2Ωβ∆tm

n(n+1)
+ (2β∆tΩ)2

1−i
2Ωβ∆tm

(n−1)n

e2(m,n)
(n−1)(n+1)

n2 + (2β∆tΩ)2

1−i
2Ωβ∆tm

(n+1)(n+2)

e2(m,n+1)
(n)(n+2)

(n+1)2

]
D(m,n),t+∆t

+ (2β∆tΩ)2

1−i
2Ωβ∆tm

(n−1)n

e(m,n)e(m,n−1)
(n+1)
(n−1)

D(m,n−2),t+∆t +
(2β∆tΩ)2

1−i
2Ωβ∆tm

(n+1)(n+2)

e(m,n+1)e(m,n+2)
n

(n+2)
D(m,n+2),t+∆t

+β∆t∇2(γT(m,n),t+∆t + µlog(Πs)(m,n),t+∆t)

= D∗
(m,n) +

(2β∆tΩ)

1−i
2Ωβ∆tm

(n−1)n

e(m,n)
(n+1)
n

ζ∗(m,n−1) +
(2β∆tΩ)

1−i
2Ωβ∆tm

(n+1)(n+2)

e(m,n+1)
n

(n+1)
ζ∗(m,n+1) (77)
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Tt+∆t and log(Πs)t+∆t are eliminated by using equations (40) and (42). That leads to
Helmholtz equation (78):

[
I− i 2Ωβ∆tm

n(n+1)
+ (2β∆tΩ)2

1−i
2Ωβ∆tm

(n−1)n

e2(m,n)
(n−1)(n+1)

n2 + (2β∆tΩ)2

1−i
2Ωβ∆tm

(n+1)(n+2)

e2(m,n+1)
(n)(n+2)

(n+1)2
− β2∆t2 B ∇2

]
D(m,n),t+∆

+ (2β∆tΩ)2

1−i
2Ωβ∆tm

(n−1)n

e(m,n)e(m,n−1)
(n+1)
(n−1)

D(m,n−2),t+∆t +
(2β∆tΩ)2

1−i
2Ωβ∆tm

(n+1)(n+2)

e(m,n+1)e(m,n+2)
n

(n+2)
D(m,n+2),t+∆t

= D∗
(m,n) − β∆t∇2(γT ∗

(m,n) + µP∗
(m,n))

+ (2β∆tΩ)

1−i
2Ωβ∆tm

(n−1)n

e(m,n)
(n+1)
n

ζ∗(m,n−1) +
(2β∆tΩ)

1−i
2Ωβ∆tm

(n+1)(n+2)

e(m,n+1)
n

(n+1)
ζ∗(m,n+1) (78)

Equation (78) is solved in eigenmodes space. The right-hand side member needs a mul-
tiplication by a tridiagonal complex matrix, for each zonal wave number m. Inversion
of Helmholtz equation is equivalent to invert a pentadiagonal complex matrix (done in
routine SIMPLICO), for each zonal wave number m. All computations are currently (in
cycle 37T1) done in SPCSI. For m = 0 complex operators become real operators.

∗ Determination of other quantities at t + ∆t: Equation (77) is used to
compute ζt+∆t (for each zonal wave number m, multiplication by a complex tridiagonal
matrix). Then equation (40) is used to compute log(Πs)t+∆t and equation (42) is used to
compute Tt+∆t.

Deep layer equations (according to White and Bromley, 1995).

Equations (55) to (58) remain valid. Only the horizontal part of the Coriolis term (−2Ω∧
V) can be included in the semi-implicit scheme. The term (−2Ω∧Wk) remains explicit.
Equations (59) to (78) remain valid, replacing D by (rs/a)D, ζ by (rs/a)ζ, ∇ by (rs/a)∇.
The code of spectral computations is unchanged.

6.2 Semi-implicit scheme including Coriolis term in the 2D
shallow-water model.

Such an algorithm is also coded in the 2D shallow-water model in not stretched and not
tilted geometry.

• Replace (γT + µlog(Πs)) by Φ in equation (55).

• Replace (γTt+∆t + µlog(Πs)t+∆t) by Φt+∆t in equations (57), (59) and (63).

• Replace (γT(m,n),t+∆t + µlog(Πs)(m,n),t+∆t) by Φ(m,n),t+∆t in equations (72), (75)
and (77).

• Replace (γT ∗
(m,n) + µP∗

(m,n)) by H∗
(m,n) in equation (78).

• Once computed D
′

t+∆t equation (51) provides Φt+∆t.

6.3 Conclusion.

The simplest configuration to treat the case LIMPF=.T. is the case where the unknown
is the horizontal divergence in the Helmoltz equation: this is the case in the hydrostatic
model and the shallow-water model, and treatment of implicit Coriolis term is similar in
all these cases, with only one call to SIMPLICO.
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7 Spectral multiplications by polynomial expressions
of the mapping factor.

∗ Expression of mapping factor M in spectral space in ARPEGE.
Let us denote by:

• ac = 0.5(c+ 1
c
)

• bc = 0.5(c− 1
c
)

• e(0,0) = 0

• e(m,n) =

√
n2−m2

4n2−1

Expression of M is:

M = ac + bcξ (79)

where ξ is the sinus of computational sphere latitude. Expression of [MX](m,n) is:

[MX](m,n) = bce(m,n)X(m,n−1) + acX(m,n) + bce(m,n+1)X(m,n+1) (80)

It is easy from (80) to retrieve the coefficients of spectral multiplication by any first degree
polynomial of M . This is equivalent to a multiplication by a tridiagonal symmetric matrix
in spectral space.

∗ Expression of M2 in spectral space in ARPEGE.

[M2X](m,n) = b2ce(m,n)e(m,n−1)X(m,n−2) + 2acbce(m,n)X(m,n−1) + (a2c + b2c(e
2
(m,n) + e2(m,n+1)))X(m,n)

+2acbce(m,n+1)X(m,n+1) + b2ce(m,n+1)e(m,n+2)X(m,n+2) (81)

This is equivalent to a multiplication by a pentadiagonal symmetric matrix in spectral
space.

∗ Expression of M and M2 in spectral space in ALADIN. This formula
is only valid on a tilted-rotated Mercator projection, and it assumes that the reference
latitude of the projection is at the middle of sub-domain C+I.

If we assume that the ALADIN plane coordinates will be not slanted relatively to the
longitudes and latitudes of the Mercator projection, the mapping factor M always depends
only on the y coordinate and never vary along the x coordinate.

M =
1

cos θ
=

1√
1− µ2

= cosh(y/a)

where µ = sin θ, the y coordinate (this is an distance measured on the plane projection)
assumes that y = 0 at the apparent equator, and a is the mean Earth radius. M is not a
low order polynomial function of y so even in this case it needs to be approximated. The
approximation used is, for a Fourier decomposition of M2, to have only two harmonics.
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6

Horizontal diffusion

1 Introduction.

∗ General considerations for ARPEGE/IFS: In the code of ARPEGE/IFS
horizontal diffusion computations are generally spectral computations. There is a main
horizontal diffusion scheme in spectral space. In case of constant resolution, the main
horizontal diffusion scheme is discretised by a purely diagonal operator in spectral space.
The main horizontal diffusion scheme is implicit in order to remain stable even with high
diffusion coefficients and are called after the semi-implicit scheme. Horizontal diffusion is
called after inversion of the semi-implicit scheme and before nudging.

∗ Horizontal diffusion in ALADIN: Horizontal diffusion computations are
still spectral computations. There is a main horizontal diffusion scheme only. For the
main horizontal diffusion scheme, the formulation looks like the unstretched ARPEGE
one. There are specific routines for spectral calculations.

∗ Rayleigh friction: there is a Rayleigh friction in the grid-point space computa-
tions which acts only in upper atmosphere for the U -component of the horizontal wind
(properly coded only for untilted spherical geometry or untilted plane geometry).

∗ Two-time level semi-Lagrangian scheme: equations are written for a
leap-frog scheme. The algorithm remains the same for a two-time level semi-Lagrangian
scheme.

∗ Deep layer equations: For conveniency, equations are written with the geo-
graphical horizontal gradient operator ∇, which is used in the horizontal diffusion scheme
for thin layer equations. For deep layer equations, the operator actually used is

[
r
a
∇
]
,

where r is the actual radius, to simulate a “pseudo-geographical" diffusion, instead of ∇:
this approximation is reasonable and allows to avoid any tricky modification in the hori-
zontal diffusion spectral computations; use of the true geographical gradient ∇ sticks to
the grid-point calculations.
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∗ Distributed memory: some distributed memory features are now introduced in
the code and will be briefly described. For convenience one uses some generic appellations.

• Expression “DM-local" for a quantity means “local to the couple of processors
(proca,procb)": each processor has its own value for the quantity. Expression “DM-
local computations" means that the computations are done independently in each
processor on “DM-local" quantities, leading to results internal to each processor,
which can be different from a processor to another one.

• Expression “DM-global" for a quantity means that it has a unique value available
in all the processors. Expression “DM-global computations" means that the com-
putations are either done in one processor, then the results are dispatched in all
the processors, or the same computations are done in all the processors, leading to
the same results in all the processors.

• In a routine description the mention “For distributed memory computations are
DM-local" means that all calculations done by this routine are DM-local; the men-
tion “For distributed memory computations are DM-global" means that all calcula-
tions done by this routine are DM-global; when no information is provided it means
that a part of calculations are DM-local and the other part is DM-global.

• Expression “main" processor currently refers to the processor number 1: (proca,procb)=(1,1).

2 Formulation of the horizontal diffusion schemes.

2.1 Main horizontal diffusion scheme.

∗ General formulation: The main horizontal diffusion formulation is close to:

∂X

∂t
= −K

′′

XM~∇
′rX (1)

where K
′′

X is a vertically dependent and horizontally constant coefficient. K
′′

X is generally
complex: exp(0.5πir) multiplied by a real positive coefficient. r is the power of the
horizontal diffusion scheme. M is the mapping factor.

In ARPEGE:

K
′′

X = exp(−0.5πir)

[√
Ns(Ns + 1)

a2

]−r

Ω hX g (2)

(a is the mean Earth radius, Ns is the truncation). g is horizontally constant, vertically
dependent. Ω is the angular velocity of the Earth rotation (0.00007292115 s−1). hX
is a constant coefficient for each prognostic variable. There are seven constants, one
for vorticity (hζ), one for divergence (hD), one for temperature (hT ), one for humidity
(hq), one for ozone (hO3), one for the extra GFL variables (hEXT), one for the surface
hydrostatic pressure (hSP ) which is also used for the equivalent height in the 2D model.
There are additional constants for non-hydrostatic variables in the non-hydrostatic model.
For divergence expression of hD matches:

1

ΩhD
=

2πa

Ndlon

(1 + 0.5rnlginc)
2.5

rdxtau
rdampdiv (3)
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rnlginc is the increment from linear to quadratic grid (rnlginc = 0 for a linear grid, 1 for
a quadratic grid); rdxtau is a tuning parameter; Ndlon is the number of grid-points on a
latitude situated near the equator of the computational sphere.

In ALADIN:

K
′′

X = exp(−0.5πir)


(2π)

√
1

L2
x

N2
ms

+
L2

y

N2
s




−r

Ω hX g (4)

(a is the mean Earth radius, Lx and Ly are respectively the zonal and the meridian lengths
of the ALADIN domain, these lengths being taken on a surface situated at a distance a
of the Earth center, Nms is the zonal truncation, Ns is the meridian truncation).

1

ΩhD
= [∆X]gp

(1 + 0.5rnlginc)
2.5

rdxtau
rdampdiv (5)

where:

[∆X]gp =

√
0.5
(
[∆X]2gp,zonal + [∆X]2gp,merid

)

[∆X]gp,zonal and [∆X]gp,merid are respectively the zonal and meridian grid-point mesh-
sizes taken at a location where the mapping factor is equal to 1.

In both ARPEGE and ALADIN, for the other 3D upper air fields:

1

ΩhX
=

rdampX

rdampdiv

1

ΩhD
(6)

which can be rewritten:

(ΩhX) =
rdampdiv

rdampX
(ΩhD) (7)

∗ Modifications brought to this scheme if the SLHD (semi-Lagrangian
horizontal diffusion) interpolations are done in the semi-Lagrangian
scheme: When the advection scheme is a semi-Lagrangian one, it is possible to acti-
vate more diffusive interpolations in the semi-Lagrangian scheme (“SLHD" diffusion), and
in this case the horizontal diffusion scheme must be modified:

• Less diffusion in the above formulation (generally by reducing the value of function
g(l)).

• Adding of a second horizontal diffusion scheme for divergence and vorticity (and
also vertical divergence in the NH model): this scheme has the same formulation
as the previous one, but the following variables are changed:

– hX becomes hhdsX (currently 1
ΩhhdsX

= 1
rdamphds

1
ΩhX

, i.e. (ΩhhdsX) =

rdamphds(ΩhX)).

– K
′′

X becomes KhdsX .

– the power r becomes s (s is generally above r).

The “SLHD" diffusion can now be activated on a subset of prognostic variables and the
above modifications are applied only to this subset of variables.



144 6. Horizontal diffusion

∗ Additional remarks: In the unstretched version of ARPEGE, M = 1. In AL-
ADIN, the horizontal variations of M are generally neglected and M is replaced by a
constant hidden in the coefficients K

′′

X and KhdsX . So the ALADIN diffusion looks like
the unstretched ARPEGE one. This approximation may become not very appropriate for
large domains (used particularly with the rotated-tilted Mercator projection).

2.2 Rayleigh friction.

The following scheme is applied on the U -component of the momentum equation (i.e. the
zonal component on the Gaussian grid).

(
∂U

∂t

)
fric

= −KfricU (8)

−KfricU is a Rayleigh friction which is activated if LRFRIC=.T. in NAMCT0. Kfric
is a vertical dependent coefficient which is non-zero only for a standard pressure lower
than a threshold stored in variable RRFPLM.

2.3 Nudging.

This scheme called after horizontal diffusion is a linear relaxation of prognostic variables
towards pre-defined fields and is not properly saying a diffusion scheme, so it will not be
described in detail in this documentation. Pre-defined fields (for example climatological
fields) can be read on a file. Nudging coefficients can be different for each variable. Nudging
coefficients are not vertically dependent, except for the upper atmosphere where they can
be set to zero. Nudging is applied to all variables present in spectral space. There is also
nudging for grid-point variables in grid-point space, such surface temperature, surface
moisture, deep moisture and snow depth. Nudging is controlled by LNUDG in namelist
NAMNUD.

3 Discretisation of the horizontal diffusion schemes.

3.1 Main horizontal diffusion scheme.

Main horizontal diffusion scheme in unstretched ARPEGE/IFS.

∗ Discretisation: Calculations are done in spectral space. The discretised equation
which is coded is:

X+
(m,n) −X−

(m,n) = −Ω hX g(l)f(n,N, n0(X), x0, r)DtX
+
(m,n) (9)

where the superscripts + and − indicate respectively variables after horizontal diffusion
and variables before horizontal diffusion, Dt is the time step in the first integration step
and twice the time step later (leap frog scheme), n is the total wave number (between 0
and the truncation Ns), m is the zonal wave number (between −n and n in a triangular
truncation), r is the order of the horizontal diffusion operator, N is a reference wave
number, n0(X) is a threshold depending on variable X (generally zero except for vorticity
where it is 2 ), x0 is a threshold between 0 and 1. ∇′

is the first order horizontal reduced
derivative operator (i.e in the grid point space, ∇ = M∇′

, where M is the mapping
factor). This horizontal diffusion scheme is an implicit horizontal diffusion scheme (in the
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right-hand side member of the equation there is X+
(m,n) and not X−

(m,n)). Equation (9)
becomes (10):

X+
(m,n) =

1

1 +KX(n)Dt
X−

(m,n) (10)

where:

KX(n) = Ω hX g(l)f(n,Ns, n0(X), x0, r) (11)

Expression of f(n,N, n0(X), x0, r) is currently:

f(n,N, n0(X), x0, r) = max


0.,min


1.,




(
max(0,n(n+1)−n0)
max(0,N(N+1)−n0)

) 1
2 − x0

1− x0




r



(12)

An exact discretisation of equation (1) would give:

f(n,N, n0(X), x0, r) = f(n,Ns, 0, 0, r) (13)

One can notice that this discretisation is equivalent to a purely diagonal operator in
spectral space.

∗ Vertical dependency of g: g(l) only depends on the altitude. For the layer
number l, expression of g(l) is:

g(l) = min

(
y0

Πref
ΠST (l)

,
1

y3

)
(14)

where ΠST (l) is the standard atmosphere pressure for the layer number l, Πref is a refer-
ence pressure (sea level pressure for the standard atmosphere: 1013.25 hPa). y0 is between
0 and 1: g(l) = 1 if ΠST (l)/Πref is above y0 and g(l) is above 1 if ΠST (l)/Πref is below
y0. y3 is between 0 and y0, in practical it is significantly lower than y0 and it is used
to avoid too much diffusion in the high stratosphere and in the mesosphere. In the 2D
model, g(l) can only take one value equal to 1. Definition of g(l) is different in ECMWF
configuration (LECMWF=.T.).

Main horizontal diffusion scheme in ALADIN.

Compared to ARPEGE, the main differences are:

• KX also depends on the zonal wavenumber m.

• Function f also depends on m and on the zonal truncation Nms, and has a different
expression.

• n0 is replaced by zero in the code (for conveniency one will let n0 in the following
formulae).

• Equation (9) becomes:

X+
(m,n) −X−

(m,n) = −Ω hX g(l)f(m,n,Nm, N, n0(X), x0, r)DtX
+
(m,n) (15)

where Nm is a reference zonal wavenumber.
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• Equation (10) becomes:

X+
(m,n) =

1

1 +KX(m,n)Dt
X−

(m,n) (16)

• Equation (11) becomes:

KX(m,n) = Ω hX g(l)f(m,n,Nms, Ns, n0(X), x0, r) (17)

• Expression of f(m,n,Nm, N, n0(X), x0, r) is currently:

f(m,n,Nm, N, n0(X), x0, r) = max


0.,min


1.,




(
n2

N2
s
+ m2

N2
ms

) 1
2 − x0

1− x0




r



(18)

• An exact discretisation of equation (1) would give:

f(m,n,Nm, N, n0(X), x0, r) = f(m,n,Nms, Ns, 0, 0, r) (19)

Main horizontal diffusion scheme in stretched ARPEGE/IFS.

∗ Expression of mapping factor in spectral space. Let us denote by:

• ac = 0.5
(
c+ 1

c

)

• bc = 0.5
(
c− 1

c

)

• e(0,0) = 0

• e(m,n) =

√
n2−m2

4n2−1

Expression of M is:

M = ac + bcµ (20)

where µ is the sinus of computational sphere latitude. Expression of [MX](m,n) is:

[MX](m,n) = bce(m,n)X(m,n−1) + acX(m,n) + bce(m,n+1)X(m,n+1) (21)

A multiplication by M in spectral space is equivalent to a multiplication by a symmetric
tridiagonal matrix.

∗ Discretisation: Calculations are done in spectral space. The discretised equation
which is coded is:

X−

(m,n) =

+bce(m,n)Ω hX g(l)Dtf(n− 1, N, n0(X), x0, r)X
+
(m,n−1)

+(1 + acΩ hX g(l)Dtf(n,N, n0(X), x0, r))X
+
(m,n)

+bce(m,n+1)Ω hX g(l)Dtf(n+ 1, N, n0(X), x0, r)X
+
(m,n+1) (22)

Equation (22) is equivalent to invert a tridiagonal matrix for each zonal wave number
m. The computation of this matrix and a decomposition into a product of two triangular
bidiagonal matrixes are performed in the set-up routine SUHDU. At each time step these
two triangular bidiagonal matrixes are inverted in order to compute the X+

(m,n)
.
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3.2 Modification of the horizontal diffusion scheme if “SLHD"
interpolations are done in the semi-Lagrangian scheme.

∗ Modified expression of g(l): Expression of g(l) is now modified; new expression
of g(l) is:

g(l) = min

(
y0

Πref
ΠST (l)

,
1

y3

)
− sdred (23)

∗ Unstretched ARPEGE/IFS: A double diffusion is applied on vorticity and
divergence. It writes:

X+
(m,n) =

[
1

1 +KhdsX(n)Dt

][
1

1 +KX(n)Dt

]
X−

(m,n) (24)

where:

KhdsX(n) = Ω hhdsX ghds(l)f(n,Ns, n0(X), x0, s) (25)

∗ ALADIN: A double diffusion is applied on vorticity and divergence. It writes:

X+
(m,n) =

[
1

1 +KhdsX(m,n)Dt

][
1

1 +KX(m,n)Dt

]
X−

(m,n) (26)

where:

KhdsX(m,n) = Ω hhdsX ghds(l)f(m,n,Nms, Ns, n0(X), x0, s) (27)

∗ Stretched ARPEGE/IFS: A double diffusion is applied on vorticity and di-
vergence. It writes:

X−

(m,n) =

+bce(m,n)Ω hX g(l)Dtf(n− 1, N, n0(X), x0, r)X
++
(m,n−1)

+(1 + acΩ hX g(l)Dtf(n,N, n0(X), x0, r))X
++
(m,n)

+bce(m,n+1)Ω hX g(l)Dtf(n+ 1, N, n0(X), x0, r)X
++
(m,n+1) (28)

then:

X++
(m,n) =

+bce(m,n)Ω hhdsX ghds(l)Dtf(n− 1, N, n0(X), x0, s)X
+
(m,n−1)

+(1 + acΩ hhdsX ghds(l)Dtf(n,N, n0(X), x0, s))X
+
(m,n)

+bce(m,n+1)Ω hhdsX ghds(l)Dtf(n+ 1, N, n0(X), x0, s)X
+
(m,n+1) (29)

This discretisation requires to invert two tridiagonal symmetric matrices in spectral space.
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∗ Expression of ghds(l): Expression of ghds(l) is:

ghds(l) = min

(
yS0

Πref
ΠST (l)

,
1

y3

)
(30)

3.3 Particular use of a second reference truncation N2 for
standard pressure levels ΠST (l) below y0 ∗ Πref .

In ARPEGE, it is possible in the code to modify g(l) in order to simulate a replacing
of f(n,Ns, n0(X), x0, r) by f(n,N2, n0(X), x0, r), where N2 < Ns, for standard pressures
ΠST (l) < y1 ∗ Πref , where y1 < y0. In this case g(l) also depends on n for standard
pressures below y0 ∗Πref .
If ΠST (l)/Πref is below y1 (y3 is assumed to be lower than y1):

g(l, n) = min

(
y0

Πref
ΠST (l)

,
1

y3

)
f(n,N2, n0(X), x0, r)

f(n,Ns, n0(X), x0, r)
(31)

If ΠST (l)/Πref is over y1 and below y0:

g(l, n) =
y0 ∗Πref − b(n)

ΠST (l)− b(n)
(32)

where:

b(n) =
(y0 ∗Πref )(y1 ∗Πref )(f(n,N2, n0(X), x0, r)− f(n,Ns, n0(X), x0, r))

(y0 ∗Πref )f(n,N2, n0(X), x0, r)− (y1 ∗Πref )f(n,Ns, n0(X), x0, r)
(33)

One can check that (32) and (33) yield g(l, n) = 1 for ΠST = y0 ∗Πref and that (31) and
(32) are continuous for ΠST = y1∗Πref . When taking N2 = Ns, one retrieves formula (14).
Choice of N2 < Ns is useful in climate modelisation.

The same type of modification can be extended to ghds.

This option is not coded in ALADIN.

3.4 Application of diffusion to each variable.

Application to GMV variables and to GFL variables in 3D models.

For GMV variables, horizontal diffusion is applied to:

• “reduced" vorticity ζ
′

with n0(ζ) = 2 at METEO-FRANCE, 0 at ECMWF.

• “reduced" divergence D
′

with n0(D) = 0.
• for temperature, a variable which looks like T − α log(Πs) (see part 3.4), with
n0(T ) = 0.

• log(Πs) should not be diffused (even if some diffusion code is implemented for this
variable).

For GFL variables, horizontal diffusion is applied to:

• specific humidity q if spectral one, with n0(q) = 0.
• ozone O3 if spectral one, with n0(O3) = 0.
• extra GFL variables if spectral ones, with n0 = 0.
• For the other advectable GFL variables and for the non-advectable GFL variables,

no diffusion is currently coded.
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Application to temperature.

Diffusion has to be done on a variable less sensitive to the orography than T , so one chooses
a variable looking like T−α log(Πs) with a “good" formulation of α. T−α log(Πs) is diffused
instead of T , where α is a coefficient depending on the altitude and using parameters
related to standard atmosphere. Let us denote by TsST the surface temperature in a
standard atmosphere (288.15 K), R the air constant, g the acceleration due to gravity,[
dT
dz

]
ST

the tropospheric temperature vertical gradient in a standard atmosphere (-0.0065
K/m), TtST the tropopause temperature in a standard atmosphere (217.15 K), and Πref
a reference temperature equal to 1013.25 hPa. If:

(TsST )(Π/Πref )
(R/g)[ dTdz ]ST > (TtST )

the expression of αl for the layer number l is:

αl = −Bl(R/g)
[
dT

dz

]
ST

(TsST )(Π/Πref )
−((R/g)[ dTdz ]ST

+1) (34)

where Bl is used in the definition of pressure on layers and interlayers (hybrid vertical
coordinate). In the other cases:

αl = 0 (35)

Temperature horizontal diffusion writes as:

(T+
(m,n) − α log(Πs)

−

(m,n)) =
1

1 +KT (n)Dt
(T−

(m,n) − α log(Πs)
−

(m,n)) (36)

Equation (36) yields (37):

T+
(m,n) = (T−

(m,n) +KT (n)Dtα log(Πs)
−

(m,n))/(1 +KT (n)Dt) (37)

For temperature n0(T ) = 0.

Application to GMV variables in 2D models.

Horizontal diffusion is performed for vorticity, divergence and equivalent height.

3.5 Other spectral calculations.

∗ Numerical horizontal diffusion for post-processed fields by FULL-
POS. See documentation (IDFPOS) about FULL-POS. This diffusion is done in rou-
tine SPOS.

∗ Rayleigh friction (ARPEGE/IFS only). The following scheme is discre-
tised in grid-point space for the U -component of the momentum equation (i.e. the zonal
component on the Gaussian grid). In equation (8) −KfricU is a Rayleigh friction which
is activated if LRFRIC=.T. in NAMCT0. Kfric is a vertical dependent coefficient
which is non-zero only for a standard pressure lower than Πrfric. Kfric is computed in
SURAYFRIC according the following formula for a layer l of standard pressure ΠST (l)
lower than Πrfric:

Kfric(l) =
1− 1

7.7
tanh (Rfz1 − 7 log(100000/ΠST (l)))

3 ∗ 86400 (38)

Rfz1 is stored in variable RRFZ1 in YOMDYN. Kfric is stored in variable RKRF
in YOMDYN. This scheme has never been used at METEO-FRANCE, but only at
ECMWF. It is suited for models having layers in the high stratosphere, with an untilted
geometry (i.e. NSTTYP=1).
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Radiative fluxes

This chapter describes the salient features concerning the radiation scheme, used in NWP
as well as in ARPEGE-CLIMAT. The present chapter is based on the IFS Documentation-
Cy37r2. The detailed original ECMWF scientific documentation is available online at
http://www.ecmwf.int/sites/default/files/elibrary/2012/9239-part-iv-physical-processes.pdf.
The package calculates the radiative fluxes taking into account absorption-emission of long-
wave radiation and reflection, scattering and absorption of solar radiation by the earth’s
atmosphere and surfaces. The longwave radiation scheme is based on that of the ECMWF
model, the Rapid Radiation Transfer Model (RRTM). The shortwave part of the scheme,
originally developed by Fouquart and Bonnel (1980), solves the radiation transfer equation
and integrates the fluxes over the whole shortwave spectrum between 0.2 and 4 mm. Note
that, since 2007, a new approach to the inclusion of the cloud effects on radiation fields
(the Monte-Carlo Independent Column Approximation, McICA) has been introduced in
the ECMWF radiation schemes , but not used yet in the ARPEGE NWP (where tests
have been done) and Climate models. The radiative heating rate is computed as the
divergence of net radiation fluxes F so that

(∂T
∂t

)rad = − g

cp

∂F

∂p
(1)

where F is a net flux: i.e. F = F↑ + F↓ sum of the upward F↑ and downward F↓ fluxes,
and a total flux: i.e. F = FLW +FSW sum of the solar or shortwave FSW and atmospheric
or longwave FLW fluxes and cp is the specific heat at constant pressure of moist air.

