Observation et modélisation des interactions entre conditions d'enneigement et activité des stations de sports d'hiver dans les Alpes Françaises

Pierre Spandre

Ecole Doctorale Terre, Univers, Environnement

5 Décembre 2016

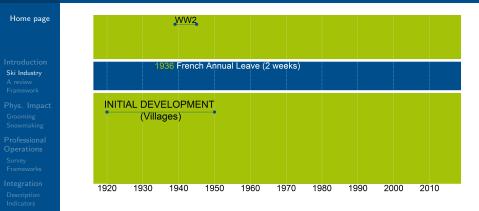
Contents or 45 minutes in a glance

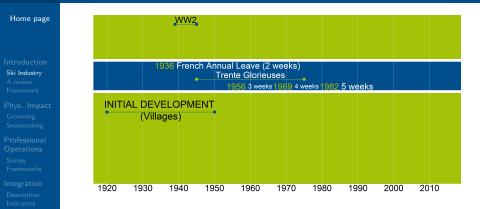
Home page

- Introduction
 - Ski Industry
 - A review
 - Framework
- Observations and modelling of snow management in ski resorts
 - Grooming
 - Snowmaking
- Snow management operations in French ski resorts
 - Survey
 - Frameworks

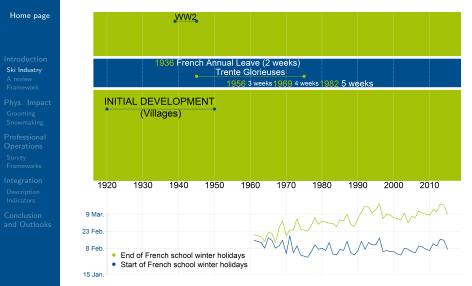
- Integration of professional snow management operations
 - Explicit spatial modelling of managed snow on ski slopes
 - Snow reliability indicators for ski resorts activity
- 5 Conclusion and Outlooks

A review Framework Phys. Imp

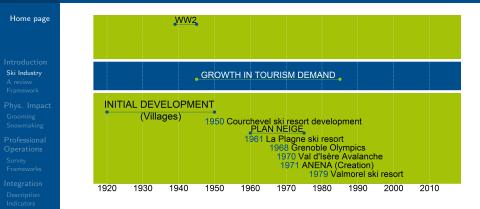

Phys. Impac Grooming Snowmaking

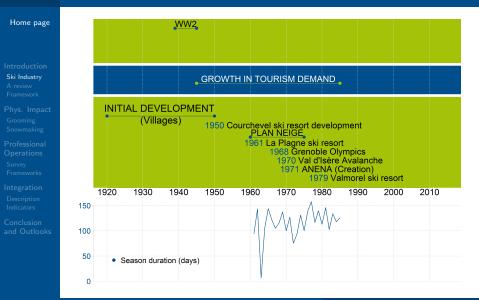

Professiona Operations Survey

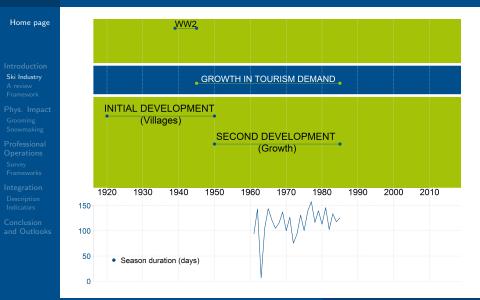
Integration Description

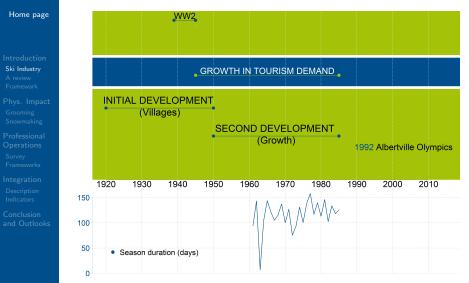

Conclusion and Outlooks

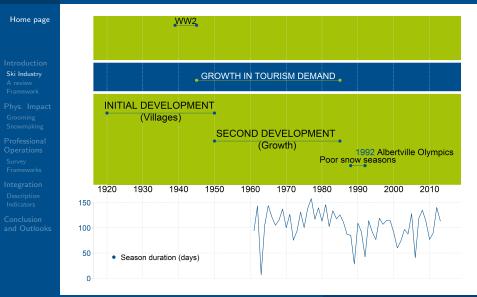
Home page			<u>ww2</u>								
Introduction Ski Industry A review Framework		1:	936 Frenc	h Annua	Leave (2	weeks)					
Phys. Impact Grooming Snowmaking		1927 Plan 1933	nix Olym Praz (Ch Rochebi 936 First I	amonix) une (Me		ere)					
Professional Operations Survey Frameworks											
Integration Description	1920	1930	1940	1950	1960	1970	1980	1990	2000	2010	