Sections 1 and 2 describe the computation of the shortwave and longwave radiative fluxes
respectively. A description of the inputs, in particular the climatologically defined quanti-
ties of radiative importance is given in Section 3. In the CMIP6 version, the full radiation
scheme is called every hour (corresponding to NRADFR=-1). There is no modification
of the ECMWF code done in the ARPEGE code, except the choices made for optical
parameters and overlap hypothesis. Note also that, since 2007, a new approach to the
inclusion of the cloud effects on radiation fields (the Monte-Carlo Independent Column
Approximation, McICA approximation) has been introduced in the ECMWF radiation
schemes, but is not used in the ARPEGE NWP and Climate current versions.

1 Shortwave radiation

1.1 First glance

The rate of atmospheric warming by absorption and scattering of shortwave radiation is:

http://www.ecmwf.int/sites/default/files/elibrary/2012/9239-part-iv-physical-processes.pdf
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∂T

∂t
=

g

cp

∂FSW
∂p

(2)

where FSW is the net total shortwave flux, expressed in W m−2 and positive when down-
ward.

F =

∫ ∞

0

dν

∫ 2π

0

dφ

∫ +1

−1

µLν(δ, µ, φ) dµ dφ (3)

Lν is the diffuse radiance at wavenumber ν, in a direction given by φ, the azimuth angle
and ϑ the zenith angle such as µ = cosϑ. In (3), we assume a plane parallel atmosphere
with the optical depth δ, as a convenient vertical coordinate when the energy source is
outside the medium

δ(p) =

∫ 0

p

βν(p) dp (4)

where βextν (p) is the extinction coefficient equal to the sum of the scattering coefficient βscaν
of the aerosol and cloud particle absorption coefficient βabsν and of the purely molecular
absorption coefficient kν . The diffuse radiance Lν is governed by the radiation transfer
equation

µ
dLν(δ, µ, φ)

dδ
= Lν(δ, µ, φ)−

ων(δ)

4
Pν(δ, µ, φ, µ0, φ0)E

0
νe

− δ
µ0 (5)

− ων(δ)

4

∫ 2π

0

∫ +1

−1

Pν(δ, µ, φ, µ
′, φ′)Lν(δ, µ

′, φ′) dµ′ dφ′. (6)

E0
ν is the incident solar irradiance in the direction µ0 = cosϑ0, ων is the single scattering

albedo (= βscaν /kν) and Pν(δ, µ, φ, µ′, φ′) is the scattering phase function which defines the
probability that radiation coming from direction (µ′, φ′) is scattered in direction (µ, φ).
The shortwave part of the scheme, originally developed by Fouquart and Bonnel (1980 ),
solves the radiation transfer equation and integrates the fluxes over the whole shortwave
spectrum between 0.2 and 4 µm. Upward and downward fluxes are obtained from the
reflectances and transmittances of the layers, and the photon-path-distribution method
allows to separate the parametrization of the scattering processes from that of the molec-
ular absorption.

1.2 Spectral integration

Solar radiation is attenuated by absorbing gases, mainly water vapor, uniformly mixed
gases (oxygen, carbon dioxide, methane, nitrous oxide) and ozone, and scattered by
molecules (Rayleigh scattering), aerosols and cloud particles. Since scattering and molec-
ular absorption occur simultaneously, the exact amount of absorber along the photon
path length is unknown, and band models of the transmission function cannot be used di-
rectly as in the longwave radiation transfer. The approach of the photon path distribution
method is to calculate the probability p(U) dU that a photon contributing to the flux Fc
in the conservative case (i.e. no absorption, ων = 1, kν = 0) has encountered an absorber
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amount between U and U + dU . With this distribution, the radiative flux at wavenumber
ν is related to Fc by

Fν = Fc

∫ ∞

0

p(U) exp(−kνU) dU (7)

and the flux averaged over the spectral interval ∆ν can then be calculated with the help
of any band model of the transmission function t∆ν

F =
1

∆ν

∫

∆ν

Fν dν = Fc

∫ ∞

0

p(U) t∆ν(U) dν. (8)

To find the distribution function p(U), the scattering problem is solved first, by any
method, for a set of arbitrarily fixed absorption coefficients kl, thus giving a set of sim-
ulated fluxes Fkl . An inverse Laplace transform is then performed on (7) to get p(U)
(Fouquart 1974 ). The main advantage of the method is that the actual distribution p(U)
is smooth enough that (7) gives accurate results even if p(U) itself is not known accurately.
In fact, p(U) needs not be calculated explicitly as the spectrally integrated fluxes are, in
the two limiting cases of weak and strong absorption:

F = Fc t∆ν(< U >) where < U >=

∫ ∞

0

p(U)U dU (9)

F = Fc t∆ν(< U
1
2 >) where < U

1
2 >=

∫ ∞

0

p(U)U
1
2 dU (10)

respectively. The atmospheric absorption in the water vapor bands is generally strong
and the scheme determines an effective absorber amount Ue between < U > and < U

1
2 >

derived from

Ue =
1

ke
ln(

Fke
Fc

) (11)

where ke is an absorption coefficient chosen to approximate the spectrally averaged trans-
mission of the clear-sky atmosphere:

ke = (
Utot
µ0

)−1 ln(t∆ν
Utot
µ0

) (12)

with Utot the total amount of absorber in a vertical column and µ0 = cosϑ0. Once the
effective absorber amounts of H2O and uniformly mixed gases are found, the transmission
functions are computed using Padé approximants:
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t∆ν(U) =

N∑
i=0

aiU
i−1

N∑
j=0

bjU j−1

. (13)

Absorption by ozone is also taken into account, but since ozone is located at low pressure
levels for which molecular scattering is small and Mie scattering is negligible, interactions
between scattering processes and ozone absorption are neglected. Transmission through
ozone is computed using (13) where the amount of ozone UO3 is:

UdO3
=M

∫ 0

p

dUO3

for the downward transmission of the direct solar beam, and:

UuO3
= r

∫ p

ps

dUO3 + UdO3
(ps)

for the upward transmission of the diffuse radiation with r = 1.66 the diffusivity factor
and M , the magnification factor (Rodgers 1967 ) used instead of µ0 to account for the
sphericity of the atmosphere at very small solar elevations:

M =
35√
µ2
0 + 1

. (14)

To perform the spectral integration, it is convenient to discretize the solar spectrum into
subintervals in which the surface reflectance, molecular absorption characteristics, and
cloud optical properties can be considered as constants. One of the main causes for
such a spectral variation is the sharp increase in the reflectivity of the vegetation in the
near-infrared. Also, water vapour does not absorb below 0.69 µm nor do liquid water
clouds. Till June 2000, the ECMWF shortwave scheme considered only two spectral
intervals, one for the visible (0.2/0.69 µm), one for the near-infrared (0.69/4.00 µm) parts
of the solar spectrum. From June 2000 to April 2002, the near-infrared interval was sub-
divided into three intervals (0.69/1.19/2.38/4.00 µm) to account better for the spectral
variations of the cloud optical properties. Till April 2002, all the molecular absorption
coefficients (for O3, H2O, uniformly mixed gases) were derived from statistical models of
the transmission function using spectroscopic parameters derived from various versions
of the HITRAN database (Rothman et al.,1987,1992 ). In April 2002, following the
recomputation of all the molecular absorption coefficients from an updated version of the
shortwave lineby- line model of Dubuisson et al. (1996) using spectroscopic data from
HAWKS (2000, http://www.hitran.com) the ultraviolet and visible part of the spectrum
are now considered in three spectral intervals (0.20/0.25/0.69 µm) making the scheme
having a total of six spectral intervals over which the aerosol and cloud optical properties
are also defined. The cut-off at 0.69 µm allows the scheme to be more computational
efficient, in as much as the interactions between gaseous absorption (by water vapour and
uniformly mixed gases) and scattering processes are accounted for only in the near-infrared
interval(s).

http://www.hitran.com
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1.3 Vertical integration

Considering an atmosphere where a fraction Ctot (as seen from the surface or the top of
the atmosphere) is covered by clouds (the fraction Ctot depends on which cloud overlap
assumption is assumed for the calculations), the final fluxes are given as

F↓ = Ctot F
↓

cloudy + (1− Ctot)F
↓

clear (15)

with a similar expression holding for the upward flux. Contrarily to the scheme of Geleyn
and Hollingsworth (1979 ), the fluxes are not obtained through the solution of a system
of linear equations in a matrix form. Rather, assuming an atmosphere divided into N
homogeneous layers, the upward and downward fluxes at a given interface j are given by:

F↓(j) = F0

N∏

k=j

Tb(k), (16)

F↑(j) = F↓(j)Rt(j − 1), (17)

where Rt(j) and Tb(j) are the reflectance at the top and the transmittance at the bottom
of the jth layer. Computations of Rt’s start at the surface and work upward, whereas
those of Tb’s start at the top of the atmosphere and work downward. Rt and Tb account
for the presence of cloud in the layer:

Rt = Cj Rcdy + (1− Cj)Rclr, (18)
Tb = Cj Tcdy + (1− Cj)Tclr. (19)

The subscripts clr and cdy respectively refer to the clear-sky and cloudy fractions of the
layer with Cj the cloud fraction of the layer j.

Cloudy fraction of the layers

Rtcdy and Tbcdy are the reflectance at the top and transmittance at the bottom of the
cloudy fraction of the layer calculated with the Delta-Eddington approximation. Given
δc, δa and δg, the optical thicknesses for the cloud and the aerosol, and the molecular
absorption of the gases, gc and ga the cloud and aerosol asymmetry factors, Rtcdy and
Tbcdy are calculated as functions of:

• the total optical thickness of the layer δ∗:

δ∗ = δc + δa + δg

• the total single scattering albedo:

ω∗ =
δc + δa

δc + δa + δg
(20)
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• the total asymmetry factor:

g∗ =
δc

δc + δa
gc +

δa
δc + δa

ga (21)

of the reflectance R_ of the underlying medium (surface or layers below the jth interface)
and of the effective solar zenith angle µe(j) which accounts for the decrease of the direct
solar beam and the corresponding increase of the diffuse part of the downward radiation
by the upper scattering layers.

The effective solar zenith angle µe(j) is equal to:

µe(j) =

[
(1− Ceffcld (j))

µ
+ r Ceffcld (j)

]−1

, (22)

with Ceffcld (j) the effective total cloudiness over level j and r the diffusivity factor.

Ceffcld (j) = 1−
N∏

i=j+1

(1− Ccld(i)E(i))

and

E(i) = 1− exp

[
− (1− ωc(i)gc(i)

2)δc(i)

µ

]
(23)

where δc(i), ωc(i) and gc(i) are the optical thickness, single scattering albedo and asym-
metry factor of the cloud in the ith layer.

The scheme follows the Eddington approximation, first proposed by Shettle and Weiman
(1970), then modified by Joseph et al. (1976) to account more accurately for the large
fraction of radiation directly transmitted in the forward scattering peak in case of highly
asymmetric phase functions. Eddington’s approximation assumes that, in a scattering
medium of optical thickness δ∗, of single scattering albedo ω, and of asymmetry factor g,
the radiance L entering (5) can be written as:

L(δ, µ) = L0(δ) + µL1(δ). (24)

In that case, when the phase function is expanded as a series of associated Legendre
functions, all terms of order greater than one vanish when (5) is integrated over µ and φ.
The phase function is therefore given by

P (θ) = 1 + β1(θ) cos θ,

where θ is the angle between incident and scattered radiances. The integral in (5) thus
becomes

∫ 2π

0

∫ +1

−1

P (µ, φ, µ′, φ′)L(µ′, φ′) dµ′ dφ′ = 4π (L0 + πL1) (25)
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where g, the asymmetry factor identifies as

g =
β1
3

=
1

2

∫ +1

−1

P (θ) cos θ d(cos θ).

Using (25) in (5) after integrating over µ and dividing by 2π, we get

µ
d(L0 + µL1)

dδ
= −(L0 +µL1)+ω (L0 + gµL1)+

1

4
ω F0 exp(

−δ
µ0

) (1+3gµ0 µ).(26)

where ω is the single scattering albedo.

We obtain a pair of equations for L0 and L1 by integrating (26) over µ:

d(L0)

dδ
= −3(1− ω)L0 +

3

4
ω F0 exp(

−δ
µ0

), (27)

d(L1)

dδ
= −(1− ωg)L1 +

3

4
ω g µ0 F0 exp(

−δ
µ0

). (28)

For the cloudy layer assumed non-conservative (ω < 1), the solutions to (27) and (28) are,
in the range 0 ≤ δ ≤ δ∗:

L0(δ) = C1 exp(−kδ) + C2 exp(+kδ)− α exp(
−δ
µ0

), (29)

L1(δ) = p(C1 exp(−kδ)− C2 exp(+kδ))− β exp(
−δ
µ0

), (30)

where

k =
[
3 (1− ω) (1− ωg)

] 1
2

p =
[
3 (1− ω)/(1− ωg)

] 1
2

α = 3ω F0 µ0

[
1 + 3g (1− ω)

]

4 (1− k2µ2
0)

β = 3ω F0 µ0

[
1 + 3 g (1− ω)µ2

0

]

4 (1− k2µ2
0)

.

The two boundary conditions allow to solve the system for C1 and C2. First, the downward
directed diffuse flux at the top of the layer is zero
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F↓(0) =
[
L0(0) +

2

3
L1(0)

]
= 0,

which translates into

(1 +
2p

3
)C1 + (1− 2p

3
)C2 = α+

2β

3
. (31)

For the second condition, one assumes that the upward directed flux at the bottom of the
layer is equal to the product of the downward directed diffuse and direct fluxes by the
corresponding diffuse and direct reflectances (Rd and R_, respectively) of the underlying
medium

F↑(δ∗) =
[
L0(δ

∗)− 2

3
L1(δ

∗)
]
= R_

[
L0(δ

∗) +
2

3
L1(δ

∗)
]
+Rd µ0 F0 exp(

−δ∗
µ0

),

which translates into

(1−R_ − 2p

3
(1 +R_))C1 exp(−k δ∗) + (1−R_ +

2p

3
(1 +R_))C2 exp(+k δ∗)(32)

= ((1−R_)α− 2

3
(1 +R_)β +Rd µ0 F0) exp(−δ

∗

µ0
) .(33)

In the Delta-Eddington approximation, the phase function is approximated by a Dirac
delta function (forward scatter peak) and a two-term expansion of the phase function

P (θ) = 2f (1− cos θ) + (1− f) (1 + 3g′ cos θ),

where f is the fractional scattering into the forward peak and g′ the asymmetry factor of
the truncated phase function. As shown by Joseph et al. (1976), these parameters are:

f = g2 (34)

g′ =
g

1 + g
. (35)

The solution of the Eddington’s equations remains the same provided that the total optical
thickness, single scattering albedo and asymmetry factor entering (26)-(32) take their
transformed values:

δ
′

= (1 + ωf) δ∗, (36)

ω
′

=
(1− f)ω

1− ωf
. (37)

Practically, the optical thickness, single scattering albedo, asymmetry factor, and solar
zenith angle entering (26)-(31) are δ∗, ω∗, g∗ and ue defined in (21) and (22).
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Clear-sky fraction of the layers

In the clear-sky fraction of the layers, the shortwave scheme accounts for scattering and
absorption by molecules and aerosols. The following calculations are practically done
twice, once for the clear-sky fraction (1−Ctotcld) of the atmospheric column µ with equal to
µ0, simply modified for the effect of Rayleigh and aerosol scattering, the second time for
the clear-sky fraction of each individual layer within the fraction Ctotcld of the atmospheric
column containing clouds, with µ equal to µe.

As the optical thickness for both Rayleigh and aerosol scattering is small, Rclr(j − 1)
and Tclr(j) the reflectance at the top and transmittance at the bottom of the jth layer
can be calculated using respectively a first and a second-order expansion of the analytical
solutions of the two-stream equations similar to that of Coakley and Chylek (1975). For
Rayleigh scattering, the optical thickness, single scattering albedo and asymmetry factor
are respectively δR, ωR = 1 and gR = 0, so that

RR =
δR

2µ+ δR
, (38)

TR =
2µ

2µ+ δR
. (39)

The optical thickness δR of an atmospheric layer is simply:

δR = δ∗R
(p(j)− p(j − 1))

psurf
,

where δ∗R is the Rayleigh optical thickness of the whole atmosphere parameterized as a
function of solar zenith angle (Deschamps et al. 1983):

δ∗R =

5∑

i=0

ai µ
i−1
0 .

For aerosol scattering and absorption, the optical thickness, single scattering albedo and
asymmetry factor are respectively δa, ωa (with 1− ωa ≪ 1) and ga so that:

den = 1 + (1− ωa + back(µe)ωa)
δa
µe

+ (1− ωa) (1− ωa + 2 back(µe)ωa)
δa

2

µe2

R(µe) =
back(µe)ωa δa/µe

den
(40)

T (µe) =
1

den

where back(µe) = (2− 3µega)/4 is the backscattering factor.
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Practically, Rclr and Tclr are computed using (40) and the combined effect of aerosol and
Rayleigh scattering comes from using modified parameters corresponding to the addition
of the two scatters with provision for the highly asymmetric aerosol phase function through
a Delta-Eddington approximation of the forward scattering peak (as in (34)-(36)):

δ+ = δR + δa(1− ωag
2
a)

g+ =
ga

1 + ga

δa
(δR + δa)

ω+ =
δR

δR + δa
ωR +

δa
δR + δa

ωa(1− g2a)

1− ωag2a

As for their cloudy counterparts, Rclr and Tclr must account for the multiple reflections
due to the layers underneath:

Rclr = R(µe) +
T (µe)

1−R∗R_
R_, (41)

Tclr =
T (µe)

(1−R∗R_)
, (42)

with R∗ = R(1/r), T ∗ = T (1/r), R_ = Rt(j − 1) is the reflectance of the underlying
medium and r is the diffusivity factor.

Since interactions between molecular absorption and Rayleigh and aerosol scattering are
negligible, the radiative fluxes in a clear-sky atmosphere are simply those calculated from
(16) and (41) attenuated by the gaseous transmissions (13).

1.4 Multiple reflections between layers

To deal properly with the multiple reflections between the surface and the cloud layers,
it should be necessary to separate the contribution of each individual reflecting surface to
the layer reflectances and transmittances in as much as each such surface gives rise to a
particular distribution of absorber amount. In case of an atmosphere including N cloud
layers, the reflected light above the highest cloud consists of photons directly reflected
by the highest cloud without interaction with the underlying atmosphere and of photons
that have passed through this cloud layer and undergone at least one reflection on the
underlying atmosphere. In fact, (8) should be written

F =

N∑

l=0

Fcl

∫ ∞

0

pl(U) t∆ν(U) dν, (43)

where Fcl and pl(U) are the conservative fluxes and the distributions of absorber amount
corresponding to the different reflecting surfaces.
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Fouquart and Bonnel (1980) have shown that a very good approximation to this prob-
lem is obtained by evaluating the reflectance and transmittance of each layer (using (32)
and (41)), assuming successively a non-reflecting underlying medium (R_ = 0), then a
reflecting underlying medium (R_ 6= 0). First calculations provide the contribution to
reflectance and transmittance of those photons interacting only with the layer into con-
sideration, whereas the second ones give the contribution of the photons with interactions
also outside the layer itself.

From these two sets of layer reflectances and transmittances (Rt0 , Tt0) and (Rt 6= , Tt 6=) re-
spectively, effective absorber amounts to be applied to computing the transmission func-
tions for upward and downward fluxes are then derived using (11) and starting from the
surface and working the formulas upward:

U↓
e0 =

1

ke
ln(

Tb0
Tbc

),

U↓
e6= =

1

ke
ln(

Tb 6=
Tbc

),

U↑
e0 =

1

ke
ln(

Rt0
Rtc

),

U↑
e6= =

1

ke
ln(

Rt 6=
Rtc

),

where Rtc and Tbc are the layer reflectance and transmittance corresponding to a conser-
vative scattering medium. Finally the upward and downward fluxes are obtained as:

F↑(j) = F0

[
Rt0 t∆ν(U

↑
e0) + (Rt 6= −Rt0) t∆νU

↑
e6=)

]
(44)

F↓(j) = F0

[
Tb0 t∆ν(U

↓
e0) + (Tb 6= − Tb0) t∆νU

↓
e6=)

]
(45)

2 Longwave radiation: the RRTM scheme

The main characteristics of RRTM are:

• Solution of radiative transfer equation: Two-stream method

• Number of spectral intervals: 16

• Absorbers : H2O, CO2, O3, CH4, N2O, CFC11, CFC12, aerosols

• Spectroscopic data base: HITRAN 1996

• Absorption coefficient: From LBLRTM line-by-line model

• Cloud handling: True cloud fraction
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• Cloud optical properties: 16-band spectral emissivity

• Cloud overlap assumption: Maximum random

• References : Mlawer et al. (1997)

As stated in Mlawer et al. (1997), the objective in the development of RRTM has been
to obtain an accuracy in the calculation of fluxes and heating rates consistent with the
best line-by-line models. It utilizes the correlated-k methode and shows its filiation to
the Atmospheric and Environmental Research, Inc. (AER) line-by-line model (LBLRTM;
Clough et al. 1989, 1992; Clough and Iacono 1995) through its use of absorption coeffi-
cients for the relevant k-distributions derived from LBLRTM. Therefore the k-coefficients
in RRTM include the effect of the CKD2.2 water vapour continuum (Clough et al. 1989).

The main point in the correlated-k method (Lacis and Oinas 1991; Fu and Liou 1992 )
is the mapping of the absorption coefficient k(ν) from the spectral space (where it varies
irregularly with wavenumber ν) to the g-space (where g(k) is the probability distribution
function, i.e. the fraction of the absorption coefficients in the set smaller than k). The
effect of this reordering is a rearrangement of the sequence of terms in the integral over
wavenumber in the radiative transfer equation (RTE), which makes it equivalent to what
would be done for monochromatic radiation.

In the ECMWF (hence, ARPEGE-CLIMAT) model, no provision is presently taken for
scattering in the longwave. Therefore, in order to get the downward radiance, the integra-
tion over the vertical dimension is simply done starting from the top of the atmosphere,
going downward layer by layer. At the surface, the boundary condition (in terms of spec-
tral emissivity, and potential reflection of downward radiance) is computed, then, in order
to get the upward radiance, the integration over the vertical dimension is repeated, this
time from the surface upward.

The spectrally averaged radiance (between ν1 and ν2) emerging from an atmospheric layer
is

R =
1

(ν1 − ν2)

∫ ν1

ν2

dν

{
R0(ν) +

∫ 1

tν

[
B(ν, T (t′ν)) −R0(ν)

]
dt′
}

(46)

where R0 is the incoming radiance to the layer, B(ν, T ) is the Planck function at wavenum-
ber ν and temperature T , tν is the transmittance for the layer optical path, and t′ν is the
transmittance at a point along the optical path in the layer. Under the mapping ν → g,
this becomes

R =

∫ 1

0

dg

{
Beff(g, Tg) + [R0(g)−Beff(g, Tg)] exp

[
−k(g, P, T ) ρδz

cosφ

]}
(47)

where Beff(g, T ) is an effective Planck function for the layer that varies with the layer’s
transmittance such as to ensure continuity of flux across layer boundaries for opaque
conditions. The dependence of the transmittance is now written in terms of the absorption
coefficient k(g, P, T ) at layer pressure P and temperature T , the absorber density ρ, the
vertical thickness of the layer δz, and the angle φ of the optical path.

For a given spectral interval, the domain of the variable g is partitioned into subintervals
(see Table 7.1, number of g-points), each corresponding to a limited range of k(g) values
and for which a characteristic value κj of the absorption coefficient is chosen. These κj
are then used to compute the outgoing radiance

R = ΣjWj

[
Beffj

+ (R0(g)−Beffj
) exp

(
−κj

ρδz

cosφ

)]
(48)

where Wj is the size of the sub-intervals (ΣWj = 1).
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The accuracy of these absorption coefficients has been established by numerous and contin-
uing high-resolution validations of LBLRTM with spectroscopic measurements, in partic-
ular those from the Atmospheric Radiation Measurement program (ARM). Compared to
the original RRTM (Mlawer et al. 1997), the version used at ECMWF (hence ARPEGE-
CLIMAT) has been slightly modified to account for cloud optical properties and surface
emissivity defined for each of the 16 bands over which spectral fluxes are computed. For
efficiency reason, the original number of g-points (256 = 16× 16) has been reduced to 140
(see Table 7.1). Other changes are the use of a diffusivity approximation (instead of the
three-angle integration over the zenith angle used in the original scheme) to derive upward
and downward fluxes from the radiances, and the modification of the original cloud ran-
dom overlapping assumption to include (to the same degree of approximation as used in
the operational SW scheme) a maximum-random overlapping of cloud layers. Given the
monochromatic form of the RTE, the vertical integration is simply carried out one layer
at a time from the top-of-the-atmosphere to the surface to get the downward fluxes. The
downward fluxes at the surface are then used with the spectral surface emissivities and
the surface temperature to get the upward longwave fluxes in each of the 140 subintervals.
Then the upward fluxes are obtained in a similar fashion from the surface to the top of
the atmosphere.

For the relevant spectral intervals of the RRTM schemes, ice cloud optical properties
are derived from Ebert-Curry (1992), and water cloud optical properties from Smith and
Shi (1992) . Whereas in the previous operational scheme the cloud emissivity used to
compute the effective cloud cover is defined over the whole LW spectrum from spectrally
averaged mass absorption coefficients and the relevant cloud water and/or ice paths, in
RRTM, the cloud optical thickness is defined as a function of spectrally varying mass
absorption coefficients and relevant cloud water and ice paths, and is used within the true
cloudy fraction of the layer. Alternate sets of cloud optical properties are also available
for RRTM (Section 3).

Table 7.1: Spectral distribution of the absorption by atmospheric gases in
RRTM
Spectral intervals Number Gases included
cm−1 g-points Troposphere Stratosphere
10-250 8 H2O H2O
250-500 14 H2O H2O
500-630 16 H2O, CO2 H2O, CO2
630-700 14 H2O, CO2 O3, CO2
700-820 16 H2O, CO2, CCl4 O3, CO2, CCl4
820-980 8 H2O, CFC11, CFC12 CFC11, CFC12
980-1080 12 H2O, O3 O3
1080-1180 8 H2O, CFC12, CFC22 O3, CFC12, CFC22
1180-1390 12 H2O, CH4 CH4
1390-1480 6 H2O H2O
1480-1800 8 H2O H2O
1800-2080 8 H2O
2080-2250 4 H2O, N2O
2250-2380 2 CO2 CO2
2380-2600 2 N2O, CO2,
2600-3000 2 H2O , CH4
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3 Input to the radiation scheme

3.1 Solar irradiance data

Depending on the experiment, the solar constant can be specified on a yearly basis in
the model. The recommendations for CMIP6 solar forcing data are available there:
http://solarisheppa.geomar.de/cmip6

3.2 Clouds

Cloud fraction, and liquid/ice water content are provided in all layers by the cloud scheme.

3.3 Ground albedo and emissivity

Ground albedo and emissivities are calculated in the SURFEX module (see chapter “Surfex
processes schemes”). The main features are the following ones:

1. one emissivity by type of vegetation (coming from the Ecoclimap 1 km resolution
data base) and for ocean and sea-ice.

2. Albedo:

• over continental areas. It is deduced from the Ecoclimap data base, one by type
of vegetation, the total mean albedo on a mesh is weighted with the vegetation
fraction. This version is updated by the annual mean MODIS cycle (Carrer et
al.,RSE, 2014), introducing annual cycles of vegetation, and also soil albedo.

• over ocean: a new parametrization of the ocean surface albedo has been developed
in collaboration with LMD. It includes dependencies on wavelength, surface wind
speed, chlorophyll content as well as the distribution of solar zenith angle. The
albedo is decomposed into a direct and a diffuse contribution, each of them being
divided according to the reflection process, i.e a Fresnel surface albedo and an ocean
volume albedo. The computation is done in the routine albedors14.F90.

• over snow: albedo varies with the age of snow following Douville et al. (1995)

3.4 Aerosols

Aerosols are included in ARPEGE-Climat using either monthly 2D aerosol optical depth
(AOD) files or an interactive aerosol scheme providing 3D concentrations. In both cases,
five tropospheric aerosol types are taken into account: desert dust, sea-salt, sulfate, black
carbon and organic matter.

In the first case, these AOD data come from ARPEGE-Climat simulations using the
interactive aerosol scheme (TACTIC), a running average on 11 years is calculated to
smooth interannual variability. The 2D optical thicknesses are vertically distributed in
the RADAER subroutine according to the aerosol type.

In the second case, the aerosol vertical profile of extinction is directly computed in the
aerosol scheme. In both cases, these 5 tropospheric aerosol types are redistributed in the
4 following types, to be taken into consideration in the radiation scheme :

• Continental : Organic + Sulfate

• Maritime (sea-salt aerosols)

• Desert (soil dust type aerosols)

• Urban (black-carbon type aerosols)

http://solarisheppa.geomar.de/cmip6
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Two additional types are also included in ARPEGE-Climat to represent volcanic and
stratospheric aerosols:

• Volcanic class (background) and Stratospheric (background) + volcanic eruptions

Direct forcing of aerosols

Through their optical properties, aerosols can scatter and/or absorb solar and thermal
radiation. The following optical properties, namely normalized optical depth (RTAUA),
single scattering albedo (RPIZA) and asymmetry factor (RCGA), all defined in SUAERSN
and used in SWCLR, are used in the SW radiation scheme (6 spectral bands), depending
on the value of NCOEFAERO (noted NCA in the tables below). The values of RPIZA
and RCGA have been updated according to Mie calculations (see Nabat et al., (2013) for
more details). Note that the spectral dependance of all these optical properties is for the
moment not taken into consideration inside the visible spectrum (i.e. the first three bands
have the same coefficients), but it should be the case in a future version of the model.

• NCOEFAERO=0 : updated values for continental, sea-salt, desert dust and black
carbon

• NCOEFAERO=1 : updated values for desert dust only, old coefficients (with no
more than three significant numbers)

• NCOEFAERO=2 : old coefficients

Normalized optical depth (RTAUA) :

Figure 1: Average global profile for each aerosol type in simulations using ei-
ther 2D AOD data (full lines) or the interactive aerosol scheme (dotted lines).
Note that the full lines for black carbon, sea-salt and continental aerosols
are superimposed. Altitudes have been calculated for standard atmospheric
conditions.
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Aerosols NCA 0.185 0.25 0.44 0.69 1.19 2.38
- - - - - -

0.25 0.44 0.69 1.19 2.38 4.0
µm µm µm µm µm µm

Continental 0/1/2 1.69446 1.69446 1.69446 0.52838 0.20543 0.10849
Sea-salt 0/1/2 1.11855 1.11855 1.11855 0.93285 0.84642 0.66699
Desert dust 0/1/2 1.09212 1.09212 1.09212 0.93449 0.84958 0.65255
Black carbon 0/1/2 1.72145 1.72145 1.72145 0.53078 0.21673 0.11600
Volcanic 0/1/2 1.03858 1.03858 1.03858 0.67148 0.28270 0.06529
Stratospheric 0/1/2 1.12044 1.12044 1.12044 0.46608 0.10915 0.04468

Single scattering albedo (RPIZA) :
Aerosols NCA 0.185 0.25 0.44 0.69 1.19 2.38

- - - - - -
0.25 0.44 0.69 1.19 2.38 4.0
µm µm µm µm µm µm

Continental 0 0.99 0.99 0.99 0.99 0.99 0.99
1 0.91 0.91 0.91 0.897 0.828 0.52
2 0.9148907 0.9148907 0.9148907 0.8970131 0.8287144 0.5230504

Sea-salt 0 0.996 0.996 0.996 0.995 0.994 0.99
1 0.996 0.996 0.996 0.998 0.994 0.79
2 0.9956173 0.9956173 0.9956173 0.9984940 0.9949396 0.7868518

Desert dust 0/1 0.90 0.90 0.90 0.93 0.94 0.95
2 0.7504584 0.7504584 0.7504584 0.9245594 0.9279543 0.8531531

Black carbon 0 0.32 0.32 0.32 0.27 0.24 0.20
1 0.81 0.81 0.81 0.777 0.677 0.405
2 0.8131335 0.8131335 0.8131335 0.7768385 0.6765051 0.4048149

Volcanic 0/1 0.94 0.94 0.94 0.953 0.946 0.875
2 0.9401905 0.9401905 0.9401905 0.9532763 0.9467578 0.8748231

Stratospheric 0/1 0.999 0.999 0.999 0.999 0.995 0.235
2 0.9999999 0.9999999 0.9999999 0.9999999 0.9955938 0.2355667

Asymmetry factor (RCGA) :
Aerosols NCA 0.185 0.25 0.44 0.69 1.19 2.38

- - - - - -
0.25 0.44 0.69 1.19 2.38 4.0
µm µm µm µm µm µm

Continental 0 0.69 0.69 0.69 0.64 0.62 0.60
1 0.73 0.73 0.73 0.67 0.64 0.70
2 0.729019 0.729019 0.729019 0.668431 0.636342 0.700610

Sea-salt 0 0.72 0.72 0.72 0.73 0.73 0.73
1 0.80 0.80 0.80 0.79 0.80 0.82
2 0.803129 0.803129 0.803129 0.788530 0.802467 0.818871

Desert dust 0/1 0.785 0.785 0.785 0.75 0.75 0.75
2 0.784592 0.784592 0.784592 0.698682 0.691305 0.702399

Black carbon 0 0.43 0.43 0.43 0.31 0.30 0.30
1 0.71 0.71 0.71 0.66 0.63 0.69
2 0.712208 0.712208 0.712208 0.657422 0.627497 0.689886

Volcanic 0/1 0.70 0.70 0.70 0.673 0.611 0.463
2 0.7008249 0.7008249 0.7008249 0.6735182 0.6105750 0.4629866

Stratospheric 0/1 0.727 0.727 0.727 0.652 0.476 0.191
2 0.7270548 0.7270548 0.7270548 0.6519706 0.4760794 0.1907639

The dependance of these optical properties on relative humidity can be activated using
the key LHUMDEP : it concerns only sea-salt (for RCGA) and continental (for RPIZA
and RCGA) aerosols. In the case LHUMDEP=False, values in the tables above are used
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(corresponding to an average relative humidity of 50%). In the case LHUMDEP=True,
RCGA (for sea-salt and continental aerosols) and RPIZA (for continental aerosols) are
replaced by the following values:

• Single scattering albedo (RPIZA) for continental aerosols:
RH 0.185 0.25 0.44 0.69 1.19 2.38

- - - - - -
0.25 0.44 0.69 1.19 2.38 4.0
µm µm µm µm µm µm

0-15% 0.988 0.988 0.988 0.988 0.988 0.988
15-25% 0.989 0.989 0.989 0.989 0.989 0.989
25-35% 0.989 0.989 0.989 0.989 0.989 0.989
35-45% 0.990 0.990 0.990 0.990 0.990 0.990
45-55% 0.991 0.991 0.991 0.991 0.991 0.991
55-65% 0.993 0.993 0.993 0.993 0.993 0.993
65-75% 0.994 0.994 0.994 0.994 0.994 0.994
75-85% 0.995 0.995 0.995 0.995 0.995 0.995
85-92.5% 0.997 0.997 0.997 0.997 0.997 0.997
92.5-97% 0.998 0.998 0.998 0.998 0.998 0.998
97-100% 0.999 0.999 0.999 0.999 0.999 0.999

• Asymmetry factor (RCGA) for sea-salt aerosols:
RH 0.185 0.25 0.44 0.69 1.19 2.38

- - - - - -
0.25 0.44 0.69 1.19 2.38 4.0
µm µm µm µm µm µm

0-15% 0.69 0.69 0.69 0.70 0.70 0.70
15-25% 0.70 0.70 0.70 0.71 0.71 0.71
25-35% 0.71 0.71 0.71 0.72 0.72 0.72
35-45% 0.72 0.72 0.72 0.73 0.73 0.73
45-55% 0.73 0.73 0.73 0.74 0.74 0.74
55-65% 0.74 0.74 0.74 0.75 0.75 0.75
65-75% 0.75 0.75 0.75 0.76 0.76 0.76
75-85% 0.76 0.76 0.76 0.77 0.77 0.77
85-92.5% 0.78 0.78 0.78 0.78 0.78 0.78
92.5-97% 0.79 0.79 0.79 0.79 0.79 0.79
97-100% 0.82 0.82 0.82 0.79 0.79 0.79

• Asymmetry factor (RCGA) for continental aerosols:
RH 0.185 0.25 0.44 0.69 1.19 2.38

- - - - - -
0.25 0.44 0.69 1.19 2.38 4.0
µm µm µm µm µm µm

0-15% 0.66 0.66 0.66 0.38 0.38 0.38
15-25% 0.67 0.67 0.67 0.39 0.39 0.39
25-35% 0.68 0.68 0.68 0.40 0.40 0.40
35-45% 0.68 0.68 0.68 0.41 0.41 0.41
45-55% 0.69 0.69 0.69 0.43 0.43 0.43
55-65% 0.70 0.70 0.70 0.45 0.45 0.45
65-75% 0.71 0.71 0.71 0.47 0.47 0.47
75-85% 0.72 0.72 0.72 0.51 0.51 0.51
85-92.5% 0.74 0.74 0.74 0.58 0.58 0.58
92.5-97% 0.76 0.76 0.76 0.64 0.64 0.64
97-100% 0.80 0.80 0.80 0.74 0.74 0.74

The following optical properties (absorption coefficients) are used in the LW radiation
scheme (16 spectral bands, the aerosol coefficients, defined in SUAERL, are gathered in 5
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classes and used in RRTM_ECRT_140GP)
Aerosols NCA Spectral bands

1/2 3/4/5 6/8/9 7 10-16
Continental 0/1/2 0.036271 0.030153 0.017343 0.015002 0.008806 0.006865
Sea-salt 0/1/2 0.026561 0.032657 0.017977 0.014210 0.016775 0.022123
Desert dust 0/1 0.1 0.1 0.1 0.1 0.1 0.1

2 0.014897 0.016359 0.019789 0.030777 0.013341 0.014321
Black carbon 0/1/2 0.001863 0.002816 0.002355 0.002557 0.001774 0.001780
Volcanic 0/1/2 0.011890 0.016142 0.021105 0.028908 0.011890 0.011890
Stratospheric 0/1/2 0.013792 0.026810 0.052203 0.066338 0.013792 0.013792

Indirect forcing of the sulfate aerosols

The aerosols can act as cloud condensation nuclei. At constant cloud liquid water, in-
creasing aerosol concentration leads to a larger concentration of cloud droplets of small
radius and increases cloud reflectivity. This effect, referred as the first aerosol indirect
effect (Twomey, 1974), can be taken into account depending on the value of NRADLP
used in RADLSW to calculate the effective radius of cloud droplets:

• NRADLP=2 : no aerosol indirect effect
• NRADLP=3 : A simple parametrization from Quaas and Boucher (2005) simulates

this effect in the case of sulfate aerosols. The cloud droplet concentration CDN (in
cm−3) is given by:
lnCDN = 1.7 +0.2 ln m

SO2−
4

with m
SO2−

4
expressed in µgm−3 (calculated from the sulfate aerosol optical depth).

The mean cloud droplet radius is then calculated from the cloud liquid water content
ql and liquid water density ρl by:

rv = 3

√
3ql

4πρlCDN

and the effective radius re =1.1 rv.
The sulfate aerosols are available as output of the routine RADAER in the 3D
array ZAERINDS.

• NRADLP=4 : the same as 3, but relative humidity is taken into account in the
calculation of m

SO2−
4

.

• NRADLP=5 : organic matter and sea-salt aerosols are also taken into account in
the calculation of the cloud droplet concentration according to Menon et al. (2002).
lnCDN = 2.41 + 0.5 ln m

SO2−
4

+ 0.05 ln mSS + 0.13 ln mOM

Only the hydrophilic part of organic matter and the fine mode of sea-salt aerosols
are considered for this calculation (climatological fractions, respectively 77.64% and
1.37%).

Note that the second aerosol indirect effect (modification of cloud life time and precipita-
tion by aerosols) is not included in ARPEGE-Climat.

3.5 Radiatively active compounds

Concentrations of carbon dioxide, methane, nitrous oxide, CFC-11, CFC-12 and chlorine
are given in namelist NAERAD. During the simulation, values are evolving yearly following
the IPCC data. The CFC-12 compound also includes the CFC-12 equivalent of halocarbon
species. Outputs from the CNRM REPROBUS chemical model, simulating coefficients
which describe 3D ozone distributions, are used as input of a linear interactive scheme
(Cariolle and Teyssèdre, 2007). The value NVCLIS = 7 (in NAMDPHY) means that
seven of the climatological coefficients of the REPROBUS outputs are used. Evolution of
ozone chemistry is due to chlorine and meteorological parameters (temperature, humidity)
evolutions.
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3.6 Cloud optical properties

For the SW radiation, the cloud radiative properties depend on three different parameters:
the optical thickness, the asymmetry factor and the single scattering albedo of particles.
For LW the cloud properties are linked with emissivity and spectral optical thickness.
All these properties are defined for water and ice particles in the RADLSW routine.
They depend on liquid (or ice) water path or on the effective radius of the particles.
These characteristic parameters can be calculated by different ways according to NRADLP,
NRADIP, NLIQOPT, NICEOPT parameters. During the tuning of the CMIP6 model,
corrections of some options have been done. New combinations of optical properties have
been coded: see comments on NICEOPT/NLIQOPT and NRADLP/NRADIP below.

Cloud liquid particles

• NRADLP = 0; cloud water effective radius is calculated as a function of pressure
(old parameterisation).

• NRADLP = 1; the cloud effective radius is equal to 10 µm over land and equal to
13 µm over the ocean.

• NRADLP = 2; parameterisation based on Martin et al. (1994).

• From NRADLP=3, a parametrization of the first indirect effect of aerosols is pro-
posed: Effective radius of cloudy droplets
The effective radius of cloudy droplets writes:

re = 100 ∗RTUNHRM ∗ ( 3 ∗ ZLWC

4 ∗ πZCCDNC )1/3 (49)

where re is the effective radius in µm, RTUNHRM is a parameter (RTUNHRM=1.1),
ZLWC= 1000 ∗ ρair ∗ PQLWP (unit: g/m3) with PQLWP input of radlsw.F90
(unit: kg/kg) and ZCCDNC the number of CCN (cm−3). If NRADLP=5, the
min value of re is 2 µm and the max one is 24 µm.

• NRADLP = 3: the effective radius of cloud particle is calculated taking into account
the indirect effects of sulfate aerosols only. The number of cloud condensation nuclei
is computed by Quaas, pers. comm.

• NRADLP = 4: as NRADLP =3 but with tabulated extinction coefficients vs the
aerosol types and relative humidity. CNN number of Quaas.

• NRADLP = 5: effect of sea salt and organic aerosols. Tabulated extinction coeffi-
cient as for NRADLP=4, Menon’s (2002) parameter for the computation of CCN
number.

Cloud ice particles

• NRADIP = 0; the ice particle effective radius is fixed at 40 µm.

• NRADIP = 1; ice particle effective radius calculated as f(T) from Ou and Liou
(1995).

• NRADIP = 2; ice particle effective radius calculated as f(T) from Ou and Liou
(1995) and fixed between 30 and 60 microns .

• NRADIP = 3; Ice effective radius calculated as a function of temperature and ice
water content from Sun and Rikus (1999) and revised by Fu and Sun (2001).

• NRADIP = 4 is equivalent to NRADIP = 2 for LW computations and NRADIP =
3 for SW computations.

SW radiation

Cloud water optical properties depend on NLIQOPT:

• NLIQOPT different from zero, refers to Slingo (1989).
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• NLIQOPT = 0, refers to Parol et al. (1991).

Ice water optical properties depend on NICEOPT:

• NICEOPT lower than or equal to 1 , refers to Ebert and Cury (1992).

• NICEOPT = 2, refers to Fu and Liou (1993).

• NICEOPT = 3 or NICEOPT =4, refers to Fu (1996).

LW radiation

Cloud water emissivity depends on NLIQOPT:

• NLIQOPT = 0 or greater than or equal to 3, refers to Smith and Shi (1992).

• NLIQOPT = 1 , refers to Savijarvi and Raisanen (1997).

• NLIQOPT = 2 , refers to Lindner and Li (2000).

• NLIQOPT > ou = 3 , refers to Smith and Shi(1992). NLIQOPT = 4 is equivalent
to NLIQOPT= 0 in LW computations.

Ice cloud emissivity depends on NICEOPT:

• NICEOPT = 0, refers to Smith and Shi (1992).

• NICEOPT = 1, refers to Ebert-Curry (1992).

• NICEOPT = 2, refers to Fu and Liou (1993).

• NICEOPT = 3, refers to Fu et al. (1998) including parametrisation for LW scat-
tering effect .

• NICEOPT = 4, equivalent to NICEOPT = 1 in LW computations.

Inhomogeneity factors
The cloudy inhomogeneity factors are RSWINHF for SW and RLWINHF for LW. During
the tuning of the model, a difference between the liquid and ice clouds (RSWINHFLIQ
and RSWINHFICE for the SW and RLWINHFLIQ/RLWINHFICE for the LW) has been
introduced for computation of optical depth and spectral emissivity. According to J.J
Morcrette (pers. comm.) the SW coefficients can be chosen in the range (0.6-0.8) and the
LW one in the range (0.8-1), depending also on the water condensate vertical, horizontal
distribution and effective radius. These parameters have been used to obtain closed TOA
and surface budgets.

The current values of the parameters are:

• NRADLP = 5,

• NRADIP = 4,

• NLIQOPT = 4

• NICEOPT = 4, Note that the couple (NLIQOPT=4, NICEOPT=4) is equivalent
to the couple (2,3) in SW computations and (0,1) in the LW computations.

• RTUNHRM=1.1,

• NCOEFAERO =0,

• LHUMDEP=.T.,

• RSWINHF=1.,

• RLWHINF=1.,

• RSWINHFLIQ=0.74,

• RSWINHFICE=0.74,

• RLWINHFLIQ=0.95,

• RLWINHFICE=0.76.
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3.7 Cloud overlap assumption

The cloud overlap assumption is used for the determination of Ctot (see Section 1). It is
determined by the NOVLP key: NOVLP = 1 means "maximum-random overlap", NOVLP
= 2 means "maximum overlap " and NOVLP = 3 means "random overlap". An option
NOVLP=6 has been added in the code for CMIP6 following the work of Thouron (Thouron
et al 2017 ) which proposes to use different overlap assumptions for the computation of
clear-sky fraction and for total efficiency of diffusion. This option corresponds to a max-
random overlap for the computation of the clear-sky fraction and a random one for the
computation of the solar zenithal angle. This formulation is particularly adapted to multi-
layers case.

3.8 Interactions with the SURFEX module

To obtain consistent radiative fluxes in ARPEGE and in SURFEX, downward fluxes
calculated by ARPEGE and provided to the SURFEX scheme have to be cut into spectral
bands. Moreover, for the long-wave radiative fluxes, additional corrections have to be
made in the APLPAR subroutine to ensure equal radiative net budgets in ARPEGE as
well as in SURFEX.

4 Simplified radiation scheme

Given the computation cost of the radiation scheme, it seems interesting to call it only
at some time steps, named radiative time steps. Nevertheless, it is necessary to produce
radiative flows at each time step. One thus needs a way to calculate these fluxes at low
cost. This is carried out in Arpege-climat by calling subroutine RADHEAT.

The idea of this routine is to save between two radiative time steps the solar transmissivity
and long-wave emissivity. Let FSW (PFRSO in APLPAR) and FLW (PFRTH) be total
net fluxes of solar and infrared radiation calculated at the last radiative time step. The
approximation consists in maintaining constant the values of transmissivities t0 (PTRSOL)
and emissivities (PEMTD) ǫ0 calculated at this time:

t0 =
FSW0

µ0E0
(50)

ǫ0 =
FLW0

σT 4
0

(51)

Then, in the next time steps, one recomposes solar and infrared fluxes by modifying only
the solar incidence µ and temperature T :

FSW = t0µ0E
0 (52)

FLW = ǫ0σT
4 (53)

Note that with the logical key LABSDIR=.TRUE., a modification to diagnose layers’
radiative properties as function of infrared fluxes of the last radiative step is introduced
(in APLPAR). The surface "Delta" (difference between the surface infrared flux with Ts
from SURFEX and the surface infrared flux computed in the last call of the full radiative
scheme) infrared flux is computed as function of Delta Ts. The modification consists in a
progressive absorption of the "Delta IR" from the surface to the top of the atmosphere. It
starts with a diagnostic of the IR absorption rate in each atmospheric layer and modifies
the corresponding heating rate. The radiative budget is modified taking into account the
delta IR upward flux reaching TOA.
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The turbulence scheme

1 Introduction

1.1 Objectives

Among all the different processes which need to be represented in the numerical prediction
model for the atmosphere, valid from the short term range forecasting to the simulation
of the general climate, one of the most important one is the decreasing of the vertical
gradients or heterogeneous feature in potential temperature, wind or humidity. These
processes correspond to “vertical transport” or “dissipation”, represented either by what is
usually called “turbulence” or “convection”.

The splitting of the mixing processes between “turbulent” or “convective” ones are made in
terms of asymmetric buoyancy effects for the convection, whereas the turbulence is think
in terms of symmetric and horizontal rolls, mainly located within the dry PBL, bellow the
cloudy part of the atmosphere.

This separation was clear until the 80’s and 90’s. Since then, more and more moist
effects are taken into account in the turbulent schemes, and more and more dry thermal
convective processes are associated to the shallow convection (inside the cloud) and in the
dry PBL (bellow the cloud base).

Nowadays, several unified “turbulent + mass-flux” schemes exist. They are often called
“EDMF” (or “EDKF”), for “Eddy Diffusivity Mass-Flux”. The aim of the scheme described
in this documentation is to described only the vertical mixing of atmospheric variables
due to turbulent processes, with the vapor and condensed waters taken into account. The
dry and moist convection processes are not explicitly managed, though they impact in
some way on the turbulent scheme via the two “turbulent” and “convective” tendencies
which are fully combined for computing the next time-step, with possible covering of the
two schemes on the vertical.

The aim the the parameterization is to compute the exchange coefficients Km (valid for
the momentum, i.e. the 2 wind components u and v) and Kh (valid for the potential
temperature and the specific humidity). These exchange coefficients are used to compute
the turbulent fluxes, used in the implicit solver for the vertical mixing and obtained by
the inversion of a tri-diagonal matrix.

The choice of the present parameterization, implemented both in the NWP and the GCM
versions of ARPEGE, has been mainly motivated by the hope to better represent the
marine Strato-cumulus in the model. Indeed, there is a lack of strato-cumulus in most of
the CMIP5 GCM and NWP models in the Eastern part of the tropical oceans, close to
the coast. These low-level clouds are important features for determining even the sign of
the local impacts associated with the Climate Change.
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1.2 From CMIP5 to CMIP6

For CMIP5, a turbulent scheme, based on the stationary equation for the turbulent kinetic
energy, using the 2.0 order scheme of Mellor and Yamada (1977, 1982), has been used in the
Climate version of ARPEGE. The numerical computations of the exchange coefficientsKm

and Kh are described more precisely in Ricard and Royer (1993). The moist processes are
taken into account in the Mellor-Yamada set of equations, by using the subgrid variance
of atmospheric humidity, following the ideas of Sommeria, Deardorff, Bougeault (1976,
1977, 1982) where a certain statistical law is prescribed (an asymmetric and exponential
fixed PDF).

The turbulent kinetic energy variable is defined on the full-levels of ARPEGE (same
location as for the wind or the temperature). As a consequence the advective processes
could be activated, but they are switched-off since it is a stationary (diagnostic) turbulent
kinetic energy equation. A lot of half-summations are made to go from the full-levels to
the half-levels, and vice versa. With the crude spacing of the vertical levels, such half-
summations processes create an artificial and strong mixing at the top of the PBL and
at the inversion. It is probably the reason why the shallow convection processes are - in
some way - represented by this moist diagnostic turbulent scheme, via a synergy between
the moist subgrid representation and the (too) strong vertical mixing.

The present prognostic scheme for CMIP6 corresponds to a continuous series of develop-
ments, starting in 1998-99.

The different processes represented in this new set of parameterizations are

• the turbulent kinetic energy (e) is computed with a prognostic equation where
the horizontal and vertical advections are switched-off, with the vertical mixing of
e, the dissipation, the shear (dynamical) production and the buoyancy (thermal)
production occur ;

• the turbulent kinetic energy (e) is computed on the “half-levels”, the levels where the
exchange coefficients Km and KT , also the vertical velocity, are computed (in be-
tween the “half-levels” where are computed the wind components, the temperature
and the specific humidity) ;

• the turbulent kinetic energy (e) has a minimum value (typically of 10−6 m2 s−2 )
;

• the formulations for the turbulent fluxes are given in Redelsperger and Sommeria
(1981) and Cuxart, Bougeault, Redelsperger (2000) ;

• the “moist” versions of the fluxes are computed by using the Lilly (1968) potential
temperature (i.e. θvl) and the Betts (1973) variables (i.e. for θl and qt), for the
vertical mixing of the conservative variables ;

• the computations of the sub-grid variance of cloud liquid water are made with
the hypotheses of Bougeault (1982) and Bechtold (1995), by using some mixed
symmetric (Gaussian) and asymmetric (Exponential), in order to represent the
Cumulus and the Strato-Cumulus, respectively ;

• the mixing and dissipation lengthes are given by the non-local formulation of
Bougeault and LacarrÃ¨re (1989) ;

• the surface layer value for the turbulent kinetic energy is given by AndrÃ c© et
al.(1978) ;

• the surface layer values for the exchange coefficients are given by Louis (1979, 1981)
;

• the vertical mixing of the turbulent kinetic energy is made in an implicit way, by
taking into account a linearized version of the dissipation term, i.e. the non-linear
term (e)3/2, leading to the weighting factors αexp = −0.5 and αimp = 1.5 ;

• the top-PBL vertical entrainment is parameterized following the ideas of Grenier
and Bretherton (2000) and Grenier (2002).
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2 The CBR scheme

2.1 The turbulent kinetic energy equation

The turbulent kinetic energy equation gives the change in time of the grid-cell mean value
(e).

∂e

∂t
= [ Advect. ] + Diffvert + Pdyn. + Pther. −Diss , (1)

Diffvert = − 1

ρ

∂

∂z

(
ρ e′w′

)
, (2)

Pdyn. = −
[
u′w′

∂ u

∂z
+ v′w′

∂ v

∂z

]
, (3)

Pther. = β w′θ′vl , (4)

Diss = Cǫ
e
√
e

Lǫ
. (5)

Except the (neglected) advective part (Advect.), it is the sum of 4 terms. The first
term (Diffvert) is the vertical mixing (or diffusion) of e. It represents the change of
e by the turbulent processes plus, in some way, the impact of the (unknown) presso-
correlation term. There are two production terms: the dynamical production Pdyn. is
always positive and represents the impact of the shear of the wind components, the thermal
production Pther. can be positive or negative, depending on the vertical fluxes of the Lilly
(1968) potential temperature θvl, computed in a complex way by using the fluxes of the
conservative Betts (1973) variables θl and qt. The last dissipation term (Diss) depends
on a constant Cǫ and on a dissipation length Lǫ.

For the thermal production, the formulation for β and θvl writes:

β =
g

θ
, (6)

θvl = θ (1 + 0.608 qv − qc) . (7)

The potential temperature of Lilly depends on the grid-cell average of both the water
vapor qv and the condensed water qc (either liquid or solid). The main difficulty is to
compute the fluxes of these quantities, whereas the moist fluxes are only known for the
Betts variables w′θ′l and w′q′t.

The conservative variables of Betts write in terms of the mean water vapor (qv), the mean
liquid cloud water (ql), the mean solid cloud water (qi) and the mean total condensed
cloud water (qc = ql + qi) :

θl = θ

(
1− Lv ql + Lf qi

cp T

)
, (8)

qt = qv + qc . (9)

The two terms Lv and Lf are the latent heats of vaporization and fusion, respectively.

The first order turbulent fluxes are written in terms of the vertical gradients of the mean
variables, following the formulations of Redelsperger and Sommeria (1981 ; or RS81), also
of Cuxart, Bougeault and Redelsperger (2000 ; or CBR00).

u′w′ = − Cm Lm
√
e
∂ u

∂z
; Km = Cm Lm

√
e , (10)

v′w′ = − Cm Lm
√
e
∂ v

∂z
; Km = Cm Lm

√
e , (11)
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e′w′ = − Ce Lm
√
e
∂ e

∂z
; Ke = Ce Lm

√
e , (12)

w′θ′l = − Cθ Lm
√
e
∂ θl
∂z

φ3 ; KT = Cθ Lm
√
e φ3 , (13)

w′q′t = − Cq Lm
√
e
∂ qt
∂z

ψ3 ; Kq = Cq Lm
√
e ψ3 . (14)

Note that the unit of turbulent exchange coefficients computed in acturb.F90 is kg.m−2.s−1.
Indeed, in the relation:

∂Ψ

∂t
= −g ∂(−ρw

′Ψ′)

∂p
= −g ∂(−ρ ∗ (−K

∂Ψ
∂z

))

∂p
(15)

unit of K is m2s−1. The computed turbulent exchange coefficients (PKTROV, PKQROV,
PKQLROV,PKUROV) are gρK

∆Ψ
.

The first order turbulent fluxes and the associated exchange coefficients (10) to (14) depend
on four unknown constants (Cm, Ce, Cθ, Cq), with the mixing length denoted by Lm and
the dissipation length by Lǫ.

This turbulent scheme includes two stability functions (φ3 and ψ3), which are found to be
equal in that case of an “1D-vertical” turbulence, leading to

φ3 = ψ3 =
1

1 + C (Rθ +Rq)
. (16)

The term C = CθCǫθ is another unknown constant. The stability functions φ3 and ψ3

describe the enhancement or inhibition of turbulent transfers by stability effects.

Hypothesis 1 : In the Meso-NH and AROME LAM, the true computations of Rθ +Rq
need to keep some pseudo-prognostic variables (kept in memory from one time step for the
next one). In the CBR00 scheme implemented in ARPEGE, the computation of (16) is
made with a more straightforward method, without pseudo-prognostic variables but with
a direct computation of the vertical gradient of θvl instead, with the assumption

Rθ +Rq ≈ β
Lm Lǫ
e

∂θvl
∂z

. (17)

The vertical gradient is computed from (7), with no hypothesis concerning the sub-grid
variability of the humidity.

The stability function φ3 = ψ3 varies from 0.78 (for the stables cases) to possible large or
even infinite values for unstable cases, for instance if C(Rθ+Rq) = −1. As a practical rule,
values for φ3 = ψ3 are limited to the maximum value of ACBRPHIM = 2.2 (or possibly
less), available in the NAMELIST of ARPEGE.

2.2 The constants

The set of constants used in ARPEGE are different from the one used in Meso-NH and
AROME. Three of the independent constants defined in Meso-NH and AROME are Cpv,
Cpθ and Cǫθ , leading to the four ARPEGE constants Cm, Cθ, Cq and C, according to

Cm =
4

15 Cpv
, (18)

Cθ = Cq =
2

3 Cpθ
, (19)

C =
Cθ
Cǫθ

=
2

3 Cpθ Cǫθ
. (20)
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In addition to Cpv, Cpθ and Cǫθ , the other independent constants are Cǫ in (5) and Ce in
(12).

There exist different sets of values for these five independent constants, depending on
different papers or different tuning of the models. The set of constants proposed by
Cheng, Canuto and Howard (2002)(below CCH02) is used here.

The choice of the Cheng et al. constants provides an enhancement of the momentum fluxes
(a decrease in Cpv), an increase of the dissipation (a decrease in Cǫ) and with almost the
same thermal and moisture fluxes (not so different values for Ce, Cpθ and Cǫθ ), compared
with other tested sets of constants (e.g those of Cuxart, Bougeault, Redelsperger (2000)
ou Redelsperger, Sommeria (1981)). The constant values are: Cǫ = 0.845, Ce = 0.34,
Cpv= 2.11, Cpθ= 4.65 and Cǫθ = 1.01.

The corresponding values for C, Cm and Cθ write: C = 2/(3 CpθCǫθ ) =0.143, Cm =
4/(15 Cpv)= 0.126, Cθ = Cq = 2/(3 Cpθ)= 0.143.

In ARPEGE, there are five constants which are all set in the NAMELIST of the model.
In addition to the same constant C used in (16) for the definition of φ3 = ψ3, the four
other constants are AKN, αT , αe and ALD, corresponding to

Km = AKN Lm
√
e ⇒ AKN = Cm =

4

15 Cpv
; Cpv =

4

15 AKN
,(21)

KT = Kq = αT Km φ3 ⇒ αT =
Cθ
Cm

=
5

2

Cpv
Cpθ

; Cpθ =
2

3 AKN αT
,(22)

Ke = αe Km ⇒ αe =
Ce
Cm

=
15

4
Cpv Ce ; Ce = αe AKN ,(23)

Diss =
e
√
e

ALD Lǫ
⇒ ALD =

1

Cǫ
; Cǫ =

1

ALD
.(24)

The values used in this version are AKN = Cm = 4/(15 Cpv)= 0.126;ALPHAT = αT =
(5 Cpv) /(2 Cpθ)= 1.13 and ALD = 1/Cǫ= 1.18 and ALPHAE = αe = Ce/Cm = 2.7.

2.3 The vertical mixing and the (dynamic+thermal) produc-
tions

The dissipation term is given directly by (5). The vertical mixing term and the dynamical
production term are computed by putting (10) and (12) into (2) and (3), with dp =
− ρ g dz = − ρ dφ, leading to

Diffvert = − g
∂

∂p

(
ρ g Ke

∂e

∂φ

)
= − g

∂

∂p

(
ρ g Ce Lm

√
e
∂e

∂φ

)
, (25)

Pdyn. = Km

[(
∂u

∂z

)2

+
(
∂v

∂z

)2
]

= Cm Lm
√
e

[(
∂u

∂z

)2

+
(
∂v

∂z

)2
]
. (26)

The thermal production term (4) is computed differently. It is not computed as the
product of an exchange coefficient with the associated gradient, i.e.

w′θ′vl 6= − Cθ Lm
√
e
∂ θvl
∂z

φ3 . (27)

The usual method is rather to express Pther. in terms of the conservative Betts variables,
given by (8) and (9), leading to a formulation

Pther. ≡ β w′θ′vl = β Eθ w′θ′l + β Eq w′q′t , (28)
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where the two terms Eθ and Eq are two non-trivial coefficients to be determined, which
depends on the normalized saturation deficit and to the the sub-grid variance of the
humidity (cloud water).

The two following additional hypotheses are made in (28)

w′θ′l = − Cθ Lm
√
e
∂ θl
∂z

φ3 , (29)

w′q′t = − Cq Lm
√
e
∂ qt
∂z

ψ3 , (30)

with φ3 = ψ3 given by (16) and (17).

2.4 A3-d: The sub-grid variability of cloud water

The two coefficients Eθ and Eq are to be determined in order to allow the computation
of the moist thermal production (28). To do so, some additional hypotheses must be
done, concerning the sub-grid variability of the humidity. It is the reason why the moist
turbulent scheme is so dependent on the way to represent the moist processes.

We will describe the same method that has been already used from the old version 3 to the
actual version 6 of the ARPEGE-GCM (see Ricard and Royer, 1993). Let us define the
parameter “s” which depends on the sub-grid departure terms θ′l and q′t of the conservative
Betts variables :

s =
a

2

(
q′t − α1 θ

′
l

)
, (31)

a =

[
1 +

Lv/f
cp

(
∂ qsat
∂ T

)
(T=Tl)

]−1

, (32)

α1 =
T

θ

(
∂ qsat
∂ T

)
(T=Tl)

. (33)

Both a and α1 depend on the derivative with respect to T of the saturating water vapor
qsat, where the derivative is computed at the value Tl.

Let us denote by Q1 the normalized saturation deficit, which depends both on a and on
the standard deviation of s, denoted by σs, leading to

Q1 = a

[
qt − qsat(Tl)

2 σs

]
. (34)

The standard deviation of s, i.e. σs, writes in terms of a, α1 and the second order fluxes,
giving

σs =
a

2

[
(q′t)

2 − 2 α1 (q′t θ
′
l) + (α1)

2 (θ′l)
2
]1/2

. (35)

From Cuxart et al. (2000), the second order fluxes write

(q′t)
2 = C (Lm)2 ψ3

(
∂qt
∂z

)2

, (36)

(θ′l)
2 = C (Lm)2 φ3

(
∂θl
∂z

)2

, (37)

(q′t θ
′
l) = C (Lm)2

(φ3 + ψ3)

2

(
∂qt
∂z

)(
∂θl
∂z

)
. (38)
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Let us replace the second order fluxes (36) to (38) into (35), with the property φ3 = ψ3

valid for the present "1D-column" version of the scheme. The result can be factorized into
the square of a quantity expressed in terms of the vertical gradients of θl and qt, leading
to

σs =
a

2

√
C (Lm)2 φ3

∣∣∣∣
∂qt
∂z

− α1
∂θl
∂z

∣∣∣∣ . (39)

It is possible to write differently the term
√

C (Lm)2 φ3, in order to express the result in
terms of the exchange coefficient KT given by (13), the constant Cǫθ given by (20), the
mixing length Lm and the turbulent kinetic energy e, leading to

√
C (Lm)2 φ3 =

1√
Cǫθ

√
Lm KT√

e
. (40)

The coefficient 1/
√
Cǫθ (ARSB2 in the code) equals 0.833.

2.5 The sub-grid variability of cloud water

The method, described in Mellor (1977), starts with the definition of (7), (8) and (9) for
the temperature of Lilly and the conservative variables of Betts.

In order to get an equation like (28) for the flux of θvl, let us write θvl in terms of the
Betts variables θl and qt :

θvl = θl + D1 qt + D2 qc , (41)
D1 = 0.608 θ , (42)

D2 =

(
Lv/f

cp T
− 1.608

)
θ . (43)

From (41), the flux of the Lilly temperature writes

w′θ′vl = w′θ′l + D1 w′q′t + D2 w′q′c . (44)

The last terms of (41) or (44), i.e. D2 qc or D2 w′q′c, cannot be computed without making
additional hypotheses. There are 3 such hypotheses, all involving the fluxes, not directly
the variables.

Hypothesis 2 : established by Mellor (1977) for the Gaussian distributions, it has been
extended for non-Gaussian cases by Bougeault (1982). From Bougeault (1982), Cuijpers
and Bechtold (1995), Bechtold et al. (1995), it is assumed that the residual term w′q′c in
(44) can be expressed in terms of ‘s’ defined by (31), leading to

w′q′c = w′s′ λ3(Q1, AS)

{
s′q′c
(σs)2

}
, (45)

where w′s′ ≡ a

2

[
s′q′t − α1 s′θ′l

]
, (46)

where λ3 is a function of the two variables (Q1, AS), function defined hereafter, depending
of the normalized saturation deficit Q1 and the asymmetry factor AS .

Hypothesis 3 : from Bougeault (1982), it is assumed that the last term of (45) can be
written as

s′q′c
(σs)2

= 2 F2(Q1, AS) , (47)
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Table 8.1: Value of AS and λ3 in terms of Q1.

Exp / Asym. Mixed regime Gaussian
(Cu) ( Cu / Sc) (Sc)

Q1 < −2 −2 < Q1 < 0 Q1 > 0

AS = 2 AS = −Q1 AS = 0

λ3 = 3 λ3 = 1−Q1 λ3 = 1

where F2, like λ3, is a function of the two variables (Q1, AS).

Finally, from (44) to (47), the flux of θvl can be rewritten as

w′θ′vl =
[
w′θ′l + D1 w′q′t

]
− {a D2 F2 λ3}

[
α1w′θ′l − w′q′t

]
. (48)

It is the sum of two terms. The first term into brackets doesn’t depend on F2 or the vari-
ability in cloud water and moisture. The second term directly depends on the variability
in cloud water and moisture, via the product of the four terms a D2 F2 λ3.

Hypothesis 4 : from Bougeault (1982), it is assumed that the probability density func-
tion G(s) is a possibly mixed symetric (Gaussian) and asymmetric (exponential) function.
This PDF gives the average values over the grid-cell for the cloud cover Ns, for the cloud
water content qcs and the normalized second order flux s′q′c / [ 2 (σs)2 ]. It results

Ns = F0(Q1, AS) =

∫ +∞

−Q1

G(t) dt , (49)

qcs
2 σs

= F1(Q1, AS) =

∫ +∞

−Q1

(Q1 + t)G(t) dt , (50)

s′q′c
2 (σs)2

= F2(Q1, AS) =

∫ +∞

−Q1

t (Q1 + t)G(t) dt . (51)

For the given PDF, i.e. G(s), all the functions F0, F1, F2 and λ3 can be analytically
determined and numerically computed. They depend on the two variables (Q1, AS) and
they determine the flux (48), and thus the thermal production term (28).

The Table (8.1) gives the definitions for AS and λ3 in terms of the normalized saturation
deficitQ1. The symmetric Gaussian distributions regime (Q1 > 0) is supposed to represent
the Strato-Cumulus. The asymmetric Exponential regime (Q1 < −2) is supposed to
represent the Cumulus regime. The regime in between, a mix of the Gaussian and the
Exponential PDFs, has been pre-computed and tabulated in the Meso-NH model.

The “large-scale” (or “stratiform”) cloud cover Ns is computed at each time step and for
each grid-point with (49). Similarly, the “large-scale” cloud water content qcs is computed
with (50), with 2 σs given by (39) and (40).

These “large-scale” cloud cover and cloud water content are merged with the “convective”
quantities, with some overlapping assumptions, in order to transmit them to the radiation
code.

Also, the “large-scale” cloud water content is transmitted to the Bulk prognostic scheme
of condensation and precipitation (Lopez’s scheme).

The identification of (28) with (48) leads to the following formulas for Eθ et Eq :

Eθ = 1 − α1 { a D2 F2 λ3 } , (52)
Eq = D1 + { a D2 F2 λ3 } , (53)
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2.6 Min and Max Q1 limitations: LECTQ1=.TRUE.

During the development of the high-resolution version of the model (T359) for CMIP6,
it appears some instabilities, for which we have decided to reactivate the limitation of
Q1, already used in CMIP5 configuration. This limitation is run with the logical key
LECTQ1= .TRUE. in the acturb.F90 subroutine. It corresponds both to a minimum and
maximum value of Q1. As in CMIP5 Ricard-Royer scheme, it appears essential to limit
the occurence of negative moistures (otherwise unrealistic values of the mixing length can
appear) through a condition on the standard deviation of qw. The following inequality is
met:

|Q1| > A|∆q|| ∂qw
∂z

|
qw| ∂qw∂z − α1

∂θl
∂z

|
= Q1min (54)

In the code, Q1min is ZQ1MIN, A is STTBMIN (STTBMIN=1.73), |∆q| is ZDELTQH,

| ∂qw
∂z

| is ABS(ZDQW), qw is ZQWF, and | ∂qw
∂z

−α1
∂θl
∂z

| is ZDIFFC. This minimum Q1 value
gives a maximum value for the mixing length. For Q1 max value, firstly the minimum
value for Φ3 (neutral cases, see Cuxart et al.), is computed, in a consistent manner with
the computation done in ACBL89.F90, by:

φ3min =
1

1 + 2.ARSC1
(55)

Then the maximum of Q1 (ZQ1MAX in the code) is computed as:

Q1max ==
qt − qsat(Tl)√
C (Lm)2 φ3

∂qt
∂z

− α1
∂θl
∂z

(56)

2.7 The mixing and dissipation lengths

The mixing length Lm and the dissipation length Lǫ are computed in a non-local way,
following Bougeault et Lacarrère (1989). Starting from a level at the altitude z where the
energy is set to the local turbulent kinetic energy e (z), the non-local lengths Lup and
Ldown are computed as the possible upward and downward displacements, respectively,
until the energy e (z) is equal to the integral of the work of the buoyancy force, expressed
in terms of θvl give by (7).

It results

e (z) =

∫ z+Lup

z

β
[
θvl(z

′) − θvl(z)
]
dz′ , (57)

e (z) =

∫ z

z−Ldown

β
[
θvl(z) − θvl(z

′)
]
dz′ . (58)

The formulation for Lm in ARPEGE-GCM is:

Lm =
[
1

2
{ (Lup)−2/3 + (Ldown)

−2/3 }
]−3/2

. (59)

Close to the ground, the Karman law Lm ≈ 0.4 z is not set. Instead, following the
theoretical arguments of Redelsperger, Mahé and Carlotti (2001), it could be normal to
approach Lm ≈ 2.8 z in true convective cases (values of Lm ≈ 2 z are simulated in 1D
cases as RICO or ARM-Cu).
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For the stable regimes, the numerical scheme for the computation of Lup and Ldown are
made in a very accurate way, with a second order scheme, in order to be as close as possible
to the Deardoff’s length:

LD =

√
2 e

β
(
∂θvl/∂z

) =

√
2

N

√
e , (60)

where N2 = β ∂θvl/∂z is the square of the Brunt Väisälä frequency.

The Deardoff’s length can be very small for very stable cases (Lm ≈ LD ≪ 1 m), because
in that cases e is small, reaching the minimum value of 10−4 to 10−6 m2 s−2, also because
∂ θ/∂z ≫ 0 is large.

As a consequence, the small values for both Lm and e in the stable regions lead to small
values for the exchange coefficients Km to Kq given by (10) to (14), which all vary as
Lm

√
e.

The large scale ARPEGE-GCM must be able to manage all the cases, from the surface
layer to the mesosphere, including the planetary boundary layer, the troposphere and the
stratosphere. In order to maintain a minimum vertical mixing in all stable regions, some
modifications have been included after the computation of Lm in (87).

Lm = Max [ Lm ; Min (λE ; 0.4 z) ] . (61)

In the code g ∗ Lm is ZGLMIX and 0.4gz is ZGLKARMN.

As a consequence, the asymptotic value λE replaces the Deardorff’s length in the stable
regions. Close to the ground, the formulae (61) is a security, leading to Lm ≥ 0.4 z for
z < λE/0.4 and Lm ≥ λE for z > λE/0.4. Typically, λE = 10 m (ALMAVE in the code)
and λE/0.4 = 25 m. The mixing length Lm is PLMECT in the code and the dissipation
length Lǫ (1/PUSLE in the code) is computed as ALD*PLMECT, with ALD=1.18.

2.8 The turbulent kinetic energy in the surface layer

The values of e are given by the prognostic equation (1) for each upper-air half-levels,
i.e. on the half-levels where the exchange coefficients Km to Kq are computed, at the
middle points between the full-levels where all the thermodynamics variables are available
(temperature, wind, specific humidity, ...)

But the vertical mixing processes represented by (2) needs the knowledge of e at the
groung level or in the surface layer, denoted by eS .

In the current version of the code (for .LECTREP=.TRUE.), es =eklev, value at the last
vertical level. This hypothesis avoids strong and unrealistic values of es over mountains.

For the key LECTREP=.FALSE., eS ≡ [(u′
S)

2 + (v′S)
2 + (w′)2]/2 is computed following

André et al. (1978), see their Eq.(29), p.1866, with the term (−ζ)2/3 (u∗)
2 dropped in the

instable case, leading to :

eS = 3.75 (u∗)
2 + 0.3 (w∗)

2 (1− δstab) . (62)

The first part, valid for both stable and instable conditions, depends on the friction veloc-
ity u∗. The values of u∗ are given by the “Bulk” scheme of Louis (1979, 1982), previously
computed in ACHMT in ARPEGE. The second part, only valid for the instable (con-
vective) cases, i.e. for 1 − δstab = 1, and including the term 0.3 (w∗)

2, depends on the
convective velocity w∗ (Deardorff, 1980), defined by :

w∗ = ( β HPBL Q0 )
1/3 , (63)

where Q0 = (w′θ′)surf = − Ch |uN | (∆θ)N . (64)
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In stable regime, (62) reduces to eS = 3.75 (u∗)
2.

The term HPBL in (63) is a diagnostic PBL height. It is computed starting from the
ground as the height of the first level where an important decrease in e occurs, corre-
sponding to the top of the PBL and the beginning of the stable layers located above the
PBL.

The term Ch in (64) is the thermal surface Drag coefficient given by (67). The term |uN |
is the norm of the wind speed at the first upper-air level above the ground. The term
(∆θ)N is the difference in θ between the ground level and the first upper-air level above
the ground.

2.9 The “Bulk” formulations in the surface layer

The neutral, dynamical and thermal versions of the surface Drag are denoted by Cdn,Cd
and Ch, respectively. They are computed following the “Bulk” scheme of Louis (1979,
1982) :

Cdn(z, z0) =

(
0.4

log(1 + z/z0)

)2

, (65)

Cd(Ri, z, z0) = fd(Ri) Cdn(z, z0) , (66)
Ch(Ri, z, z0) = fh(Ri) Cdn(z, z0) . (67)

The functions fd(Ri) and fh(Ri) only depend on the Richardson’s number Ri. The coef-
ficient Ch given by (67) is the one used to define Q0 in (64), in order to compute w∗ by
(63).

2.10 The vertical mixing and the dissipation term

The dissipation term (5) writes Cǫ e
√
e/Lǫ. It is numerically computed by using either

explicit or implicit methods, depending of the value of two coefficients αexp (ADISE in
the code) and αimp (ADISI). In the current version, ADISE=-0.5 and ADISI=1.5.

The term
√
e in the numerator of Cǫ e

√
e/Lǫ always appears in the explicit form

√
e(t) .

The two coefficients αexp and αimp determine how the other term e is computed, leading
to the following discretization for the term (e)3/2, in terms of the time steps t and t+ dt
:

√
e(t) [ 1.5 e(t+ dt) − 0.5 e(t) ] . (68)

The last formulation is obtained when the term X3/2 = (e)3/2 is written as the following
Taylor expansion (personal communication of V. Masson)

X3/2 = (X0)
3/2 + 1.5 (X0)

1/2 (X −X0) , (69)

(e)3/2(t+ dt) = e(t)
√
e(t) + 1.5

√
e(t) [ e(t+ dt)− e(t) ] , (70)

where 1.5 (X0)
1/2 is the derivative of X3/2 at X0, leading indeed to (68).
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2.11 The Top-PBL vertical entrainment: LPBLE=.TRUE.

The properties of stratocumulus clouds are greatly affected by cloud-top entrainment
process corresponding to the mixing of free-tropospheric air above the inversion with
the turbulent cloudy air. Stratocumulus cloud layers are maintained by an energetic
balance between radiative cooling and surface and cloud top entrainment warming, and a
moisture balance between moisture fluxes and drying from cloud top entrainment. Cloud
top entrainment of dry, warm air from the free troposphere in stratocumuls is strongly
aided by the evaporation of cloud water into a thin layer just above cloud, which cools
the air parcels in the mixing region, making them sufficiently negatively buoyant to sink
into the cloud layer. Strength of cloud top entrainment increases with stratocumulus
cloud thickness, as thicker stratocumuli have more cloud-top condensate than thinner
ones. Cloud top entrainment mixes in warm, dry air into the boundary layer, raising the
cloud base and thereby thinning the cloud layer. A review on stratocumulus can be found
there:

http : //www.atmos.washington.edu/ robwood/teaching/535/StratusStratocumulusW oodJuly22.pdf
A historical review up to 1986 can be found in Reuter (1986).

Although the importance of entrainment in affecting cloud properties was realized early
(Lilly 1968), the parameterization of entrainment for stratocumulus cloud is yet to be fully
resolved (Wood 2012; Bretherton and Blossey 2014). The first effort to understand cloud-
top entrainment can be found in the classic work by Lilly (1968), in which a budget for
turbulence kinetic energy (TKE) was applied to the whole BL. Subsequent treatments of
entrainment rate closures considered the TKE budget of the inversion layer (e.g., Tennekes
1973; Tennekes and Driedonks 1981). More recently, substantial theoretical, modeling, and
observational work has focused on the application of a simplified TKE budget to relate
entrainment rates to vertical velocity variance in the cloud-topped BL and the convective
velocity scale w* (e.g., Nicholls 1984; Nicholls and Turton 1986; Bretherton et al. 1999;
Lock et al. 2000). The vertical resolution of the large scale models in GCM mode, remains
rather coarse. Above an altitude of 1000 to 1500 m height, the layer depths are typically
as high as ∆z > 200 to 300 m.

With such coarse vertical resolutions (above the critical value of (∆z)crit ≈ 20 m to
50 m) it is not possible to represent in a realistic way the vertical entrainment in the
Stratocumulus. This vertical entrainment occurs at the very top of the PBL, where the
dry air above the Top-PBL is mixed into the underlying cloudy air, located below the
Top-PBL height.

In order to parameterize this sub-grid process (sub-grid on the vertical), the old ideas of
Tenekes (1973), revisited by Nicholls and Turton (1986) or Grenier et Bretherton (2001),
and summarized in the note of Grenier (2002), has been implemented in the CBR00 version
of ARPEGE.

The activation of top-PBL entrainment is also specific of the climate version (LPBLE=.TRUE)
vs the NWP one (LPBLE=.FALSE.) for positive impact in terms of stratocumulus cover
in the eastern part of the oceans.

The first step is to compute the inversion height zinv. It could be defined as a jump in,
either ∂θ/∂z or θ, or when the Richardson number Ri becomes greater than a threshold
value (Ri)crit. It is rather computed in the code starting from the ground as the height
of the first level where an important decrease in e occurs, corresponding to the top of the
PBL and the beginning of the stable layers located above the PBL.

The second step is to replace the exchange coefficients previously computed by (10) to
(14) by another coefficient, computed at the inversion, denoted by Kinv and verifying

(w′θvl
′)(zinv) = − went ∆inv(θvl) , (71)

= −Kinv
∆inv(θvl)

∆inv(z)
⇒ Kinv = went ∆inv(z) , (72)

where went is called “entrainment velocity” (at the inversion) and where ∆inv(θvl) is the
buoyancy jump in θvl and across the layer surrounding this inversion ∆inv(z).
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Following the results of Grenier and Bretherton (2001) and some unpublished ideas of Gre-
nier (Workshop EUROCS at Utrecht, in April 2002), the Top-PBL entrainment exchange
coefficient Kinv is defined at the inversion level by

Kinv = went ∆inv(z) = Ainv
< e >3/2

Linv N2
inv

. (73)

Presently, there is no Prandtl number and all the exchange coefficients (10) to (14) are
replaced by the same value (73).

Grenier (2002) has introduced the average value over the whole PBL of the turbulent
kinetic energy, denoted by

< e > =
1

zinv

∫ zinv

0

e(z) dz . (74)

The unknown parameters in (73) are the Richardson number at the inversion N2
inv, the

mixing length at the inversion Linv and an adimensional coefficient Ainv. These parame-
ters are defined by:

N2
inv = β

[
∆inv(θvl)

∆inv(z)

]

(z=zinv)

, (75)

Linv = 0.085 zinv , (76)

Ainv = A1

[
1 +A2

Lv/f < qc >

cp ∆inv(θlt)

]
. (77)

for positive values of AGREF. And for negative values of AGREF, as proposed by GuÃ c©rÃ c©my
(2011):

Ainv = −A1 ∗AGREF
[
1− (1 +

1

AGREF
) ∗ sin2(f(inversion))

]
. (78)

For AGREF <0 (the current choice is AGREF=-0.036), the sinus is zero for strong inver-
sions (∆inv(θlt) > 1.5K corresponding to stratocumulus case, whereas the sinus equals 1
for smaller inversion (convective case). If the sinus = 0, Ainv = - AGREF*AGRE1 ( 0.2
with the current values, and AGRE1 (=5.5) for the convective cases. Then the ratio for
top PBL entrainment between convective clouds and stratocumulus is around 27. In the
code, N2

inv is ZBI (acturb.F90) There is a security for the computation of Kinv in (73)
where, from (75), the division by N2

inv leads to a division by the term ∆inv(θvl) which
can be tiny or even equal to 0. A minimum value of 1.5 K or so is managed by setting
AJBUMIN= 0.005 in the NAMELIST, with ∆inv(θvl) >AJBUMIN ⋆ θ.

The part of the entrainment coefficient Ainv which is controlled by A2 is called the “evap-
orative enhancement of entrainment” in Grenier and Bretherton (2001). It is not used in
the current version. The jump in potential temperature ∆inv(θlt) corresponds to another
moist potential temperature, different from the Lilly one θvl given in (7). This conservative
potential temperature θlt is a mix of the Betts variables, defined by

θlt = θl (1 + 0.608 qt) . (79)

The average value over the whole PBL (liquid + solid) < qc > is defined by (ZQCBLK in
the code):

< qc > =
1

zinv

∫ zinv

0

qc(z) dz . (80)
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During CMIP6 development, the choice for the numerical values of A1 and A2 has been
made with analysis of 1D cases and checking the stratocumulus cover on the eastern side
of oceans.

It is possible to rewrite Kinv given by (73) in a form similar to (13) or (14), in order to
define a kind of “stability function” (the term into brackets).

Kinv =
Ainv
2

Linv < e >1/2

[
2 < e >

(Linv)2 N2
inv

]
. (81)

The term into brackets is a kind of bulk stability function [ (LD)
2
inv / (Linv)

2 ], similar to
the functions φ3 and ψ3 defined in (13) and (14), where (LD)

2
inv ≡ 2 < e > /N2

inv is the
square of a kind of bulk Deardorff length, similar to (60).

2.12 Explicit diffusion of conservative variables: LDIFCEXP=.T.

Note that this option is specific of climate simulations (GuÃ c©rÃ c©my, 2011) and corre-
sponds to the logical keys LDIFCEXP=.T. and LDIFCONS=.F.. In the NWP version,
LDIFCEXP=.F. and LDIFCONS=.T.

The conservative variables are:

sl = s− L

Cp
ql −

L

Cp
qi = cpTl + gz qt = qv + ql + qi (82)

, with s = CpT + gz, the dry static energy, sl the moist static energy, qt the total water
specific content, and Tl = T − L

Cp
ql (Bougeault, 1982 for example). Using the subgrid

distribution of ql, the definition of Tl and the s variable, it can be shown that the equation
for turbulent fluxes of ql and of conservative variables is of the type:

w′q′l = aλ3F2(Q1) ∗ (w′q′t − α1w′T ′
l ) (83)

In the code: a corresponds to ZAH variable, λ3F2(Q1) to PL3F2 and α1 to ZQSLTLH.

For computing the corresponding turbulent exchange coefficients,Kql (ZGKQLH in the
code), Ks (ZGKTAH in the code), and Kqv (ZGKQH in the code), the following rela-
tions are used:

Kql∆ql
∆Φ

= aλ3F2(Q1)
Kqt

∆Φ
∗ (∆qt − α1

∆sl
cp

) because the turbulent exchange
coefficient for moist static energy Ks equals that for the total water content Kqt.

For computing Kqv, as qt = qv + ql + qi, we have:

Kqv∆qv = Kqt∆qt−Kql∆ql (84)

and, for Ks,

Ks∆s = Ksl∆sl + LvKql∆ql (85)

The subroutine ACTURB computes the turbulent coefficients of conservative variables (sl,
qt) and the transformation of model variables (s,qv and ql) into conservative variables. As
output of the routine, when LDIFCEXP =.TRUE., the turbulent coefficients of the model
variables are computed: the generic relation Fψ = −Kψ ∗ ∂ψ

∂z
is inverted, starting with ql

(equation 83) and then s and qv with equation 82.

The subroutines ACDIFV1 and ACDIFV2 then compute the turbulent fluxes (implicit res-
olution) with as input model variables and their turbulent coefficient (if LDIFCEXP=.TRUE.)
or the conservative variables and their exchange coefficients for LDIFCONS=.TRUE..
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2.13 Enhanced turbulence due to convection, LCVTURB=.TRUE.

At high levels, in presence of convection and when the grid is saturated, the turbulence
is generally insufficient. As a consequence, due to the formulation of cloudiness, the grid
is too often overcast. There is a need to add an extra source of turbulence in order to
decrease the cloudiness. The source of turbulence due to convection could be introduced
by induced gravity wave or by a convective Ri (from convective transport of dynamics
and thermodynamics). For sake of simplicity a first attempt has been designed using
a minimum value of σs (= 5.10−5 kg/kg) in case of presence of convective condensates
and grid saturation above 600 hPa (mean level of beginning of detrainment for deep
convection).

3 Eddy-Diffusivity Mass Flux parameterization

The algorithmic treatment of transport is based on the "EDMF" concept and uses an im-
plicit combined resolution. The "EDMF" concept (Hourdin et al 2002, SOares et al 2004,
Siebesma 2007) is used in all NWP and climates models in MF (Arome, ARPEGE/ALADIN):

w′φ′ = −K∂φ

∂z
+
Mu

ρ
(φu − φ) (86)

with K = cLBL89

√
TKE and

LBL89] = Lǫ =
[
1

2
{ (Lup)−2/3 + (Ldown)

−2/3 }
]−3/2

. (87)

where Lup and Ldown are computed using dry buoyancy following Bougeault and LacarrÃ¨re
(1989). Due to numerical stability problems encountered with EDKF ( shallow convec-
tion scheme of EDMF type; Pergaud et al., 2009) in ARPEGE with "large time-steps",
a common implicit solver for Eddy-Diffusivity and Mass Flux part has been developed,
enabling stability for large time-steps.

1.Implicit treatment of the mass flux equations:

{
Fψ = ρw′ψ′ =M(ψu − ψ)(

∂ψ
∂t

)
MF

= 1
ρ
∂
∂z
Fψ

(88)

The second equation is solved implicitely for Fψ = (1− zi)F
−
ψ + ziF

+
ψ ,

F+
ψ = F−

ψ + δFψ = F−
ψ +

∂Fψ
∂ψ

δψ = F−
ψ −M(ψ̃+ − ψ̃−) (89)

then:

(
∂ψ

∂t

)
MF

=
1

ρ

∂

∂z
(F−
ψ − ziM(ψ̃+ − ψ̃−)︸ ︷︷ ︸) (90)

with upward increasing j levels and Fψ, M defined at levels where ψ̃(j) = 0.5(ψ(j)+ψ(j−
1)) The second rhs term corresponds to the implicit correction.
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We obtain:





ψ+(j)− ψ−(j) =
∆t
ρ∆z

(F−
ψ (j + 1)− F−

ψ (j)

−ziM(j + 1)(0.5ψ+(j + 1) + 0.5ψ+(j)− 0.5ψ−(j + 1)− 0.5ψ−(j))
+ziM(j)(0.5ψ+(j) + 0.5ψ+(j − 1)− 0.5ψ−(j)− 0.5ψ−(j − 1)))

(91)

Grouping ′+′ terms in the lhs of the equation the following tridiagonal system is obtained:





ψ+(j + 1)(0.5 ∆t
ρ∆z

ziM(j + 1))

+ψ+(j)(1 + 0.5 ∆t
ρ∆z

ziM(j + 1)− 0.5 ∆t
ρ∆z

ziM(j))

−ψ+(j − 1)(0.5 ∆t
ρ∆z

ziM(j)) = ψ−(j) + ∆t
ρ∆z

(F−
ψ (j + 1)− F−

ψ (j))

+0.5 ∆t
ρ∆z

ziM(j + 1)(ψ−(j + 1) + ψ−(j))

−0.5 ∆t
ρ∆z

ziM(j)(ψ−(j) + ψ−(j − 1))

(92)

2.Implicit treatment of the Eddy-Diffusivity equation. The Eddy diffusivity equation:

(
∂ψ

∂t

)
eddy

= −1

ρ

∂

∂z
(k
∂ψ

∂z
) (93)

is discretized as follows:

ψ+(j)−ψ−(j) = − ∆t

ρ∆z(j)
(
k(j + 1)

∆z(j + 1)
(ψ+(j+1)−ψ+(j))− k(j)

∆z(j)
(ψ+(j)−ψ+(j−1)))(94)

This yields to the simple tridiagonal system:





ψ+(j + 1)( ∆t
ρ∆z(j)

k(j+1)
∆z(j+1)

)

+ψ+(j)(1− ∆t
ρ∆z(j)

( k(j+1)
∆z(j+1)

+ k(j)
∆z(j)

))

+ψ+(j − 1)( ∆t
ρ∆z(j)

k(j)
∆z(j)

) = ψ−(j)

(95)

3. Common implicit resolution of the EDMF equation The discretization of the full EDMF
equation:

(
∂ψ

∂t

)
edmf

=
1

ρ

∂

∂z
(−k ∂ψ

∂z
+M(ψu − ψ)) (96)

yields to the following tridiagonal system:





ψ+(j + 1)( ∆t
ρ∆z(j)

( k(j+1)
∆z(j+1)

+ 0.5M(j + 1)))+

ψ+(j)(1− ∆t
ρ∆z(j)

( k(j+1)
∆z(j+1)

+ k(j)
∆z(j)

+ 0.5M(j + 1)− 0.5M(j)))+

ψ+(j − 1)(( ∆t
ρ∆z(j)

( k(j)
∆z(j)

+ 0.5M(j)))

= ψ−(j) + ∆t
ρ∆z(j)

(ψ−(j + 1)− (ψ−(j)) + 0.5 ∆t
ρ∆z(j)

M(j + 1)(ψ−(j + 1) + ψ−(j))

−0.5 ∆t
ρ∆z(j)

M(j)(ψ−(j) + ψ−(j − 1))

(97)

The value of zi in the code is 0, meaning that a combined (convection, turbulence) CHECK
treatment is used but the coefficient for implicitation of convection equals 0. Sensitivity
tests around this choice have been run.

This work is done in subroutines acdifv1/acdifv2.
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4 Algorithmics

The monitor of the ARPEGE physics is APLPAR. The prognostic TKE scheme is called
by the main subroutine ACTKE, with the TKE variable “PTKE” as input array and the
flux of the tendencies “PFTKE” as output array.

The list of subroutines called if LVDIF.AND.LECT=.TRUE. is:

• APLPAR : monitor of the ARPEGE physics

• ACHMTLS : general surface layer computations, PCPS (chaleur massique Ã pres-
sion constante de l’air au sol), surface latent heat...

• ACTKE : monitor of the TKE computations ; possible half<->full<->half averages
(if LECTFL)

• ACBL89 : computes the upward and downward buoyancy lengths Lup and Ldown,
then the mixing length Lm and the dissipation length Lǫ by (87) and (61) ; computes
the stability functions φ3 = ψ3 given by (16) and (17). It is assumed that the grid-
cell mean liquid and solid cloud water contents are available as input of ACBL89
and ACTURB.

• ACTURB : compute eS by (62) ; computes the exchange coefficients Km and KT ;
computes the moist thermal production term (28) with the help of (48) and (51)
computes the grid-cell mean cloud cover Ns, the grid-cell mean cloud water content
qcs and the subgrid normalized second order flux F2(Q1, AS) with the use of (49)
to (51) ; compute the Top-PBL height and the exchange coefficient at the Top-PBL
inversion.

• ACEVOLET : numerical computation of the TKE equation (1), with an implicit
solver for the vertical diffusion (25), with αimp = 1.5 and αexp = −0.5 given
by (68). The dissipation term (5) is computed with the help of the same (1.5
; −0.5) implicit scheme. The moist thermal production term is an input of the
subroutine (computed in ACTURB). The dynamical production term is computed
in this subroutine.

Note on the interaction with the radiation scheme.

The “large scale” variables Ns and qcs are computed in (49) and (50), in the turbulent
scheme. They correspond to the grid-cell averaged values for the Cloud Cover and the
Condensed Cloud Water. They are added to the same informations coming from the
PCMT convections scheme, with some suitable assumptions for the overlapping of the
cloud layers on the vertical (Maximum overlap for LGPCMT + LRNUMX).

5 Logical keys and main parameters in the current
version

Logical keys

&NAMPHY
LDIFCEXP= .TRUE. : explicit diffusion of conservative variables
LDIFCONS= .FALSE. : use the Betts conservative variables (LDIFCONS and LD-

IFCEXP work together: if one is TRUE, the other is False)
LDISTUR= .TRUE. : alternative discretization in ACTURB (cf JEF)
LECT= .TRUE. : the main switch for the turbulent scheme
LECTFL= .FALSE. : no half<->full<->half averages in ACTKE
LECTQ1= .TRUE. : for limitation of Q1 in acturb
LNEBECT= .TRUE. : use of the Bougeault-Bechtod values (F0, F1, F2)
LNSMLIS= .TRUE. : key for activating smoothing of Smith’s cloudiness
LPBLE= .TRUE. : use of the Top-PBL vertical entrainment



190 8. The turbulence scheme

Parameters &NAMPHY0
ACBRPHIM= 2.2 : a maximum value for (φ3). ZPHI3MAX (in acbl89) is

(1-ACBRPHIM)/ACBRPHIM.
ADISE= −0.5 : Dissipative parameter for TKE (explicit part)
ADISI= 1.5 : Dissipative parameter for TKE (implicit part)
AGREF= −0.036 Parameter for Top-PBL entrainment; Ainv = AGRE1∗AGREF
AGRE1= 5.5 : first Sc value A1 – Top-PBL entrainment ; see the Table (??)
AGRE2= 0. : second Sc value A2 – Top-PBL entrainment ; see the Table (??)
AJBUMIN= 0.00525 : a threshold value to avoid division by zero
AKN= 0.126 : CCH02 value for (Km/Lm/

√
e) – see the Table (??)

ALD= 1.18 : CCH02 value for (1/Cǫ ) – see the Table (??)
ALMAV= 20. : momentum exchange asymptotic mixing length
ALMAVE= 10. : an asymptotic and minimum value for Lm
ALPHAE= 2.7 : CCH02 value for (Ke/Km) – see the Table (??)
ALPHAT= 1.13 : CCH02 value for (KT /Km/φ3) – see the Table (??)
ARSB2= 0.833 : the coefficient 1/

√
Cǫθ in (40)

ARSC1= 0.1389 : parameter for φ3min

ECTMIN= 1.0E − 6 : a minimum value for (e)
ECTMAX= 100 : a maximum value for (e)

Top-PBL entrainment ; see the section (2.11)
STTBMIN= 1.73 : parameter for Q1 limitation (min)
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Microphysics

parameterizations scheme

1 Introduction

There exists two main types of microphysics scheme, Bulk and Bin schemes:

• spectral (Bin) microphysics aim to compute microphysics as accurately and gener-
ally as possible: it divides microphysical particles into bins for different sizes and
compute evolution of each bin separately; in that case the particle size distribu-
tion (PSD, see below) is an output not an input, but these schemes are much too
expensive for operational use.

• Bulk schemes are used to calculate microphysics with a semi-empirical PSD.
• There exist also hybrid schemes which aim the accuracy of bin schemes with ef-

ficiency of bulk schemes ( for example, Onishi and Takahashi (2012) who used
bin for warm processes and bulk for ice) but they remain too expensive for NWP
and Climate models. There exist also bin-emulating schemes which calculate rates
offline with complex bin scheme and develop lookup tables (Verlinde, 1990).

Microphysics processes are complex, but can be modelled very effectively with a bin ap-
proach, which is only a research tool, much too expensive for use in NWP or Climates.

Note also the definition of microphysical moments: for PSDs f(m), m being the particle
mass, the kth moment is:

M (k) =

∫ ∞

0

mkf(m)dm (1)

It is possible to distinguish three types of schemes according to the "k" value:

• One-moment schemes (1M) correspond to k=1 (mass)
• Two-moments schemes (2M) correspond to k=0 and 1 (number concentration and

mass)
• Three-moments schemes (3M) correspond to k=0 and 1 and 2 (number concentra-

tion, mass and radar reflectivity)

A partial history of schemes with main steps and papers is proposed below. Note the
increase in complexity and reducing gap between bulk and bin methods:
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• Kessler (1969) : first warm rain bulk parameterization
• Lin et al. (1983) : 1M, includes hail
• Cotton et al. (1986) : first bin parameterization (RAMS)
• Murakami (1990) : 1 M, snow includes crystals and aggregates
• Verlinde et al.(1990) : development of lookup tables
• Ferrier (1993) : 2M for ice and precipitating species
• Cohard and Pinty (2000) : 2M for warm microphysics
• Saleeby and Cotton (2004) : 2M bin-emulating bulk scheme. Fully interactive with

prognostic CCN and IN aerosol schemes
• Morrison et al. (2005) : 2M scheme for droplets, cloud ice, rain and snow
• Milbrandt and Yau (2005) : 3M scheme for hail
• Lim and Hong (2010) : WRF 2M 6 classes; prognostic treatment of cloud conden-

sation nuclei

Processes to account for are:

• Droplet nucleation (condensation)
• Droplet growth by vapour diffusion
• Collisions between droplets and between hydrometeors
• Sedimentation (differential motion)
• Freezing/Melting
• Ice multiplication
• Raindrop breakup
• Effects of aerosol on all these

Much "large-scale" rain originates from melting ice. Much convective rain and some large-
scale rain originates from collision and coalescence of cloud droplets.

In bulk schemes different collisions can be described:

• self-collection (X+X–>X): droplet + droplet –> droplet
• self-collection: rain + rain —> rain
• autoconversion: droplet + droplet —> rain
• accretion: droplet + rain —> rain

Self-collection does occur due to fall speed differences between particles of different sizes
but of same type.

2 The microphysics scheme

2.1 History of the Lopez Scheme

Mainly developed for variational assimilation of cloud and precipitation observations, the
Lopez’ scheme (2002) describes both the large-scale cloud water content and the large-
scale precipitations (liquid and solid), by using prognostic equations and describing several
physical processes acting between the different species. Since then, the Lopez has been
tested, modified and improved, for both Climate and NWP mode (see Bouyssel, 2005),
also in the ALADIN-ALARO team (see Gerard, 2005 ). This is also the microphysics
scheme used in the current NWP ARPEGE model. This scheme has been deeply modified
by Bouteloup et al. (2010) introducing a new statistical sedimentation scheme. Since
2009, this scheme has been used and tested in different research versions of the climate
model, with a convection diagnostic scheme (Bougeault, 1985) or a prognostic one (PCMT,
Piriou, 2007, GuÃ c©rÃ c©my, 2011). In the second case, the Lopez scheme is called twice,
one time by the APLPAR routine for the large-scale part, and one time by the ACPCMT
routine for the convective part.



9. Microphysics parameterizations scheme 193

2.2 Which processes are described in the scheme?

The physical processes described by the scheme of Lopez (2002) are based on a “bulk”
assumption. They are close to the one described in Fowler et al. (1996).

• The cloud water content and the precipitations ( 4 prognostic variables, either
for large-scale or for convective part = 8 prognostic variables) are supposed to be
pronostic variables, available as input of the scheme.

• The cloud water content (liquid and ice) and the precipitations (rain and snow)
form two separate distributions of dropplets. The smaller ones are the suspended
cloud condensate, whereas the larger ones are precipitating species.

• The condensation/deposition process acts as a source for the liquid/ice condensed
cloud water.

• The evaporation/sublimation process acts as sinks for the rain/snow precipitation
content

• The condensed cloud water (liquid and ice) can transform into the precipitation
content species (rain and snow) via the processes of auto-conversion and collections
(accretion + aggregation + riming).

• The precipitation content species (rain and snow) fall with different fall speeds.
The sedimentation processes is that of Bouteloup et al. (2010), described in chapter
PCMT.

• The Freezing-Melting-Bergeron processes between cloud liquid water and cloud ice
are not explicitly described. Only the snow melting is computed (between snow and
rain). The detrainment from the convection schemes (neither shallow nor deep) are
not taken into account.

2.3 "Bulk" equations

The either grid-averaged or convective condensed water species, input of the scheme, will
be denoted below by

ql liquid cloud water content
qi ice cloud water content
qr rain precipitation content
qs snow precipitation content

The system of four prognostic equations corresponding to the physical processes described
in the section (??) can be written as





∂(ql)/∂t = + Cl − Al − COL(l/r) − COL(l/s)

∂(qi)/∂t = + Ci − Ai − COL(i/s)

∂(qr)/∂t = − Er + Al + COL(l/r) − Fr

∂(qs)/∂t = − Es + Ai + COL(i/s) + COL(l/s) − Fs

(2)

The condensation processes Cl and Ci act as source terms of the cloud water contents
(liquid and solid). The evaporation and the falling processes, i.e. Er, Es, Fr and Fs, act
as sink terms for the precipitation contents (rain and snow). The auto-conversion terms
Al and Ai and the collection terms COL(l/r), COL(i/s) and COL(l/r) act as conversion
terms, transforming one species into another.

The three collection processes parameterized in the scheme of Lopez are caused by the
differential (constant) fall speed between the cloud species and the precipitating ones.
They represent the capture of the cloud species by the precipitations.
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COL(l/r) accretion collection of cloud liquid water by rain
COL(i/s) aggregation collection of cloud ice by snow
COL(l/s) riming collection of cloud liquid water by snow

The fourth collection (of cloud ice by rain) is not parameterized. Indeed, the cloud ice
regions are usually located above the rain regions.

2.4 The condensation/evaporation process

The large-scale cloud-cover and condensed cloud water are computed in the prognostic
TKE scheme, using the Bougeault functions (LNEBECT=TRUE). If the statistical cloud
water content is denoted by (qc)stat, the partitioning of the liquid part (ql)stat and the
solid part (qi)stat is obtained with

δice =

{
1− exp

[
(T − Tf )

2/(2 ∆T )2
]

for T < Tf ,

0 otherwise .
(3)

The value of δice is given by the function FONICE(T ), contained in the header fctdoi.h,
with ∆T = RDT∗RDTFAC, RDT= 11.82 K and RDTFAC= 0.5, leading to ∆T = 5.91 K.

The fluxes of condensation/evaporation are denoted by PFCSQL for the liquid cloud water
and by PFCSQN for the solid cloud water. They are computed in ACPLUIZ, with (qc)stat
as input, following

g
∆(PFCSQL)

∆p
=

(1− δice) ∗ (qc)stat − ql
∆t

, (4)

g
∆(PFCSQN)

∆p
=

δice ∗ (qc)stat − qi
∆t

. (5)

2.5 The auto-conversion processes

Rain is initiated in liquid water clouds by collision and coalescence of cloud droplets
wherein larger droplets with higher settling velocities collect smaller droplets and become
embryonic raindrops. This so-called autoconversion process is usually the dominant pro-
cess that leads to the formation of drizzle in stratiform clouds.

Kessler (1969) proposed a simple parametrization that linearly relates the autoconversion
rate to the cloud liquid water content, and this parametrization is widely used in cloud-
related modeling studies because of its simplicity. This simple parametrization supposes
that the autoconversion rate is a function of not only of the liquid water content but also
the cloud droplet number concentration and the spectral shape of the cloud droplet size
distribution (Berry, 1967; Berry and Reinhardt 1974).

Without loss of generality, all of the Kessler-type parametrizations can be written as( Liu
et al., 2003):

P = cLH(y − yc) (6)

where P is the autoconversion rate (in gcm−3s−1, c is an empirial coefficient (in s−1) and
L is the cloud liquid water content (in gcm−3). The Heaviside step function H(y − yc) is
introduced to describe a threshold yc below which the autoconversion is negligibly small.
The meaning of y is different in different parametrizations. In our scheme, it represents
the cloud liquid water content, as in the original Kessler parametrization. Liu et al.
(2003) propose a reexamination of typical Kessler-type parametrizations and show that
application of the generalized mean value theorem for integrals to the general equation for
the autoconversion rate provides a rigourous theoretical basis for Kessler’s formulation.
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As shown in eq. 6, the auto-conversion processes start to occur when the values of the
suspended condensed water content are larger than some threshold value qcrit. It is im-
portant to think in terms of the in-cloud values (close to the saturating state), and not
with the grid-cell averages (often far from the saturating state).

Let us denote by qc the grid-cell average of the condensed water content, and by q∗c the
corresponding in-cloud value, obtained from the cloud cover Ns = Max[ εN ; Ns ] as

q∗c ≡ Max
[
0 ;

qc
Ns

]
. (7)

The auto-conversion process can be represented as the in-cloud conversion rate A∗
c from

one of the (liquid or solid) condensed water in-cloud value q∗c to the corresponding (liquid
or solid) precipitating in-cloud value q∗p , with the Kessler (1969) assumption, leading to

(
∂q∗c
∂t

)

auto

≡ − A∗
c , (8)

(
∂q∗c
∂t

)

auto

≡ − q∗c − qcrit
τc

. (9)

The threshold value qcrit and the time scale τc are supposed to be two constant terms.
They correspond to the physical assumption that the dropplets smaller than a given radius
remain suspended cloud condensate, whereas the dropplets larger than a given radius are
becoming precipitating species, with a time scale τc. The threshold used in this “bulk”
scheme is not a critical radius, but a critical specific content qcrit for the suspended cloud
condensate.

The threshold values for qcrit are set from the NAMELIST of ARPEGE. They are not the
same for the liquid and the solid species.

(ql)crit = RQLCR , (10)
(qi)crit(T ) ∈ [ RQICRMIN ; RQICRMAX ] . (11)

The threshold for the liquid water content is a constant, whereas for the solid water
(ice), the formulation is more complex, with a variation between the two extremum values
(qi)

min
crit = RQICRMIN and (qi)

max
crit = RQICRMAX. Indeed, in order to allow the auto-

conversion of ice even at very low temperature, (qi)crit(T ) is assumed to decrease with
temperature, according to the formulae (A.1) of Lopez (2002):

(qi)crit(T ) = (qi)
max
crit − 0.5

[
(qi)

max
crit − (qi)

min
crit

]
{ 1 + tanh [ α (T − Tf ) + β ] } .(12)

The coefficients α and β are two constant terms in Lopez (2002), see his Appendix-D
where α = −0.1572 K−1 and β = −4.9632. In the ARPEGE code, due to additional
tunings made in the NWP team, α and β depend on the temperatures T1 = RQICRT1
and T2 = RQICRT2, both available in the NAMELIST:

γ1 = −1 + 2
(qi)

max
crit (1− 0.999)

(qi)maxcrit − (qi)mincrit

, (13)

γ2 = −1 + 2
(qi)

max
crit − 1.5 (qi)

min
crit

(qi)maxcrit − (qi)mincrit

, (14)

γ3 = 0.5 log

[
abs

(
1 + γ1
1 − γ1

) ]
, (15)

γ4 = 0.5 log

[
abs

(
1 + γ2
1 − γ2

) ]
. (16)
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From (13) to (16), α and β are defined by

α =
γ3 − γ4
T2 − T1

, (17)

β = γ3 − T2 α . (18)

Over the ice-shell sea regions or over the snow-covered land areas, there are fewer Cloud
Condensation Nuclei (CNC) than over the open-sea or free land areas, where more aerosol
are available. A first attempt to take into account these differential icy/warm properties is
made in the ACMICRO subroutine, by computing the term ZFACICE and by multiplying
(qi)crit(T ) by 1−ZFACICE∗(1−RQICRSN).

The term ZFACICE is equal to 0 over the open-sea and free land areas, equal to 1 over
the icy regions. For RQICRSN = 0.5 (available in the NAMELIST), (qi)crit(T ) is not
modified over the open-sea and free land areas, whereas it is divided by a factor 2 over
the icy regions. For RQICRSN = 1, (qi)crit(T ) is not modified over the icy regions.

The in-cloud auto-conversion rate A∗
c is computed with both the finite difference (19) plus

the analytic method (20). These schemes are obtained by integrating (8) and (9) from the
time t with the value qc ∗(−) to the time t + ∆t with the value qc ∗(+) , considering qcrit
and τc as two constant terms.

It results the two following formulations

A∗
c ≈ − qc

∗(+) − qc
∗(−)

∆t
, (19)

qc
∗(+) − qcrit

qc ∗(−) − qcrit
≈ exp

(
− ∆t

τc

)
. (20)

They respectively correspond to discrete solutions of (8) and (9).

From (19) and (20), the auto-conversion rates for the liquid and the solid (ice) water
content write

A∗
l ≈

[
1 − exp

(
− ∆t

τl

) ] [
qc

∗(−) − (ql)crit
∆t

]
, (21)

A∗
i ≈

[
1 − exp

(
− ∆t

τi

) ] [
qc

∗(−) − (qi)crit(T )

∆t

]
. (22)

The terms A∗
l and A∗

i are denoted by ZDUM in ACMICRO.

The threshold values (ql)crit and (qi)crit(T ) are given by (10) and (12). The two time
constant terms τl and τi are denoted by ZCAUT in ACMICRO, they write

1/τl = RAUTEFR , (23)
1/τi = RAUTEFS ∗ exp[− (β)ice (T − Tf ) ] , (24)

with RAUTEFR and RAUTEFS available in the NAMELIST.

The exponential term in (24) is the temperature dependant ice conversion efficiency of
Pruppacher and Klett (1998), with the coefficient (β)ice = RAUTSBET = 0.025 available
in the NAMELIST.

The final grid-cell average or convective auto-conversion rate for the liquid and solid species
are computed from (21) and (22) by inverting (7) and by multiplying by the large-scale
cloud cover Ns, for the large-scale contribution (ZNEBS in the code), and convective
cloudiness (ZNEBCMICRO in acpcmt.F90).

Al = Max { 0 ; A∗
l ∗ Ns } , (25)

Ai = Max { 0 ; A∗
i ∗ Ns } . (26)

The terms Al = PAUTOL and Ai = PAUTOI are available as output of ACMICRO.
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2.6 The distribution of particle - Fall-velocities.

The classical equations for the collection of suspended cloud species by the precipitating
ones are derived in Fowler et al. (1996) by using the Marshall and Palmer (1948) distri-
bution for the rain and the Gunn and Marhall (1958) distribution for the snow. In
the paper of Lopez (2002), the same distribution of Marshall and Palmer (1948) is used
for the rain, with the fall speed given by Sachidananda and Zrnić (1986) and Foote and
Du Toit (1969). For the ice particles, the ideas of Houze et al. (1979) and Cox (1988)
have been taken into account.

For the rain, the assumed spectra of particle number Nr(D), mass Mr(D) and fall velocity
Vr(D) express in terms of the particle diameter D as follows:

Nr(D) = N0r exp(− λr D) , (27)

Mr(D) = ρw
π D3

6
, (28)

Vr(D) = ν1

(
ρ0
ρ

)0.4

Dν2 . (29)

with N0r the intercept parameter in raindrop size distribution ( N0r = 8.106m−4) , λr the
slope parameter of the raindrop size distribution, ρw the liquid water density (ρw= 1000
kgm−3) and ν1 a coefficient in rain fall-speed distribution (ν1 = 377.8 m1/3s−1). The
slope λr of the Marshall and Palmer distribution is related to the grid-cell average rain
content qr by

λr =

(
π ρw N0r

ρ qr

)1/4

. (30)

For the snow, the equivalent spectra of particle number Ns(D), mass Ms(D) and fall
velocity Vs(D) express as follows (with D the maximum dimension of ice particles):

Ns(D) = N0s(T ) exp(− λs D) , (31)
Ms(D) = σ1 D

σ2 , (32)

Vs(D) = τ1

(
ρ0
ρ

)0.4

Dτ2 . (33)

withN0s(T ) the intercept parameter in ice particle size distribution (N0s(T ) = 2.106exp(−0.1222(T−
Tf ))m

−4, Houze et al. (1979)) , λs the slope parameter of the ice particle size distribution,
σ1 a coefficient in ice-mass distribution (σ1 = 0.069 kgm−2), τ1 a coefficient in ice fall-
speed distribution (τ1 = 21 m1/2s−1) and ν2 the exponent in snow fall-speed distribution
(ν2 = 2/3). The mass-diameter relationship Ms(D) is given by Cox (1988).

The slope λs of the distribution is related to the snow content qs by:

λs =

(
Γ(1 + σ2)N0s(T ) σ1

ρ qs

)1/(1+σ2)

. (34)

where σ2 = 2, and the Gamma function Γ(z) is defined for any real z by

Γ(z) =

∫ +∞

0

tz−1 exp(−t) dt, (35)
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with Γ(1) = 1 and the usual properties Γ(z + 1) = z Γ(z), leading to Γ(n+ 1) = n ! valid
for any positive integer n.

The mass-weighted average fall speed of particles can be computed as:

V =

∫∞

0
N(D)M(D)V (D)dD∫∞

0
N(D)M(D)dD

(36)

and the derived associated fall speed of particles Vr for rain and Vs for snow should be
given by

Vr = 17.116 ∗
(
ρ0
ρ

)0.4

(ρ qr)
1/6 , (37)

Vs = 4.323 ∗ exp [ 0.0204 (T − Tf ) ]

(
ρ0
ρ

)0.4

(ρ qs)
1/6 . (38)

These expressions are very similar to the ones derived by Heymsfield (1977).

During the development of CMIP6 ARPEGE model, SCM and GCM tests of these for-
mulations have been done with rather positive impacts in 1D, but detrimental ones in 3D.
So constant values are used as in CMIP5: Vr = TFVR and Vs = TFVS are set equal to
some “bulk” constant values, with both TFVR ≈ 5 m s−1 and TFVS ≈ 1 m s−1 available
in the NAMELIST.

2.7 The collection processes

The distributions (27) to (29) for the rain spectra and (31) to (33) for the snow spectra
lead the three collection rates (39) to (41) for COL(l/r), COL(i/s) and COL(l/s).

COL(l/r) ≡ accretion = K
(l/r)
acc E

(l/r)
acc ql qr , (39)

COL(i/s) ≡ aggregation = K
(i/s)
agg E

(i/s)
agg (T ) qi qs , (40)

COL(l/s) ≡ riming = K
(l/s)

rim E
(l/s)

rim ql qs . (41)

They express in terms of the product of the 3 collection coefficients (K), the 3 collection
efficiencies (E) and appropriate couples of grid-cell mean water species content, i.e. ql qr
or qi qs or ql qs .

The collection efficiencies write

E
(l/r)
acc = RACCEF , (42)

E
(i/s)
agg (T ) = RAGGEF ∗ exp [− 0.025 (T − Tf ) ] , (43)

E
(l/s)

rim = RRIMEF , (44)

with RACCEF, RAGGEF and RRIMEF three constants, all available in the NAMELIST.

The collection coefficients write

K
(l/r)
acc =

12.695 ν1 Γ(3 + ν2)

4 ρw

(
ρ0
ρ

)0.4

≈ 4.8108

(
ρ0
ρ

)0.4

, (45)

K
(i/s)
agg = K

(l/s)

rim =
0.0485 τ1 π Γ(3 + τ2)

4 σ1 [ Γ(1 + σ2) ]
3+τ2
1+σ2

(
ρ0
ρ

)0.4

≈ 17.1623

(
ρ0
ρ

)0.4

.(46)
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The numerical values 4.8108 and 17.1623 are the same as the values given in Lopez (2002,
Appendix-D), providing that ν1 = 377.8 m1/3 s−1, ν2 = 2/3, τ1 = 21 m1/2 s−1, τ2 = 0.5,
σ1 = 0.069 kg m−2, σ2 = 2, ρw = 1000 kg m−3 and ρ0 = 1.2 kg m−3.

In the subroutine ADVPRCS of the ARPEGE code, the coefficients ZCOEFF1, ZCOEFF2
and ZCOEFF2b correspond to the products of the collection coefficients by the collection
efficiencies for accretion, riming and aggregation resp.

The three collection tendencies are computed with an analytic scheme applied to the terms
ql and qi. As an exemple, let us derive the result for the accretion term. The equivalent
of the auto-conversion results (8), (9), (20) and (21) write

(
∂ql
∂t

)
acc

≈ ql
(+) − ql

(−)

∆t
= − [ ∆qr ]acc

∆t
, (47)

(
∂ql
∂t

)
acc

≡ − K
(l/r)
acc E

(l/r)
acc ql qr , (48)

⇒
(
∂ ln( ql )

∂t

)

acc
= − K

(l/r)
acc E

(l/r)
acc qr , (49)

and so :
ql

(+)

ql (−)
≈ exp

[
− K

(l/r)
acc E

(l/r)
acc qr

(−) ∆t
]
. (50)

Since the collection processes correspond to conversion terms from the suspended cloud
condensate ql or qi into the precipitating species qr or qs, the following properties holds

[ ∆qr ]acc =
[
qr

(+) − qr
(−)
]
acc = − [ ∆ql ]acc = −

[
ql

(+) − ql
(−)
]
acc ,(51)

[ ∆qs ]agg =
[
qs

(+) − qs
(−)
]
agg = − [ ∆qi ]agg = −

[
qi

(+) − qi
(−)
]
agg ,(52)

[ ∆qs ]rim =
[
qs

(+) − qs
(−)
]
rim = − [ ∆ql ]rim = −

[
ql

(+) − ql
(−)
]
rim .(53)

From (47) and (50), the final formulae for the decrease in ql due to the accretion process,
i.e. −[ ∆ql ]acc, is exacty equal to the corresponding opposite increase in qr, i.e. [ ∆qr ]acc.
The impact of the accretion process is finally computed as a change in qr, given by (54)

[ ∆qr ]acc ≡
[
qr

(+) − qr
(−)
]
acc = ql

(−)
{
1 − exp

[
− K

(l/r)
acc E

(l/r)
acc qr

(−) ∆t
]}

,(54)

[ ∆qs ]agg ≡
[
qs

(+) − qs
(−)
]
agg = qi

(−)
{
1 − exp

[
− K

(i/s)
agg E

(i/s)
agg qs

(−) ∆t
]}

,(55)

[ ∆qs ]rim ≡
[
qs

(+) − qs
(−)
]
rim = ql

(−)
{
1 − exp

[
− K

(l/s)

rim E
(l/s)

rim qs
(−) ∆t

]}
.(56)

The equivalent formulas for the aggregation and the riming processes are given in (55)
and (56), with conversion of ql or qi into qs, generating positive values of [ ∆qs ].

From the general set of equations (2), and from (51) to (53), the accretion and riming
processes cannot transform into the time step ∆tmore cloud liquid water than the available
existing amount at time t, i.e. ql. Similarly, the aggregation process cannot transform
more cloud ice water than qi.

It results the two following important limitations

[ ∆ql ]acc + [ ∆ql ]rim < ql , (57)

[ ∆qi ]agg < qi . (58)
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2.8 The evaporation processes

The tendencies due to the evaporation of rain Er and the sublimation of snow Es are
given by Eq.(9) in Lopez (2002). The distributions (27) and (29) for the rain spectra and
(31) and (33) for the snow spectra are used, together with some linearized versions of
(C.7) and (C.8) made in Lopez (2002).

Let us define the four constant terms c3 to c6 by

c3 = 2 ∗ 0.78 ∗
√
π ≈ 2.765 , (59)

c4 = 2 ∗ (π)(3−ν2)/8 ∗ 0.31 ∗ √
ν1 ∗ (ρref )

0.2 ∗ Γ
(
5 + ν2

2

)
≈ 30.1 , (60)

c5 =
4 ∗ 0.65

(2 ∗ σ1)
2/3

≈ 9.736 , (61)

c6 =
5.784 ∗ 4 ∗ 0.44

(2 ∗ σ1)
(5+τ2)/6

∗ √
τ1 ∗ (ρref )

0.2 ∗ Γ
(
5 + τ2

2

)
≈ 478.1 . (62)

The coefficients c3 to c6 are computed in the subroutine ADVPRCS in the local variables
ZCOEFF3 to ZCOEFF6.

Let us define the terms f3(p) and f4(T, p), two functions of the temperature and the
pressure, by

f3(p) =
[ √

1.669 10−5 ∗ 2 10−5 ∗ ( pref/p)
]1/3

≈ 4.34 10−3 ∗
[
pref
p

]1/3
,(63)

f4(T, p) =
Rv T

2 10−5 ∗ ( pref/p)
≈ 230.8 105 ∗ T ∗

[
pref
p

]−1

. (64)

The coefficients f3 and f4 are computed in the subroutine ADVPRCS in the local variables
ZFACT3 and ZFACT4.

Let us define the evaporation and sublimation terms cevap and csubl by

cevap(T, p) =
[ 1− ql/(qsat)l(T ) ] [ 1−Ns ]

ρ f5(T, p)
∗ RNINTR , (65)

csubl(T, p) =
[ 1− qi/(qsat)i(T ) ] [ 1−Ns ]

ρ f6(T, p)
∗ RNINTS ∗ exp [− 0.122 (T − Tf ) ] ,(66)

where RNINTR and RNINTS are both available in the NAMELIST, with f5 and f6 defined
by

f5(T, p) =
1

2.31 10−2 ∗ Rv
∗
(
Lv(T )

T

)2

+
f4(T, p)

(esat)l(T )
, (67)

f6(T, p) =
1

2.31 10−2 ∗ Rv
∗
(
Lf (T )

T

)2

+
f4(T, p)

(esat)i(T )
. (68)

The coefficient f5 (resp. f6) is computed in the subroutine ADVPRCS in the local variable
ZCONDT+ZDIFFV, just before the computations of ZCEV= cevap (resp. ZCSU= csubl).

Let us define

cE1(T, p) = cevap(T, p) ∗ c3 , (69)
cE2(T, p) = cevap(T, p) ∗ c4 / f3(p) , (70)
cS1(T, p) = csubl(T, p) ∗ c5 , (71)
cS2(T, p) = csubl(T, p) ∗ c6 / f3(p) . (72)
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The coefficients cE1, cE1, cS1 and cS2 are computed in the subroutine ADVPRCS in the
local variables ZCEV1, ZCEV2, ZCSU1 and ZCSU2, respectively.

For given amount of precipitations, either for rain qr or for snow qs, the parts of them to
be evaporated express in terms of the variables

< qr > = qr / { RNINTR ∗ ρw } , (73)
< qs > = qs / { RNINTS ∗ exp [− 0.122 (T − Tf ) ] } . (74)

In the subroutine ADVPRCS, < qr > and < qs > are denoted by ZQRNR and ZQRNS,
respectively.

The final formulas (75) and (76), analogous of Eqs. (9), (C.7) and (C.8) in Lopez (2002),
writes

EVA = cE1 ∗ < qr >
1/2 + cE2 ∗ < qr >

17/24 , (75)

SUB = cS1 ∗ < qs >
2/3 + cS2 ∗ < qs > . (76)

The flux terms EVA and SUB are denoted in ADVPRCS by ZEVAPPL and ZEVAPPN,
respectively. The corresponding decrease in liquid or solid precipitations are denoted by
∆< qr >=ZTQEVAPPL and ∆< qs >=ZTQEVAPPN, respectively. They are computed
by choosing the minimum values among three terms, leading to

∆< qr > = Min

{
< qr > ; ∆t

∆p

g
EVA ;

∆p

g

EVA
EVA + SUB

[ (qsat)l(T )− qv ]

}
,(77)

∆< qs > = Min

{
< qs > ; ∆t

∆p

g
SUB ;

∆p

g

SUB
EVA + SUB

[ (qsat)i(T )− qv ]

}
.(78)

These limitations for the evaporations and sublimation processes are equivalent to the
limitations (57) and (58), valid for the collection processes.

2.9 The melting

The snow melting is computed in ADVPRCS (under the logical key LLMELTS = .TRUE.
at the beginning of the routine) in the term ZQMLTX,

ZQMLTX = Max

{
0 ;

∆p

g

cp (T − Tf )

Lf − Lv

}
, (79)

where Lf − Lv is the latent heat of fusion of snow into rain.

2.10 The sedimentation process

In the original Lopez scheme, a kind of semi-lagrangian method was applied for the sed-
imentation of precipitating species. It permits to use NWP and GCM longest time-step.
A new statistical scheme for the sedimentation of precipitation has been introduced later
by Bouteloup et al. (2010), (subroutine ADVPRCS) and enables, for example, to use the
complete formulas for the fall speed of the liquid and solid particles instead of the "bulk"
constant values TFVR and TFVS or to describe sedimentation of cloudy condensates
(TFVI/TFVL larger than zero). This scheme is described in part ?. Note that the fall
speed for liquid and solid precipitation can be either computed as a combined constant
value for NSEDIM=0 (same value for liquid and solid), or as two different constant fall
speeds, one for liquid precipitation, one for solid one (NSEDIM=1).
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3 Algorithmics

As the same microphysics scheme is used for convective and large-scale condensates, the
Lopez scheme is called twice:

• in aplpar.F90 subroutine, for the large-scale part, under the logical keys
(LPROCLD.AND.LCONDWT)=.TRUE.

• in acpcmt.F90 subroutine, for the convective part.

The following sequence of subroutines is used (the example is given here for large-scale
condensates; the sequence under ACPLUIZ is the same for the convective part). Only the
sequence used in our options is described:

APLPAR : monitor of the ARPEGE physics
> ACPLUIZ : general call to the Lopez subroutine

> in ACPLUIZ : compute the condensation/evaporation of cloud water,
with the statistical cloud water coming as output from
the prognostic TKE scheme (LNEBECT=TRUE) for

the stratiform part, and the convective cloud water coming as output of the convection
scheme for the convective part

> ACMICRO : compute the auto-conversion fluxes
with PAUTOL and PAUTOI as output ;

> ADVPRCS : compute the vertical sedimentation of the precipitation,
plus the collection, the evaporation of precipitation
and the melting (snow<->rain) processes.

4 Logical keys and main parameters in the current
version

Logical keys (in NAMPHY)

• LCOLLEC=.TRUE. to switch-on the collection processes

• LCONDWT=.TRUE. use of prog. condensed water in the Physics

• LEVAPP=.TRUE. to switch-on the evaporation of precipitations

• LNEBECT=.TRUE. use of Bougeault-Bechtold PDFs (<-> TKE-CBR)

• LPROCLD=.TRUE. to switch-on the Lopez scheme

Main parameters used in the current climate version (NAMPHY0). During the develop-
ment of the atmospheric model for CMIP6, tunings of some not-well constrained param-
eters have been done to balance TOA and surface budgets. Following Mauritsen et al.
(2012) and Hourdin et al. (2012), these tuned parameters are either microphysics ones (see
below), or parameters describing clouds-radiation interaction (see chapter on radiation).

• NSEDIM= 1, sedimentation options in advprcs

• RACCEF=1.0, collection efficiencies (accretion)

• RAGGEF=0.3, collection efficiencies (aggregation)

• RAUTEFR = 10 E-04 efficiency for auto-conversion water –> rain: value for 1/τl
(unit in s−1)

• RAUTEFS = 52 E-04 auto-conversion: value for 1/τl (unit in s−1)

• RAUTSBET=0.025 ; auto-conversion: the efficiency coefficient (β)ice for autocon-
version ice –> snow

• RDTFAC=0.5, auto-conv.: tunes the width of δicein term of RDT= 11.82 K

• REVASX=1 E-7., to limit (if > 0) the evaporation of precipitations (maximum
evaporation rate)
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• RNINTR=0.8 E+7, collection: a global tuning for cevap
• RNINTS=0.2 E+7, collection: a global tuning for csubl
• RQICRMAX=0.21 E-4, maxi auto-conv. threshold (solid) (kg/kg)

• RQICRMIN=0.14 E-6 ; mini auto-conv. threshold (solid) (kg/kg)

• RQICRSN=1., auto-conv.: tunes the impact of CNC concentration on (qi)crit

• RQICRT1=-80., auto-conversion: first temperature for (qi)crit (T1, in K)

• RQICRT2=0., auto-conversion: second temperature for (qi)crit (T2, in K)

• RQICVMAX=0.3 E-4, maximum critical ice content for autoconversion of convec-
tive cloud ice (kg/kg)

• RQICVMIN=0.2 E-6, minimum critical ice content for autoconversion of convective
cloud ice (kg/kg)

• RQLCR=200. E-6, auto-conversion: threshold of liquid water content (liquid) (kg/kg)

• RQLCV=0.2 E-3, critical liquid water content for autoconversion of convective
cloud water (kg/kg)

• RRAUTCS=1, ratio (convective/stratiform) of efficiency for autoconversion of wa-
ter —> rain. In the convective case, the efficiency of autoconversion water —>
rain is RAUTEFR*RRAUTCS, RAUTEFR in the stratiform case.

• RREVASXCS = 1, ratio of the maximum evaporation rate (convective/stratiform).
In the convective case, the evaporation rate is REVASX*RREVASXCS, REVASX
in the stratiform case,

• RRIMEF=1.3, collection efficiencies (riming)

• RSPCRR=1, supercooled rain switch (1= yes, 0= no)

• TFVR=5.0, Fall speed for rain (m/s)

• TFVI=0.08, Sedimentation speed of cloud ice water (m/s)

• TFVL=0.02, Sedimentation speed for cloud liquid water (m/s)

• TFVS=1., Fall speed for snow (m/s)
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The CMIP6 dry and moist

convection scheme: Prognostic

Condensates Microphysics and

Transport

1 Introduction: objectives of convective parametriza-
tion schemes

Following Arakawa (2004), the deep cumulus parameterization problem may be defined
as the problem of formulating the statistical effects of moist convection to obtain a closed
system for predicting weather and climate, trying to predict the grid-averaged effect of an
ensemble of subgrid-scale drafts. Since cumulus parametrization is an attempt to formulate
the statistical effects of cumulus convection without predicting individual clouds, it is a
closure problem in which a limited number of equations that govern the statistics of a
system with huge dimensions is looked for. The closure consists in a hypothesis that links
the occurrence and overall intensity of cumulus activity (e.g., cloud-base mass flux) to
large-scale processes.

1.1 Convective components and developments

Three main aspects for the causes of convection in the atmosphere can be highlighted: the
buoyancy force (responsible for free convection), convergence (due to orography or frontal
systems and that causes forced convection), and vertical wind shear (potential additional
role in the formation of organized thunderstorms). In the convective development the first
phase is the thermal, driven by the buoyancy, followed by the second phase with cumulus,
when the water vapour condensation starts (cumulus humilis in the sky), then towering
cumulus (cumulus congestus), and cumulonimbus at a late stage.

1.2 The apparent sources: the Q1, Q2, Q3 terms

The core of parameterization consists in evaluating the apparent source terms, as defined
in Yanai (1973), looking for a closed expression for the apparent sources in terms of the
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known resolved-scale variables (grid-averaged quantities).

Following Yanai et al (1973), the total effect of convection on large-scale may be deduced
from the basic equations of thermodynamic and dynamics: averaging these equations
on a grid (.), using the Reynolds axioms and assuming that the horizontal transport of
subgrid scale quantities is small relative to the vertical transport, the large-scale tendencies
due to convection for s = CpT + gz dry static energy (unit: m2.s−2), q specific humidity
(unit:kg.kg−1), u, v zonal and meridional component of wind (unit: m.s−1) can be written
as:





(
∂s
∂t

)
c

= Lv(c− e)− ∂ω′s′

∂p
= Q1 −Qr(

∂q
∂t

)
c

= −(c− e)− ∂ω′q′

∂p
= −Q2

Lv(
∂u
∂t

)
c

= − ∂ω′u′

∂p
= Q3u(

∂v
∂t

)
c

= − ∂ω′v′

∂p
= Q3v

(1)

with ω (Pa.s−1) vertical velocity in pressure coordinate, Qr (W.kg−1) radiative heat-
ing rate, Q1 (W.kg−1) apparent source of heat, Q2 (W.kg−1) apparent sink of moisture,
Q3u,Q3v (m.s−2) apparent sources of momentum, Lv (J.kg−1) water vaporization latent
heat, c and e (kg.kg−1.s−1) condensation and evaporation rate.

Then, following Yanai et al (1973) :





Q1 = Qr︸︷︷︸
radiative effect

+ Lv(c− e)︸ ︷︷ ︸
condensation/evaporation

−∂ω
′s′

∂p︸ ︷︷ ︸
vertical transport by unresolved eddies

Q2 = Lv(c− e)︸ ︷︷ ︸
condensation/evaporation

+ Lv
∂ω′q′

∂p︸ ︷︷ ︸
vertical transport by unresolved eddies

Q3u = −∂ω
′u′

∂p︸ ︷︷ ︸
vertical transport by unresolved eddies

Q3v = −∂ω
′v′

∂p︸ ︷︷ ︸
vertical transport by unresolved eddies

(2)

These terms represent the mean effect of convective processes on large-scale, as a function
of the grid-averaged variables. The apparent heat source, Q1, depends on condensa-
tion/evaporation rate, radiative effects and dry static energy vertical transport by unre-
solved (i.e subgrid) eddies. Q1 >0 for atmospheric heating, Q1<0 for atmospheric cool-
ing. Condensation/(evaporation) is a source/(sink) of heat (Q1>0/(<0)) and of drying
(Q2>0/(<0)).

Q2 depends on condensation/evaporation rate and of vertical transport of water vapor by
unresolved eddies. Q3 depends only on the vertical transport of momentum by unresolved
eddies.

Some basic constraints for the apparent sources can be derived (Yanai et al 1973): first,
the sum of the two first equations of 1 leads to a budget equation for the moist static
energy h = s+ Lvq :

Q1 −Q2 −Qr = −1

ρ

∂

∂z
ρw′h′ (3)

Furthermore, a vertical integral of the source terms can be expressed to a good approxi-
mation by:

Cp
〈
Q1

〉
=
〈
Qr
〉
+ LvP + Fs
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Cp
Lv

〈
Q1

〉
= P − FL

where
〈
.
〉

designates the vertical integral from the surface to the top of the atmosphere, P
the precipitation rate, Fs the surface sensible heat flux and FL is the surface evaporation
rate. Any given parameterization must be consistent with those constraints but there are
not strong enough to guide the construction of a sub-grid scale parameterization. Then,
determining the vertical distribution of the terms Q1 − Qr, Q2 and Q3 is one of the ob-
jectives of the parameterization schemes.

Generally speaking, a convection parameterization scheme follows three main steps:
- definition of a triggering condition to describe when and where convection appears
- determine the vertical distribution of Q1, Q2, Q3u and Q3v
- determine the grid-averaged convective intensity, through the closure of the scheme

As CMIP5 one, CMIP6 deep convection parameterization scheme uses a mass-flux for-
mulation, as the vast majority of NWP and Climate models. This formulation is quickly
examined below.

1.3 The mass-flux parametrization schemes

The hypothesis used in the mass-flux formulation relies on a self-consistency argument for
the mean heat-budget in the tropical atmosphere: the tropical mean heat budget can not
be closed without assuming the existence of tall, isolated, convective vertical heat transport
that happens without substantial interaction with the environment (named "hot tower"
by (Riehl and Marcue (1958)). To represent such an entity as a subgrid-scale process, an
"isolated" vertical transport process is required, which may be described by introducing
a mass-flux, a measure of vertical transport rate (Yano and Plant (2016)). Once a mass-
flux is defined, it is relatively straightforward to define the vertical transport of heat
and moisture. Thus, the key issue of mass-flux parameterization is to define the mass-flux
associated with convection. The mass-flux schemes allow to write the convective transport
of the variables s, q, u and v from the mass flux and the Cloud/Environment differences
of these variables. Each model grid is divided in two sub-domains: the convective one
(cloudy) and the environmental one (clear sky). Then, for any variable χ:

χ = σχc + (1− σ)χe (4)

and for the vertical velocity ω:

ω = σωc + (1− σ)ωe (5)

where χ is the grid-averaged variable, ω the averaged vertical velocity, σ the convective
fraction in the grid, indices c and e stand for convective and environmental variables.

The subgrid vertical transport of χ is :

ω′χ′ = ωχ−ω χ = σωcχc+(1−σ)ωeχe−(σωc+(1−σ)ωe)χ = σ(ωc−ωe)(χc−χ)(6)

Assuming ωc >> ωe, ω∗ mass flux of the updraughts relative to their environment in the
grid is :

ω∗ = σ(ωc − ωe) = σωc (7)

, and the convective transport flux is: ω′χ′ = ω∗(χc − χ).
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Assuming that the area with updraught are small (σ << 1), and steadiness of the cloud
budget for mass, heat and water vapor (Yanai et al 1973), the apparent source terms can
be written (as in Yanai et al., 1973):





Q1 = Qr + ω∗ ∂s
∂p

+D(sc − s)

Q2 = −Lvω∗ ∂q
∂p

− LvD(qc − q)

Q3u = ω∗ ∂u
∂p

+D(uc − u)

Q3v = ω∗ ∂v
∂p

+D(vc − v)

(8)

with D (unit : s−1) the cloudy air detrainment rate.

The convective tendencies on the large-scale are given as functions of convective mass flux
ω∗, cloudy detrainment rate D and differences between cloudy and environmental vari-
ables. Then the impact of convection on the environment in terms of heating (Q1 −Qr)
is due to heating associated with compensating subsidence between cumulus clouds (term
ω∗ ∂s

∂p
) and detrainment of cloudy air in the environment (term D(sc − s)). One of the

drawback of mass flux formulation is the need of specifying not well-known parameters as
entrainment/detrainment rates.

2 From CMIP5 to CMIP6

2.1 Limits of the CMIP5 convection scheme (Bougeault, 1985)

The objective here is not to describe the CMIP5 scheme, rather to give some ideas about
the limits of the CMIP5 scheme and the way followed from CMIP5 to CMIP6 convection
schemes. Some limits of the Bougeault’s scheme are known: misrepresentation of diurnal
cycle of convection on continents (too early) linked with the triggering condition, too easy
triggering with large areas of simulated low precipitation. More precisely, during the EU-
ROCS1 project (from 2000 to 2003), with the purpose to improve the clouds simulation in
RCM and GCM, it has been shown, in SCM configurations of deep convection triggering
in a oceanic stratocumulus case (Duynkerke et al 2004), that the scheme includes a mois-
ture convergence closure not well adapted to extreme moisture conditions (Derbyshire et
al 2004), a simulated diurnal cycle of clouds depth and precipitation too linked with the
maximum of solar heating and too small downdrafts (Guichard et al 2004).

In parallel of the development of the PCMT scheme, many tests have been done in a
climate configuration with the prognostic physics used in NWP, i.e similar to that de-
scribed in this documentation, except the deep and shallow convection schemes that are
that of Bougeault for the deep convection and Kain-Fritsh-Bechtold (Kain and Fritsch
1993, Bechtold et al 2001) for the shallow convection (see description in table 10.1, col-
umn "NWP"). Even if many sensitivity tests have been run, this physics has never been
chosen for CMIP exercise due to a very strong double ITCZ (even in forced simulations).
Moreover, in CMIP5 configurations (left column), no specific scheme exists for shallow
convection and thermals are not represented.

2.2 The CMIP6 convection scheme: an unified scheme, sepa-
rating microphysic and transport in grid-scale equations

In a parametrization context, it is common to talk about "dry" convection as that pro-
duced by thermals which are not associated with cloud and which are confined within the
boundary layer; to talk about "shallow" convection as relatively weak, non-precipitating
cumuli; and to talk about "deep" convection as cumulonimbus clouds. These aspects are

1EUROpean Cloud Systems
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Table 10.1: Table with main characteristics of CMIP5, NWP (2015 version)
and CMIP6 atmospheric physics.

Parametrization CMIP5 NWP CMIP6
Shallow convection No specific scheme,

partly through moist
PDF

Mass-flux scheme Bech-
told et al 2001

PCMT (Gueremy 2011 ,
Piriou et al 2007)

Deep convection Bougeault 1985 Bougeault 1985 with
modifications

PCMT (Gueremy 2011,
Piriou et al 2007)

Turbulence Diagnostic TKE
Ricard-Royer 1993

Prognostic TKE Cuxart
et al 2000

Prognostic TKE
(Cuxart et al 2000)

Mixing length Quadratic profile
Lenderink-Holtslag
2004

Mixing length
Bougeault-LacarrÃ¨re
1989

Mixing length
Bougeault-LacarrÃ¨re
1989

Clouds Bougeault 1981 PDF Bougeault 1981 PDF Bougeault 1981 PDF
Microphysics Diagnostic Smith 1990 Pronostic scheme Lopez

2002
Prognostic scheme
Lopez 2002

Radiation ECMWF scheme
(Fouquart-Bonnel 1980
and Mlawer et al 1997)

ECMWF scheme
(Fouquart-Bonnel 1980
and Mlawer et al 1997)

ECMWF scheme
(Fouquart-Bonnel 1980
and Mlawer et al 1997)

often treated separately in numerical models, within the boundary-layer parameteriza-
tion, the shallow convection parameterization and the deep-convection parameterization
respectively. In the PCMT scheme an unified approach of the three types of convection
is proposed. For example, a continous formulation of turbulent entrainment (see eq. 24)
is used, allowing treatment of both shallow and deep convection. For the vertical profile,
both dry (i.e starting from the absolute temperature) and moist (starting from the wet
bulb temperature) adiabats are considered, the choice being done through the comparison
of the temperatures at the top level.

The idea behind separating microphysics and transport is given in Piriou et al. 2007.
The proposed separation consists in defining the role of convective parameterizations as
"estimating the subgrid-scale rate of convective transport (subgrid-scale motions) and
microphysical processes (condensation, evaporation, downdrafts...) as a feedback to re-
solved forcing". In this paper the separation is used both as a way to introduce into the
parametrization a more explicit causal link between all involved processes and as a vehicle
for an easier representation of convective cells. Doing that the equations of parameteriza-
tion become closer to those of CRM and LES.

Actually, the "Microphysics-Transport" spirit consists in externalizing microphysical com-
putations from the subgrid convection code, in order to share microphysical routines be-
tween subgrid and resolved convection, and use "up-to-date" microphysics (see chapter:
"The CMIP6 microphysics scheme"). The grid-averaged convective tendencies at resolved
scale are expressed in terms of change of phase (Microphysics) and Transport, enabling a
more direct comparison with CRM or LES data. The generic equation for q, specific hu-
midity, is written as ∂q

∂t
= ∂(M(qc−q))

∂p
−C, separating transport and microphysics, instead

of ∂q
∂t

= −M ∂q
∂p

+ D(qc − q), with M the mass flux, C the condensation rate and D the
detrainment rate.
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3 The PCMT scheme

The PCMT scheme (Piriou 2007, Gueremy 2011) is a parametrization scheme in which
the grid-scale budget equations of parametrization use separate microphysics and trans-
port terms. The role of convective parameterizations is then to estimate the subgrid-scale
rate of convective transport (subgrid-scale motions) and microphysical processes (con-
densation, evaporation, downdrafts...) as a feedback to resolved forcing. The prognostic
microphysics scheme is that of LOpez (2002), largely modified by Bouteloup et al (2010).
Some adjustments of microphysics parameters have been done (see Part Microphysics) for
the convective part. In this documentation only the options for closure and entrainement
used in the Climate version are described for simplicity. The closure hypothesis is based
on CAPE relaxation. A prognostic equation is used for convective vertical velocity and the
triggering condition is based on upward vertical velocity. A continous treatment of con-
vection, from thermals to deep precipitating convection, is obtained through a continous
formulation of entrainment/detrainment rates depending on convective vertical velocity.

3.1 Prognostic variables and geometry

Geometry

The variables ql, qi, qr, qs are prognostic, enabling to use the same microphysics for
convective and resolved part. Vertical velocity is also a prognostic variable.

The gridpoint is divided in three parts: updraft (of area αu), downdraft (of area αd),
environment (of area 1− αu − αd).

Table 10.2: Geometry of the three subgrid components of PCMT.
Component updraft downdraft environment
Area fraction αu αd 1− αu − αd

Vertical velocity wu wd
−αuwu−αdwd

1−αu−αd
Liquid water qlc qlc qlr
Precipitation qrc qrc qrr

Be careful that vertical velocities defined here are those for convection, then relative to
the large-scale vertical velocity: the absolute velocity in the updraft is w = w + wu. At
the moment the downdrafts are only diagnostic ones, not prognostic.

Tendency equations for qv and s

For qv, the tendency due to subgrid convection is (see table 10.3) :

(
∂

∂t
qv)c = −1

ρ

∂

∂z
ραuwu(qvu−qv)−

1

ρ

∂

∂z
ραdwd(qvd−qv)−Condens+Evapqrc+Evapqsc(9)

The enthalpy (s = cp T + φ) tendency due to the convection is (see also Table 10.4):

( ∂
∂t
s)c = − 1

ρ
∂
∂z
ραuwu(su − s)

− 1
ρ
∂
∂z
ραdwd(sd − s)

+CondensEvapqlc + CondensEvapqic + Evapqrc + Evapqsc
+MeltingIcingqlc

(10)
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Table 10.3: Name of fortran variables in the code
Convective flux of specific humidity −1

ρ
∂
∂z ραuwu(qvu − qve)−

1

ρ
∂
∂z ραdwd(qvd − qve) PDIFCQ

(not rain/snow)
Convective condensation flux −Condens PFCCQL + PFCCQN

for liquid/ice water
precipitation flux due to +Evapqrc PFPEVPCL
convective evaporation

precipitation flux due to +Evapqsc PFPEVPCN
convective sublimation PFPEVPCN

Table 10.4: Name of fortran variables in the code
Convective flux of enthalpy

(not rain/snow) −1

ρ
∂
∂z ραuwu(su − s)

−1

ρ
∂
∂z ραdwd(sd − s) PDIFCS

Convective condensation flux −CondensEvapqlc
+ CondensEvapqic PFCCQL/PFCCQN times L

for liquid water/ice in CPTEND_NEW
Precipitation flux due to +Evapqrc + Evapqsc PFPEVPCL/PFPEVPCN times L

convective evaporation/sublimation in CPTEND_NEW
q-flux due to icing-melting following

convective transport of convective liquid +MeltingIcingqlc PFIMCC times Lfusion

and ice water in CPTEND_NEW
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Table 10.5: Name of fortran variables in the code
Convective flux

of liquid water (not rain/snow) −1

ρ
∂
∂z ρ [−αuwu − αdwd] qlr PDIFCQL

Entrainment/detrainment
qlr (liquid convective and resolved) −(Eu + Ed) qlr + (Du +Dd) qlc -PFEDQLC

Stratiform condensation flux for liquid water CondensEvapqlr
+ MeltingIcingqlr -PFCSQL

Flux of resolved precipitation: the generation term −AutoconvCollqlr PFPFPSL

Using p instead of z as vertical coordinate, equations include only a transport term
and a condensation one, (microphysics, downdraughts and other phase changes (melt-
ing/freezing) are taken into account as induced processes), and with M the mass-flux
defined as M = −ασωu:

(
∂

∂t
qv)c =

M(qvu − qv)

∂p
−M

qvu
∂p

(11)

The last rhs term corresponds to the condensation term C= M qvu

∂p
being positive. And

for enthalpy the tendency equation in p-coordinate writes:

(
∂

∂t
s)c =

M(su − s)

∂p
+ LvM

qvu
∂p

(12)

Tendency equations for cloudy variables

The environment includes liquid water qlr, (the same for ice qir), and precipitating con-
densates qrr for rain and qsr for snow, with grid-averaged value: qlr = (1 − αu − αd) qlr.
These condensates correspond to the large-scale condensation tendency, and to a contribu-
tion of entrainment/detrainment of updraft/downdraft, as can be seen in equation 13,for
cloudy liquid water from resolved condensation (see part 2.5 CBR documentation) :

∂
∂t
qlr = Advec(qlr)

− 1
ρ
∂
∂z
ρ [−αuwu − αdwd] qlr

−(Eu + Ed) qlr + (Du +Dd) qlc

+CondensEvapqlr − AutoconvCollqlr + MeltingIcingqlr

(13)

In this equation, the first four rhs terms correspond to transport (the third and fourth to
horizontal one) and the last rhs terms to microphysics. Table 10.5 gives the name of the
different terms in the code.

The updraft and downdraft contributions appear in the budget of subgrid convective
liquid water qlc ( the same for ice qic, and precipitating condensates qrc and qsc), with
grid-averaged value qlc = (αu+αd) qlc. These condensates are due to condensation in the
subgrid convective updraft. Equation 14 gives the tendency of cloudy convective subgrid
liquid water:

∂
∂t
qlc = Advec(qlc)

− 1
ρ
∂
∂z
ρ [αuwu + αdwd] qlc

+(Eu + Ed) qlr − (Du +Dd) qlc

+CondensEvapqlc − AutoconvCollqlc + MeltingIcingqlc

(14)

Table 3.1 gives the names of the different terms in the code.
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Table 10.6: Name of fortran variables in the code
Convective transport flux of qlc (liquid convective) −1

ρ
∂
∂z ρ [αuwu + αdwd] qlc PDIFCQLC

Entrainment/Detrainment of qlc and qlr +(Eu + Ed) qlr − (Du +Dd) qlc PFEDQLC
Convective condensation flux for liquid water CondensEvapqlc

-PFCCQL
Flux of convective precipitation: generation term −AutoconvCollqlc PFPFPCL

q flux due to icing-melting following
convective transport of convective liquid and ice water +MeltingIcingqlc PFIMCC

Table 10.7: Name of fortran variables in the code
Convective precipitation as rain −1

ρ
∂
∂z ρ [αu(wu + ws) + αd(wd + ws)] qrc PFPLCL

Entrainment/detrainment of qrc and qrr
(convective and resolved rain) +(Eu + Ed) qrr − (Du +Dd) qrc PFEDQRC

Flux of convective precipitation: generation term +AutoconvCollqlr -PFPFPCL
precipitation flux due to convective evaporation −Evapqrc + MeltingIcingqrc PFPEVPCL

Tendency equations for prognostic precipitation

The equation for convective precipitation is:

∂
∂t
qrc = Advec(qrc)

− 1
ρ
∂
∂z
ρ [αu(wu + ws) + αd(wd + ws)] qrc

+(Eu + Ed) qrr − (Du +Dd) qrc

+AutoconvCollqlr − Evapqrc + MeltingIcingqrc

(15)

and Table 3.1 gives the names of the different variables. The equation for large-scale
precipitation from resolved + subgrid condensation Smith type (table 3.1) is:

∂
∂t
qrr = Advec(qrr)

− 1
ρ
∂
∂z
ρ [−αuwu − αdwd + (1− αu − αd)ws] qrr

−(Eu + Ed) qrr + (Du +Dd) qrc

+AutoconvCollqlr − Evapqrr + MeltingIcingqrr

(16)

Table 10.8: Name of fortran variables in the code
Stratiform precipitation as rain −1

ρ
∂
∂z ρ [−αuwu − αdwd + (1− αu − αd)ws] qrr PFPLSL

Entrainment/Detrainment of qrc and qrr
(convective and resolved rain) −(Eu + Ed) qrr + (Du +Dd) qrc -PFEDQRC

Flux of resolved precipitation: generation term +AutoconvCollqlr -PFPFPSL
precipitation flux due to resolved evaporation −Evapqrr + MeltingIcingqrr PFPEVPSL
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3.2 Vertical velocity prognostic equation and triggering con-
ditions

Vertical velocity prognostic equation

The cloud vertical velocity is that of Gueremy(2011 ), derived from Simpson and Wiggert
(1969) and Chen and Bougeault (1992) (corresponding to the logical key LCVNHD=F,
see parameters below):

∂ωu
∂t

= − 1

2

∂ωu
2

∂p︸ ︷︷ ︸
advection

− ρ g2

1 + γ

(Tvu − Tv)

Tv︸ ︷︷ ︸
buoyancy

+(ǫt + ǫ0 +Kd)ωu
2

︸ ︷︷ ︸
entrainment

(17)

where:

• Tvu = Tu(1 + 0.608qu − qlu) (K) is the cloud virtual temperature, and Tv = T (1 +
0.608q) (K) the grid averaged virtual temperature

• the total friction coefficient is the sum of turbulent (ǫt), organized (ǫ0) entrain-
ments and aerodynamic drag (Kd), unit of all three being Pa−1, following Simpson-
Wiggert (1969), Simpson et al (1965) and Simpson (1971).

• γ describes the buoyancy reduction due to non-hydrostatic effects (γ = 0.5 as in
Simpson, 1971), analog to the impact of the motion of a solid in a fluid, this
"virtual mass coefficient" has been introduced by Simpson and Wiggert (1969) to
compensate for a too strong buoyancy acceleration in their model. Essentially this
is a factor through which the effective mass of a bubble (an air parcel) is enhanced.

The evolution of ωu depends on three terms: advection, buoyancy (source term) and sink
term (entrainment).
An implicit time discretization is used following Chen and Bougeault (1992):

0.5(ω(j−1)++ω(j)+)−0.5(ω(j−1)−+ω(j)−)
∆t

= Buoyancy − 1
2
ω(j)2+−ω(j−1)2+

∆p
+

(ǫt + ǫ0 +Kd)(
1
4
(ω(j − 1)+ + ω(j)+)

2
)

(18)

where ω(j) is the vertical velocity at level j of the model (j decreasing upward) and
the superscript stands for the temporal discretization. Then the cloud vertical velocity
ω(j − 1)+ is obtained as the negative root of a second order polynomial of ω(j − 1)+.
Buoyancy (second rhs term of equation 17) is a forcing term of the prognostic vertical
velocity equation. This equation is then used to define triggering conditions, mass flux
and entrainment/detrainment rates. Buoyancy is also used for the closure assumption,
through its vertically integrated form: the CAPE. Unlike what has been done in part 1.3,
where ω∗ and D are given from steady cloud budget equations, no more steady hypothesis
is assumed. The mass-flux M is written as :

M = −ασωu (19)

with ωu (Pa.s−1) the convective vertical velocity, σ the convective fraction and α the
convective fraction at the cloud bottom, both unitless.
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Entrainment/detrainment

Dilution of a cumulus cloud by entrainment of environmental air was described for the first
time by Stommel (1947). Numerous observational studies of cumulus clouds using aircraft
followed (e.g Warner, 1955), then more precise quantitative descriptions of entrainment
originated from laboratory water tank experiments of thermal plumes (Morton et al. ,1956;
Turner, 1962) describing an increasing upward mass flux M (with M = ρωuσu (unit
kgm−2s−1), ωu the plume updraught velocity and the associated plume fractional area
σc), with height:

1

M

∂M

∂z
= ǫ

, where ǫ denotes the fractional entrainment. An important refinement of the entrain-
ment formulation of this equation was first pointed out by Houghton and Cramer (1951),
who made a distinction between dynamical -organized- entrainment due to larger scale
organized inflow and turbulent entrainement caused by turbulent mixing at the cloud
edge:

1

M

∂M

∂z
= ǫo + ǫt

The idea behind dynamical (or organized) entrainment is simple: there must be an inflow
to a convective plume (or tower) proportional to a large-scale convergence. The same idea
is termed by Tiedtke (1989) the "entrainment by organized flow" and Nordeng (1994)
invoked an approximate relationship between the fractional entrainment and the fractional
vertical divergence:

ǫo =
1

wu

∂wu
∂z

+
1

ρ

∂ρ

∂z

Assuming that the density stratification (second rhs term) is negligible, this relation re-
duces to:

ǫo =
1

wu

∂wu
∂z

Whereas the organized entrainment has the characteristics of advective transport across
the interface, turbulent entrainment is of a diffusive character. Since both fractional
entrainment rates are by definition positive, they cause the mass flux to increase with
height. For a cumulus cloud, due to the turbulent mixing at the cloud edge, a mixture
of in-cloud and environmental air is made; this mixture can become negatively buoyant
by evaporative cooling and will in this case detrain from the cloud, represented by a
turbulent detrainment rate. The cloud or thermal itself can become negatively buoyant,
stops rising and is usually dissolved into the environment. This process is called organized
or dynamical detrainment, and is represented by an organized detrainment rate.

Qualitatively the following behaviours have to be represented by entrainment/detrainment:

• Two spatial scales of entrainment/detrainment: organized and turbulent. The or-
ganized entrainment is linked with the cloud-scale global velocity field (bottom
entrainment, top detrainment, role of the vertical divergence of the mass flux),
whereas the turbulent entrainment/detrainment is of smaller scale, located at the
cloud edges and due to vertical shear of horizontal wind and horizontal shear of
vertical wind.

• When in-cloud vertical velocity is large, the effect of turbulent entrainment/detrainment
on the updraft is smaller as the entrainment/detrainment processes have less time
to impact on a parcel.
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• Wind shear is conducive to turbulent detrainment, as dry environmental air (sat-
uration deficit qsat − qv), because liquid and ice water evaporation at the edge of
the clouds is a source of cooling and then of turbulence.

Following Tiedtke (1989), the total entrainment/detrainment in PCMT is partitioned in
these two parts, corresponding to two different scales at which the entrainment/detrainment
processes occur : ǫ = ǫ0 + ǫt where ǫ0 is the meso-scale entrainment, and ǫt the turbulent
one.

As the organized entrainment corresponds to the mixing due to the flow associated with
large-scale divergence/convergence, the organized inflow is assumed to occur in the lower
part of the cloud layer where there is large-scale moisture convergence, whereas the orga-
nized outflow is assumed to exist only in the top layer of the deepest clouds. The meso-scale
entrainment is derived from the mass conservation in the convective ascent, modulated
by a buoyancy-sorting process following Bretherton et al (2004). The buoyancy-sorting
approach assumes that the lateral mixing of the updraught and its environment generates
a spectrum of mixtures, and is used to determine which mixtures are incorporated into the
updraught and which are rejected (negatively buoyant mixtures are assumed to detrain,
whereas positively buoyant mixtures entrain). First, a maximum value of the fractional
entrainment rate is defined as:

ǫox = | 1

ωu

∂ωu
∂p

| (20)

, derived from the classical equation (from Yanai 1973) for a cumulus ensemble budget of
mass as

∂M

∂p
= D − E (21)

,M being the mass-flux, D and E the rates of mass detrainment/entrainment per unit
pressure interval (unit: s−1). To obtain eq. 20, convective fractional area coverage is
assumed to be constant and no detrainment is assumed. Then, following Bretherton
(2004), if µ is the mass-mixing fraction of environmental air in the mixtures, ranging from
0 for undiluted updraught to 1 for pure environmental air, µ0 the critical mixing fraction
partioning positive versus negative buoyancy mixtures, the fractional entrainment and
detrainment rates are finally:

ǫo = ǫoxµ
2
0 (22)

δo = ǫox(1− µ0)
2 (23)

This buoyancy-sorting scheme is not applied as long as 1
ωu

∂ωu

∂P
> Kǫǫt, with Kǫ a constant

(parameter FENTRT in the code), to take into account the fact that some negatively
buoyant parcels are not immediately rejected from the updraught and that the buoyancy-
sorting scheme is not applied as long as the maximum fractional organized entrainment
is significantly larger than its turbulent counterpart. The organized entrainment is then
a function of ωu but also of the thermodynamical state of the convective fraction and of
environment (parameter µ).

The turbulent entrainment is also a function of ωu (unit: Pas−1) defined by ǫt = ǫtn +
(ǫtx− ǫtn)× fǫ(ωu, ωux, ωun) with ǫtx the maximum value of ǫt and ǫtn the minimum one
(unit: m−2s2) or.

ǫt(ωu) =

{
ǫtx if |ωu| > |ωx|
sin2

(
π
2
ωx−ωu

ωx−ωn

)
if |ωn| ≤ |ωu| ≤ |ωx|

ǫtn if |ωu| < |ωn|
(24)
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with :
ǫtx = 0, 47.10−4 Pa−1 the maximum value of entrainment for small ωu (TENTRX param-
eter in the code)
ǫtn = 0, 5.10−5 Pa−1 the minimum value for large ωu (TENTR in the code),
ωx = −27, 5 Pa.s−1 the maximum threshold of ωu to get minimum entrainment (VVX in
the code).
ωn = −2 Pa.s−1 the minimum threshold of ωu to get maximum entrainment (VVN in the
code).

This formulation is consistent with: more intense ascent, more isolated updraft from
the environment and smaller interaction. This formulation allows the treatment of both
shallow and deep convection, giving a large value of entrainment for shallow clouds (small
absolute value of ω) and a small value of entrainment for deep clouds (large absolute value
of ωc), using a continous transition.

The aerodynamic drag coefficient Kd follows similar equations as ǫt:

Kd(ωu) =

{
Kdx if |ωu| > |ωx|
sin2

(
π
2
ωx−ωu

ωx−ωn

)
if |ωn| ≤ |ωu| ≤ |ωx|

Kdn if |ωu| < |ωn|
(25)

with :
Kdx = 3, 57.10−4 Pa−1

Kdn = 3, 810−5 Pa−1

The lateral entrainment for a variable χ is given by:

∂χu
∂φ

= ρ(ǫ0 + ǫt)(χ− χu) (26)

For a variable χ with an updraft value χu, a downdraft one χd, and an environmental
value χr, the tendency of χu in the updraft associated with entrainment/detrainment is:

∂χu
∂t

= (Eu + Ed)χr − (Du +Dd)χu (27)

with, for a vertical flow of perimeter L, of section S, uE the entrainment velocity and α
the surface fraction,





Eu = uEu

Lu

Su
αu

Ed = uEd

Ld

Sd
αd

Du = uDu

Lu

Su
αu

Dd = uDd

Ld

Sd
αd

(28)

with unit of Eu, Ed, Du, Dd: kg.m−3s−1.

The generic equation 27 is that used to give the entrainment/detrainment process in the
PCMT resolved prognostic equations (as eq. 14). A protection against large time-step
instability has been introduced: for any time-step the mixing process for the updraft
variable ψu can neither give negative value of ψu nor exceeding ψu + ψr. So we have:

0 ≤ ψu +
∂ψu
∂t

∆t ≤ ψu + ψr



218
10. The CMIP6 dry and moist convection scheme: Prognostic Condensates

Microphysics and Transport

and the condition

−ψu ≤ ∂ψu
∂t

∆t ≤ ψr (29)

An equal rate for both turbulent entrainment and detrainment is assumed as in Tiedtke
(1989). The ACMTENTR subroutine computes equation 27 and then limits the tendency
in the range given by 29. ψr is the variable PPSIR whereas ψu is the variable PPSIC.

σ computation

Using equation 21, we can write:

1

σωu

∂σωu
∂p

= ǫo − δo (30)

Note that the contribution of turbulent entrainment/detrainment is zero as the entrain-
ment and detrainment rates are equal. The normalized convective fraction σ is computed
thanks to this mass-conservation equations and decreases from value 1 at the surface. The
computation is done in local variable ZSIGMA in acmtud.F90 subroutine. In the formula,
for maximum organized entrainment rate, there is no variation of σ in the vertical.

3.3 Triggering condition

At this point of the algorithm, the triggering condition of the considered layer is determined
by the sign of the convective vertical velocity at both flux levels surrounding the top
variable level. If the sign of ωu is negative, at least at one of the two flux levels, the
layer is considered as convectively unstable. Then, in this scheme, it is possible to trigger
convection even if CIN (Convective INhibition, corresponding to the amount of energy
required to overcome the negatively buoyant energy the environment exerts on an air
parcel, from the ground to the level of free convection) is not equal to zero. It is possible,
using parameter GCVCINC (see below), to choose to add a threshold of CIN to trigger
convection. Then only α needs to be known to close the system.

3.4 Closure hypothesis

A CAPE relaxation closure is used for that (corresponding to the choice NCV CLOS = 1,
see below):

CAPE =

∫ PNET

PLFC

Ra(Tvc − Tv)
dP

P
(31)

with PLFC the pressure at the pressure level of free convection, PNET the level of thermal
equilibrium of the lifted parcel and Ra the gas constant of dry air. The closure hypoth-
esis assumes an equilibrium between the CAPE production by large-scale and sink by
convection reached on a typical time-scale τ (see also part 3.5). We write:

(
∂CAPE

∂t

)
c
= −CAPE

τ
(32)

The relaxation time τ can be related to the adjustment time defined by Arakawa and
Schubert (1974) as the "time required for convective processes to produce a neutral state,
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reducing the CAPE to zero, in the absence of large-scale forcing". Neglecting
(
∂Tvc

∂t

)
c

(following Nordeng 1994)

(
∂CAPE

∂t

)
c
= −Ra

∫ PNET

PNCL

(
(1 + 0.608q)(

∂T

∂t
)c + 0.608T (

∂q

∂t
)c

)
dP

P
(33)

Then the equation 32 is linear with α (see equations 11 and 12) and CAPE is consumed
by convection on a characteristic time proportional to the ratio of convective depth on the
mean convective vertical velocity. The proportionality is defined with a linear function
of the inverse of the resolution (i.e. linear function of the grid size) in order to keep the
same magnitude between the mass flux and the resolved vertical velocity, which is itself
proportional to the resolution (through the continuity equation).

τ = fτ (resolution)

(∫ PNET

PNCL
dp
)2

∫ PNET

PNCL
|ωc|dp

(34)

The resolution dependency is described below in more details below.

3.5 Resolution dependency

At higher horizontal resolution, convection becomes more and more explicitely resolved,
and subgrid convection must decrease: mean subgrid mass flux on a given domain decreases
to zero for infinite higher resolution.

In this approach, the convective response time τ (ZTAU in acmtud.F90 subroutine) writes:

τ =
1

fτ

I212
I11

where : 1
fτ

(ZFDXTAUX variable in acmtud.F90 subroutine) is a function of TEQC,
PGM (scale factor) and 1

∆x
, tuned for climate resolutions ( from T127 to T359):

1

fτ
= TEQC.103(2.23.10−4(

PGM

∆x
)2 − 0.425

PGM

∆x
+ 252.5)

with :

• TEQC (in m−1) is linked with REFLCAPE parameter through the mesh size
(computed in sugem1b.F90 subroutine): TEQC = REFLCAPE

∆x

• I212
I11

is a response time, (unit s), I12 is the convective depth (variable ZS12 in the
acmtud.F90 subroutine, in Pa) and I11 is the mean vertical velocity (in Pas−1).
Then the CAPE relaxation time τ is proportional to the convective depth and
inversely proportional to the vertical velocity.

τ is used to compute the active fraction at the convective cloud bottom:

α = min(ALFX,
I15
I16.τ

)

where I15 is the CAPE and I16 is such that the equation 32 linear versus α is
(

1
τ
∂CAPE

∂t

)
c
=

αI16.

Then, for a constant horizontal resolution, for higher REFLCAPE, higher TEQC, smaller
τ and higher α.
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3.6 Parametrization of cumulus-scale downdraughts

A downdraught is a commonly observed feature of the circulation pattern of many convec-
tive systems: from an individual cumulus which may be associated with an adjacent area
of rapidly descending air which may in turn be associated with strong surface winds and
the formation of a pool of cold, low-lying air , to organized convective systems associated
with coherent mesoscale streams of descending air. Downdraughts can have contrasting ef-
fects on the life cycle and organization of convective systems: on the one hand, it modifies
the structure of the underlying boundary layer, which may dampen or inhibit convection.
On the other, particularly when embedded within a sheared environment, the associated
near-surface outflow can produce near-surface convergence and uplift that induces new
convective elements. Convective cells generate precipitation that intensifies downdraughts
by evaporation and by inertia. The downdraughts from each cell create a cold pool near
the Earth’s surface, which spreads out at the surface as a density current , triggering
new convective cells and limiting the lifetime of the parent cells. Mesoscale subsidence
is driven by evaporation of precipitation from the stratiform part (the anvil shield) and
this reinforces the density current, which in turn helps to initiate a rear-to-front mid-level
flow and the convective ascent with a jump updraught driven by a propagating positive
pressure jump near the edge of the cold pool. The jump updraught is sensitive to the
low-level vertical shear of the environment. A mass-flux scheme with an explicit cold-pool
representation was created by Grandpeix and Lafore (2010). Circular cold pools (the
wakes) are treated parametrically with cooling by the precipitating downdraughts while
the outside area is warmed by the subsidence induced by the saturated draughts.

The current version of PCMT scheme includes only a diagnostic downdrafts parameter-
ization described in (Gueremy 2011 ). The definition of the downdraught profile is very
similar to that of the updraught: the bulk profile is defined starting from the top of the
updraught with a saturated parcel having the thermodynamical properties of the environ-
mental air. If this starting level is located below the level of minimum equivalent potential
temperature, no downdraught is considered. In most cases, the downdraught starting level
is actually the level of minimum equivalent potential temperature. Entrainment is taken
into account and uses a turbulent entrainment rate equal to ǫtx and an organized entrain-
ment rate defined with a value µ0 equal to 1 if ωdowndraft is increasing with the pressure, 0
otherwise. Moist adiabatic process is considered until the updraught lifting condensation
level where dry adiabat takes over. The vertical downdraught velocity is computed using
the steady version of eq. 17. The downdraught triggering condition is the same as that
of the updraught, with a change of sign. The same ασ value obtained for the updraught
is used to get the downdraught mass flux. As the downdraught is taking its energy from
evaporation of convective rain or condensate over a fractional area ασ/4 (only one-fourth
of the convective area is assumed to be affected by the evaporation process, according
to SCM simulations, see parameter FEVAPC below), the downdraught mass flux is mul-
tiplied again by this value, and the value of the downdraught mass flux is equal to the
opposite of ωdowndraft.(ασ)

2/4. This work is done in subroutine acmtddd.F90

3.7 Convective cloudiness

Convective cloudiness( Gueremy 2011) nc is computed by nc = ασm, where α is the
convective fraction at the cloud bottom (obtained from the scheme closure), σ is the
vertical variation of this convective buoyancy (linked with the buoyancy-sorting). The m
constant describes the fact that, in convective clouds, cloudiness nc is larger than the area
occupied by the strongest ascents (ασ).

Algorithmics

• In ACMTUD, convective cloudiness PNEBC is computed by PNEBC = α σ FNEBC
(FNEBC = 10.). The cloudy condensate (liquid + ice) is PQLIC=ZLN * α * σ *
FQLIC, where ZLN is the condensate issued from the diagnostic computation of
ascent (FQLIC = 1),

• In ACPCMT, PNEBC and PQLIC are multiplied by PAIPCMT, a binary indica-
tor: 1 if PCMT computes the shallow convection, 0 if an other shallow-convection
scheme is used.
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• In APLPAR: cloudiness named PNEBC in ACPCMT becomes ZNEBC0 in APLPAR.
ZNEBC0 is used by ACNEBN. The condensate PQLIC in ACPCMT becomes
ZQLIC_CVP in APLPAR.

• In ACNEBN: APLPAR/ZNEBC0 becomes ACNEBN/PNEBC. Two possible cases:

1. where PAIPCMT equals 1, convective cloudiness PNEBC issued from PCMT
is combined with resolved cloudiness, (logical key LGPCMT) according to
max or random hypothesis (driven by logical key LRNUMX).

2. where PAIPCMT equals 0., PNEB is computed as large-scale cloudiness +
that of shallow convection.

• In APLPAR, total cloudiness PNEB may be multiplied by a constant value (GAEPS).

• Then PNEB is send to the radiation scheme to compute radiative effects.

3.8 Vertical transport

Vertical transport of prognostic subgrid and large-scale variables ql and qi by the subgrid
updrafts, downdrafts, and their overturn circulation uses the scheme, developed by Yves
Bouteloup et al. (2010) and coded in subroutine acadvec.F90. This semi-lagrangian
scheme of probabilistic type enables to transport subgrid variables with CFL conditions
greater than 1 in a stable and conservative manner, and constitutes a simplified approach
of Geleyn (2008).

Description of the sedimentation scheme: equations of the scheme

As in Bouteloup et al. (2010), the reasoning is applied here to rain but could be extended
to any precipitating species. The scheme appears as a generalization of the approach of
Rotstayn (1997). The budget equation for rain water mass can be written as:

∂qr
∂t

= −−→
V .

−→∇qr +
1

ρ

∂

∂z
Fr + s0r − sir

with qr the mixing ratio of rain, Fr the precipitation flux, ρ the density of air, −→V the wind
and s0r -sir the sources and sinks of rain, respectively. For rain, sources are auto-conversion,
collection and melting of snow (see chapter microphysics); sinks are evaporation and freez-
ing. The advection term is computed by the dynamical core of the model. The equation
to be solved by the microphysics scheme is:

∂qr
∂t

=
1

ρ

∂

∂z
Fr + s0r − sir (35)

If levels are supposed numbered from top to bottom (as in ARPEGE), the vertical and
temporal discretization of eq. 35 gives:

q+r (j) = q−r (j) +
∆t

ρ∆z
(Fr(j − 1)− Fr(j)) + S0

r − Sir

where ∆z is the thickness of the current layer j, ∆t the time-step, Sr = ∆t.sr, Fr(j − 1)
the incoming precipitation flux at the top of the layer, Fr(j) the output flux, q−r the value
of the rain mixing ratio before microphysics (including sedimentation) and q+r the value
after microphysics. There are two unknown quantities in eq. 35, qr and Fr; to solve the
problem, Fr is generally related to qr by:

Fr = ρqrV
t
r
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where V tr is the mass-weighted bulk terminal fall velocity of rain. Then eq. 35 writes:

∂qr
∂t

=
1

ρ

∂

∂z
(ρqrV

t
r ) + s0r − sir

Equation 3.8 is not easy to solve because s0r, s
i
r and V tr are non-linear functions of qr.

Lopez (2002) gives a Lagragian solution. In many other schemes, eq. 3.8 is split into two
equations, sequentially solved. The first one takes microphysical processes into account
(without sedimentation):

∂qr
∂t micro

= s0r − sir

while the second takes the sedimentation process alone into account:

∂qr
∂t sed

=
1

ρ

∂Fr
∂z

All microphysical processes are computed before the sedimentation. This sequential ap-
proach requires small time-steps. Following Rotstayn (1997), it is possible to define a
vertical discretized form of eq. 3.8 where the output flux is written as a function of qr and
V tr :

∂qr
∂t

(j) =
Fr(j − 1)

ρ∆z
− qr(j)

V tr (j)

∆z

Assuming that the flux coming from the upper-level Fr(j − 1) is constant during the
time-step, the integration of eq. 3.8 yields:

q+r (j) = q−r (j)exp(−C) +
Fr(j − 1)∆t

ρ∆z
(1− exp(−C))/C

where C = (V tr∆t/∆z) is the sedimentation Courant number. It can be written as:

q+r (j) = (1− P1)q
−
r (j) + (1− P2)

Fr(j − 1)∆t

ρ∆z

with P1 = 1− exp(−C) and P2 = 1−P1/C. In the Bouteloup ’s formulation, the vertical
and temporal discretization of eq. 3.8 is written:

q+r (j) = q−r (j) +
∆t

ρ∆z
(Fr(j − 1)− Fr(j))

Combining eqs. 3.8 et 3.8, a diagnostic equation for Fr can be obtained:

Fr(j) = P1
ρ∆z

∆t
q−r (j) + P2Fr(j − 1)

Then the solution of the microphysics parameterization (microphysics + sedimentation)
can be solved first by diagnostically computing Fr from the top to the bottom of the
atmosphere without taking microphysical processes into account, using eq. 3.8, then by
computing the temporal evolution of qr through eq.3.8. So, for any precipitating species,
the vertical transport flux is computed by vertical integration of:

g
F (j − 1)− F (j)

∆p
= P1

ψ(j)

∆t
− (1− P2)

g

∆p
F (j) (36)

where P1 is the probability for the top layer to receive, in a time-step, the total of the
local quantity (ψl∆p/g, local source), and P2 the probability for total transmission of the
bottom flux to the top (non-local source).
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Description of the sedimentation scheme: computation of the basic
proportions.(Routine acadvec.F90)

If a set of raindrops with a terminal velocity V tr is considered, the proportion P0(z, t) of

drops able to pass at least a vertical distance z during a time t is 0 if V t
r t

z
less than 1,

is 1 otherwise. For a layer of the model, containing rain and assuming an homogeneous
vertical distribution, the proportion P1 of rain which leaves the layer during the time-step
∆t is P1 = 1

∆z

∫ ∆z

0
P0(z,∆t)dz. Secondly, if we consider drops of rain which are not in

the layer under consideration at the beginning of the time-step but which come from the
level above, the proportion P2 of those which also leave the layer by the bottom during
the time-step (assuming a constant incoming flux of rain mass from the level above) is:
P2 = 1

∆t

∫ ∆t

0
P0(∆z, t)dt. Using the expression for P0, it is found that:

P1 = min(1, C)

or

P1 = min(1,
V tr ∆t

∆z
)

with C the sedimentation Courant number. For P2,

P2 = max(0, 1− 1

C
)

or

P2 = max(0, min(e
∆z log ǫ

V t
r ∆t , 1− ∆z

V tr ∆t
))

If .LADVLIM=.T., P2 is limited to e
∆z log ǫ

V t
r ∆t (with ǫ = 0.01), to ensure that it is not possible

to transport during one time-step on a vertical distance greater than V tr ∆t. Then it is
not possible to transport during one time-step on a vertical distance greater than V tr ∆t
(LADVLIM=.FALSE. in our code).

3.9 Conclusion

Compared with Bougeault’s scheme, the PCMT scheme provides an improvement of the
distribution of precipitation regime and of convection diurnal cycle (Couvreux et al 2015),
intensity and propagation of precipitation. Main defaults are a lack of triggering over
continents with convective inhibition and an insufficient propagation, maybe linked with
too large cumulated precipitation for intense convective events.

Table 3.9 gives the main characteristics of the different convection schemes used in MF
models.
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Table 10.9: Main characteristics of the deep and shallow convective schemes
of MF

Convection
scheme

Bougeault CMIP5 Bougeault NWP PCMT

Closure of deep
convection

Large-scale
advection + mois-
ture convergence
= convective
precipitation +
detrainment

As Bougeault
CMIP5

CAPE relaxation

Entrainment and
Detrainment

Exponential
decrease with
height of entrain-
ment;detrainment
deduced from
conservation of
cloud moist static
energy

As Bougeault
CMIP5

Organized en-
trainment +
turbulent entrain-
ment

Triggering condi-
tions

Moisture conver-
gence + buoyancy

As Bougeault
with a minimum
cloud depth of 3
km

Prognostic equa-
tion for convec-
tive vertical veloc-
ity. Triggering if
w>0

Downdraught No No Yes-Diagnostic
Closure of shallow
convection

No shallow
scheme

CAPE relaxation
(Kain-Fritsh-
Betchold)

CAPE relaxation
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4 Algorithmic

• Input of ACPCMT: prognostic convective variables of the preceeding time-step:
wu (variable PUDOM), wd (variable PDDOM), αu (variable PUDAL), αd (vari-
able PDDAL), qlc (variable PQLCONV) , qic (PQICONV), qrc (PQRCONV), qsc
(PQSCONV).

• From wu, ACMTUD computes entrainment E and detrainment D, and their frac-
tional analog ǫ and δ (PENTRU , PDETRU , PENTRD,PDETRD, entrainment/detrainment
in updraft/downdraft in s−1).

• ACMTUD uses ǫ and δ to compute the profile of a diagnostic ascent, the associ-
ated buoyancy, the new value of wu through a prognostic equation, αu through a
prognostic equation, and gives the condensation rate of equation 14

• ACMTENTR computes the tendency of prognostic variables with the entrain-
ment/detrainment process.

• ACPCMT updates the intra time-step prognostic variables with condensation and
entrainment/detrainment

• ACPLUIZ computes microphysics (autoconversion, collection, precipitation evapo-
ration).

• ACADVEC computes non-precipitating condensate transport: qlc and qic subgrid
and resolved.

• ACPCMT updates intra time-step prognostic variables with transport.

• ACPCMT computes freezing/melting of qlc, qic after transport.

• ACPCMT updates all the fluxes of the prognostic equations for qlc, qic, qrc, qsc,
if a shallow convection scheme, different from PCMT, is activated (like that of
current NWP ARPEGE -Kain-Fritsch-Bechtold- or PMMC09, Arome’s one) and if
the convective depth of the PCMT updraft is smaller than a threshold (THPCMT).

• As for the other parametrization schemes, all the processes are described as fluxes as
output of the subroutines. These fluxes are read in the subroutin CPTEND_NEW
which computes tendencies of prognostic variables.

5 Logical keys and main parameters in the current
version

Logical keys

• NCVCLOS: type of convective closure (α computation: NCVCLOS=1, CAPE re-
laxation)

• NCVENTR: type of entrainment (NCVENTR=1, GuÃ c©rÃ c©my, Tellus, 2011)

• NCVSIG: type of σ computation (NCVSIG=1, equation 30)

• LADVLIM: in subroutine acadvec.F90, minimises p2 to the value such as the trans-
port scheme can not transport beyond a distance of w.∆t in a time-step (LAD-
VLIM=.F.)

• LGDDD: activates diagnostic downdrafts (LGDDD=.TRUE.)

• LGMT: activates separate microphysics and transport resolved-scale tendencies
(LGMT=.TRUE.)

• LGPCMT: for using PCMT scheme (LGPCMT=.T.)

• LGPSMI: activates Smith-Type convective precipitation (LGPSMI=.F.)

• LCVFEVV: feedback of evaporation on vertical velocity (LCVFEVV=.F.)

• LCVCONTAU: control response time of convection min/max values (LCVCON-
TAU=.F.)

• LCVEOD: activates large entrainment/detrainment rates below or over the cloud
(LCVEOD=.F.)
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• LCVIMPT: implicit transport (LCVIMPT=.F.)

• LCVNAUV: new algorithmics to compute U and V convective effects (LCVNAUV=.F.)

• LCVNHD: activates non-hydrostatic drafts dynamics (LCVNHD=.F.)

• LCVUVM: estimates the U and V updraft values as uniform, equal to the mean of
PU (LCVUVM=.F.)

• LEDKFI: key for EDMF concept (LEDKFI=.TRUE.)

• LRNUMX: key for maximum overlap of adjacent radiative clouds (LRNUMX=.T.)

• LSBUO: smooth buoyancy (LSBUO=.F.)

Main parameters used in the current climate version

• ALFX: maximum convective updraft fraction (ALFX= 0.04)

• ECMNP: minimum critical thickness for precipitating clouds (ECMNP=8000 m)

• FENTRT: factor of turbulent entrainment at detrainment level (FENTRT=1.75)

• FEVAPC: factor for precipitation evaporation (FEVAPC=4)

• FNEBC: factor for convective cloudiness (FNEBC=10)

• FQLIC: factor for convective liquid water (FQLIC=1)

• GAEPS: constant used in APLPAR to multiply total cloudiness issued from AC-
NEBN (GAEPS=1).

• GAMAP1: virtual mass parameter +1: parameter γ+1 of equation 17 (GAMAP1=
1.5)

• GCLOEB: link between cloud depth and effective transport (GCLOEB=0)

• GCVCINC: CIN threshold for triggering condition (GCVINC=0 Jkg−1, a threshold
of 5 Jkg−1 between LCL and LFC corresponds to 0.5 K of difference between cloud
and environment)

• GCVADET: fraction of zero buoyancy variable in the detrainment (GCVADET=1)

• GCVADS: Coefficient to switch from an equipressure adiabat computation to an
equipotential one (GCVADS=0)

• GCVRE: Reduce convective entrainment (GCVRE=1)

• GFRIC: aerodynamic of wu and wd (GFRIC=4.2 ∗ 10−3, used only for diagnostic)

• GFSURF: fraction of surface vs lowest model in the computation of diagnostic
updraft ascent initial state (GFSURF=0, meaning that the profile starts at lowest
model level)

• GREDDRS: reduction of detrainment for convective rain and snow into the environ-
ment (parameter without unit between 0 and 1, GREDDRS=1 for no reduction).

• GREMAX: maximum value of the "reducing entrainment factor" (GREMAX=1.0,
not used if GCLOEB=0)

• GREMIN:minimum value of the "reducing entrainment factor" (GREMIN=0,01,
not used if GCLOEB =0)

• GSDMAX: maximum value of saturation deficit, to compute entrainment reduction
(GSDMAX=0.13E-02 kg.m−2), not used if GCLOEB=0

• GSDMIN: minimum value of saturation deficit, to compute entrainment reduction
(GSDMIN=0.1E-02 kg.m−2), not used if GCLOEB=0

• PAIPCMT: Binary indicator for treatment of shallow-convection (1 if PCMT)

• RDTFAC: Modulation factor of "RDT" in "FONICE" function (RDTFAC=0.5)

• REFLCAPE: Parameter for convective response time (REFLCAPE =1)

• RKDN: minimum aerodynamic friction (RKDN = 3.8 ∗ 10−5Pa−1)

• SCO: threshold under which convective precipitation are not taken into account
(SCO=-1 kgm−2)

• TENTR: convective updraft entrainment rate (0.5 ∗ 10−5Pa−1 )
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• TENTRX: maximum convective updraft’s entrainment rate (0.47 ∗ 10−4Pa−1)

• THPCMT: threshold value, that defines the activation of PCMT versus shallow
convection schemes (THPCMT=-1 as PCMT is used for both convections in this
configuration)

• TUDGP: Updraught horizontal pressure gradient effect coefficient (Kershaw and
Gregory) (TUDGP= 0)

• TVFC: parameter for convective precipitation (TVFC= 1, not used if LCVNAUV=.F.)

• VVN: minimum vertical velocity for turbulent entrainment (VVN=-2 Pa/s)

• VVX: maximum vertical velocity for turbulent entrainment (VVX= -27.5 Pa/s)
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Gravity wave drag

1 Parametrization of non-orographic gravity wave
drag

This parametrization of non-orographic gravity wave drag is mainly described in Lott et
al. (2012) and is treated by subroutine ACNORGWD.

1.1 Formalism

A broadband spectrum of gravity waves (GWs) is represented via the superposition of a
large ensemble of statistically independent monochromatic ones. To produce this large
ensemble at a reasonable numerical cost, one launchs at each model time step δt a finite
number M (typically 8) of waves with characteristics chosen randomly and compute the
tendencies due to them. As they are independent realizations the averaged tendency they
produce (the gravity wave drag (∂tu)gw) is the average of these M tendencies. One takes
into account that the lifetime of these waves (typically ∆t ∼ 1 day) exceeds the model
time step (typically δt < 1h).

We then redistribute this averaged tendency over a longer time scale ∆t by first rescaling
it by δt/∆t and second by using a lag-one auto-regressive (AR-1) relation between the
GW tendencies at two successive time steps:

(∂tu)
t+δt
gw =

∆t− δt

∆t
(∂tu)

t
gw +

δt

∆t

1

M

M∑

n=1

1

ρ

∂Fn
∂z

(1)

In other words, and at each time step, M new waves are emitted, and ones reduces the
probabilities of all the others by the multiplicative factor (∆t − δt)/∆t. A few hundred
waves are then active at each model step, which gives an excellent spectral resolution at
a reasonable computational cost.

At each time step, the GWs horizontal wave number is choosed randomly within the
interval kmin ≤ k ≤ kmax, with kmax and kmin are related to the grid dimensions. The
intrinsic phase speed is also randomly chosen from a Gaussian distribution of mean 0 and
standard deviation cmax.
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1.2 Launch spectrum

The Eliassen-Palm (EP) momentum flux carried by each wave is specified at a given
launching altitude zl by

F(zl) = ρrGp

(
RLw
ρrHcp

)2
k2e−(m∆zp)

2

NΩ3
P 2 k

k
+Gf

∆zf
4f

∫ ztop

0

ρ0(z)N(z)ζ2(z)e−π
√
J(z)dz

k

k
(2)

The first term in the right-hand side of equation (2) represents the contribution from
convective sources. The second term in the right-hand side represents the contribution
from the background flux and accounts for GWs from nonconvective (and nonorographic)
sources.

To relate the gravity waves to the convective forcing, the surface precipitation P is used.
And to translate precipitation into diabatic heating, the latent heat flux produced by
precipitation is distributed into the vertical over a Gaussian distribution with standard
deviation ∆zp, that characterizes the heating depth (see Lott et al. (2013) for mathemat-
ical derivation). In (2), ρr = 1 kg.m−3 is the reference density, Lw is the latent heat of
condensation, cp is the heat capacity at constant pressure, H is the characteristic height of
the atmosphere, N is the Brunt-Vaisala frequency, k = ||k|| is the horizontal wavenumber,
Ω is the intrinsic frequency Ω = ω−k.u and m is the vertical wavenumer m = Nk/Ω. Gp
is a tuning parameter of order 1.

To relate the gravity waves to frontal sources, the potential vorticity ζ is used (see De la
Camara et al. (2015) for details). In (2), f is the Coriolis parameter, ztop is the model top
altitude, ρ0 = ρre

−z/H is the background density, J = N2/Λ2 is the Richardson number
(Λ is the vertical shear of the horizontal wind), ∆zf is the tunable depth of the frontal
source, and Gf is also a tunable parameter of order 1 that controls the amplitude of the
EP flux.

1.3 Vertical propagation

First, the momentum flux carried by gravity waves is set to zero where the waves encounter
a critical level. In the absence of critical levels, the momentum flux remains nearly constant
except for a small dissipation µ/ρ0 in order to guarantee that the waves are finally erased
over the last few model layers. The GW momentum flux is also limited by that produced
by a saturated monochromatic wave. The passage of EP flux from one level z to the next
z + δz can be written as

F(z + δz) =
k

k
Θ(Ω(z)Ω(z + δz))min

(
|F(z)|e−2

µm3

ρ0Ω
δz
, ρrSc

|Ω|3k2min
Nk4

)
(3)

where the Heaviside function Θ handles critical levels and Sc is a tunable parameter
controlling the saturated momentum flux.

1.4 Computation aspects

Subroutine ACNORGWD is active under LNORGWD logical key and calculates the grav-
ity wave drag (PTEND_U,PTEND_V) = ((∂tu)gw, (∂tv)gw) from the vertical profiles
of temperature PTT, zonal wind PUU, meridional wind PVV and potential vorticity
PVOVO. The total (stratiform plus convective) precipitation PPREC is also used as a
input of the subroutine.

The parameters of the scheme are defined in the module YOMNORGWD.

• NORGWD_RDISS is the dissipation coefficient (µ).
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• NORGWD_SAT is the saturation parameter (Sc).

• NORGWD_KMIN is the mininal horizontal wavenumber (kmin).

• NORGWD_KMAX is the maximal horizontal wavenumber (kmax).

• NORGWD_CMAX is the ’maximal’ intrinsic phase velocity (cmax).

• NORGWD_DELTAT is the time scale (∆t) of the life cycle of the waves parame-
terized

• NORGWD_DZ is the characteristic depth of the convective sources (∆zp).

• NORGWD_RUWMAX is the tunable parameter that controls the amplitude of
the EP flux from convective GWs (Gp).

• NORGWD_DZFRON : is the characteristic depth of the frontal sources (∆zf ).

• NORGWD_GFRON is the tunable parameter that controls the amplitude of the
EP flux emitted by frontal GWs (Gf ).
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Ozone

1 Default ozone

When ozone is not a historical variable advected by dynamics and modified by photo-
chemistry, it is simply specified by a climatological monthly file interpolated onto model
levels from a climatology coming from University of Reading calculated by Li and Shine
(1995). See:

http://badc.nerc.ac.uk/data/ugamp-o3-climatology/ugamp_help.html

2 Parameterization of photochemical ozone sources
and sinks

The explicit representation of stratospheric photochemistry is too complex to be able to
be introduced into a general circulation model. This is why one uses a linearization of
the terms of ozone sources and sinks starting from a 2d latitude-pressure model (Cariolle
and Déqué, 1986). The 2d model MOBIDYC (64 latitudes and 40 levels pressure) utilized
a zonal circulation of stratosphere and 168 chemical reactions concerning 59 components
(with in addition 51 reactions of photo-dissociation). The 2d model reaches an equilibrium
at the end of 30 years of integration (certain reactions have characteristic times of several
years). Stating at the equilibrium situation, one advances one time step ahead in each
grid point of the photochemical model, after having disturbed by ±10% the ozone mixing
ratio rO3. One thus obtains the derivative of the term of ozone photochemical production
or destruction P−L versus rO3. This derivative can be regarded as a relaxation coefficient
of the ozone field. Time characteristic of this relaxation (calculated for each latitude and
each level of the model 2d and each month of the year) varies from 0.1 day towards 1 hPa
to 1 year at the tropopause. One calculates in same manner the derivative of P −L versus
temperature T . Indeed the rates of the chemical reactions (Chapman cycle) depend on
temperature. One calculates finally the derivative with respect to ozone thickness above
the grid point, ΣO3. When this quantity decreases, ultraviolet flux reaching the point
increases, and the production of ozone due to photo-dissociation increases.

The following linear model is thus considered:

∂rO3

∂t
= P − L+

∂P − L

∂rO3
[rO3 − rO3]

+
∂P − L

∂T

[
T − T

]
+
∂P − L

∂ΣO3

[
ΣO3 − ΣO3

]
(1)
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where the over-lined quantities were obtained using the 2d model MOBIDYC. This linear
model was substituted for the photochemical model in the 2d model, and the results of the
two versions were compared. The relative error remains lower than 10%; the maximum
error is in low stratosphere where chemistry is strongly non-linear (just as in troposphere,
but the concentrations are weak). The linearized model is thus validated compared to the
full model from which it results.

Linear parameterization thus utilizes the 7 coefficients of Equation (1) which are regarded
as two-dimensional fields as long as the poles are not tilted, three-dimensional otherwise.

Subroutine ACOZONE calculates initially the ozone quantity above each point:

ΣO3(l) =

l−1∑

i=0

p(̃i)− p(̃i− 1)

g
rO3(i) +

p(l)− p(l̃ − 1)

g
rO3(l)

The same algorithm is used for term ΣO3 starting from rO3 to ensure the coherence
of the vertical discretization of the model. Then, one calculates the ozone tendency of
Equation (1) which is written as:

∂rO3

∂t
= PK2 + PK3(rO3 − PK1) + PK5(T − PK4) + PK7(ΣO3 − ΣO3)

with:

ΣO3(l) =

l−1∑

i=0

p(̃i)− p(̃i− 1)

g
PK1(i) +

p(l)− p(l̃ − 1)

g
PK1(l)

In fact, the way it is written is less simple as one uses an implicit temporal discretization
for the term in rO3 (but not for ΣO3 because it would be too complicated) to ensure
numerical stability with large time steps.

Finally one calculates the ozone flow per vertical integration of the temporal tendencies
which one has just calculated and with the assumption of null flow at the top.

3 The effect of chlorine on ozone

Parameterization above does not make it possible to calculate the effect of the applica-
tion of the Montreal protocol on the reduction of Clx in stratosphere. Heterogeneous
chemistry responsible for “ozone hole” is very complex and here a particularly simplified
formulation is used. When the solar zenith angle is positive (i.e. during daylight) and
when temperature is lower than TPSCLIM, namely 195 K, one adds to the PK3 term
the quantity PK6 RCLX

2, where PK6 is a new 2d field and RCLX is a parameter whose
temporal evolution is controlled by namelist. There is no compatibility with the former
versions of the scheme for which fields PK1 to PK7 corresponded to other coefficients of
Equation (1) (caution: do not mix boundary conditions files!).

4 Parameterization of “mesospheric drag”

The goal of this parameterization is to mitigate the absence of physics in the highest
levels of the model (i.e. in the mesosphere) when the stratospheric vertical discretization
is high. This parameterization consists simply of a linear relaxation of the wind towards
0, of specific moisture towards qmin = 3.725 10−6 (RFMESOQ) to avoid excessive drying
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and represent chemical sources of H2O and of the temperature towards the temperature
of standard atmosphere Tsta (Fels, 1986) defined in subroutine SUSTA by:




z = 0 Tsta = 288.15K

0 < z < 11.0 km
∂Tsta
∂z

= −6.5K km−1

11.0 km < z < 20.0 km
∂Tsta
∂z

= 0

20.0 km < z < 32.0 km
∂Tsta
∂z

= 1.00K km−1

32.0 km < z < 47.4 km
∂Tsta
∂z

= 2.75K km−1

47.4 km < z < 51.4 km
∂Tsta
∂z

= 0

51.4 km < z < 71.7 km
∂Tsta
∂z

= −2.75K km−1

71.7 km < z < 85.7 km
∂Tsta
∂z

= −1.97K km−1

85.7 km < z
∂Tsta
∂z

= 0

The profile of the relaxation coefficients K(l) is defined in subroutine SUTOPH. One
chooses for the wind a reference level pressure pref and a coefficient α. In the same way,
for moisture and temperature, one takes another set of coefficients. Profile K(l) is then:

K(l) = α max

(
pref − psta(l)

psta(l)
, 0

)

where psta(l) is the standard air pressure at level l. In practice, these two levels are
selected above 1 hPa and the constants are adjusted in order to obtain time-constants of
a few hours in the highest level.

The writing of linear parameterization is a little complicated by the fact that on the one
hand an implicit discretization is used, and that on the other hand one must calculate a
flux instead of a tendency. For example, the enthalpy flux at inter-level l is given by:

PFRMH = −1

g

KLEV∑

i=l+1

δp(i)
K(i)

1 + ∆tK(i)
cp(i)(T (i)− Tsta(i))

where cp is the specific heat of the air, g gravity, KLEV the number of levels, δp(i)
the thickness of the layer, ∆t the time step of physics and T (i) the temperature. Con-
trary to fluxes produced by the other parameterizations, this flux is zero at surface. The
momentum and energy exchange is done with space and not with earth.
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