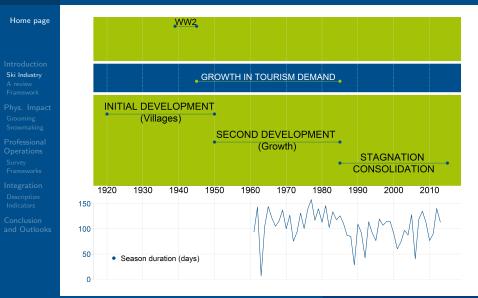


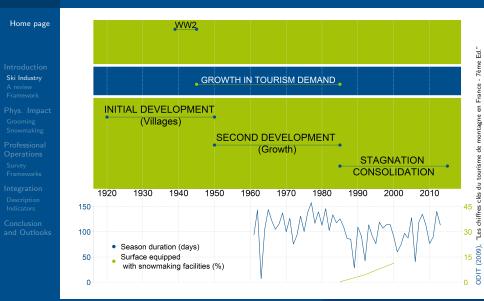


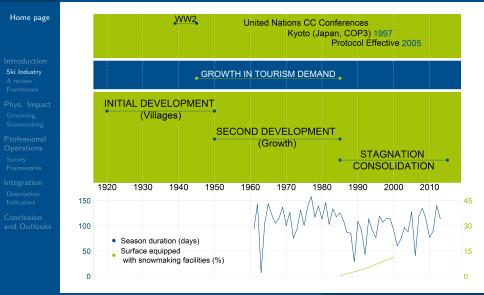

Conclusion and Outlooks

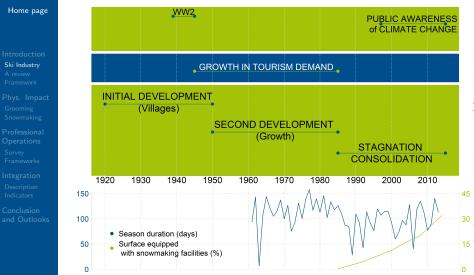












"Convinced, ambivalent or annoyed [...]" in Tourism Management Trawöger (2014),

Introduction Climate Change challenges for winter tourism

Home page 4500 **Snow Volume Change** Air Temperature Change (°C) 4000 (1.5 3500 3000 (Switzerland) ELEVATION 2500 Ski Industry +4°C Current 2000 1500 18 1000 2003 500 10 20 30 50 1960 1980 2040 2060 2080 0 40 Climate Change Challenges¹

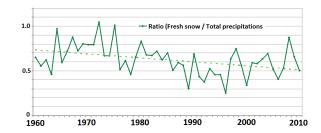
- Outstanding global increase of greenhouse gases concentrations since 1950
- ullet + 0.85°C global temperature increase since pre industrial era 2
- In the European Alps, a twice higher rate of increase
- Importance of the Snow/Rain elevation limit

¹Gobiet et al. (2014), "21st century climate change in the European Alps" in Science of the Total Environment ²IPCC (2014), Climate Change 2014: Impacts, Adaptation, and Vulnerability [...]

Introduction Climate Change challenges for winter tourism

Home page

Introduction Ski Industry A review Framework


Phys. Impact Grooming Snowmaking

Professiona Operations Survey Frameworks

Integration Description Indicators

Conclusion and Outlooks An example at the Col de Porte (1325 m.a.s.l, Chartreuse, France)³

- Season duration diminished by -6 days per decade over 1960 2012
- Average Snow depth diminished by -13 cm per decade over 1960 2012

³Lesaffre et al. (2012), "Impact du changement climatique sur l'enneigement de moyenne montagne[...]"

Home page

Ski Industry

Winter tourism: a major economy

of French mountain regions⁴

- 20% of the GDP in Savoie (73) and Haute-Savoie (74)⁵
- 10 out of the 30 largest ski resorts in the world are located in the French Alps
- 150 000 employments

$\ensuremath{\mathsf{An economy}}$ based on key periods

- 20% of revenues⁶ during Christmas Holidays (2 weeks)
- 33% of revenues during February School break (4 weeks)

⁴DSF (2014), Indicateurs et Analyses

⁵Lecuret et al. (2014), Tourism monitor. Savoie Mont Blanc facts and figures

⁶skier days and overnight stays in Savoie and Haute-Savoie

Research publications Impact studies based on NATURAL SNOW

Home page

Introduction Ski Industry A review Framework

Phys. Impac Grooming Snowmaking

Professiona Operations Survey Frameworks

Integration Description Indicators

Conclusion and Outlooks

Definitions⁷:

• "100 days" rule

Skiing requires a minimum 30 cm deep snow during 100 days or more to be economically viable

Snow Reliability Line

the minimum elevation fulfilling the "100 days" rule

⁷Koenig and Abegg (1997), "Impacts of climate change on winter tousim in the Swiss Alps" in *Journal of Sustainable Tourism*

Impact studies based on natural snow

Home page

- Introduction Ski Industry A review Framework
- Phys. Impac Grooming Snowmaking
- Professiona Operations Survey Frameworks
- Integration Description Indicators
- Conclusion and Outlooks

Based on NATURAL SNOW⁸

• Computation of the Snow Reliability Line

e.g. 1200 ma.s.l (French Northern Alps) | 1500 m.a.s.l (French Southern Alps)

- Impact of Climate Change on the Snow Reliability Line
 - e.g. 150m rise for a $+1^{\,\circ}\,\text{C}$ increase in temperature
- Reliability of ski resorts by comparing elevations

e.g. 97% of French resorts currently snow reliable | 83% under a $+1^\circ$ C | 65% under a $+2^\circ$ C increase in temperature

• Computation of snowmaking requirements to fulfill the "100 days" rule at resorts' elevation

⁸Abegg et al. (2007), "Climate change impacts and adaptation in winter tourism" in *Climate Change in the European Alps*

Impact studies accounting for snowmaking

Home page

Introduction Ski Industry A review Framework

Phys. Impact Grooming Snowmaking

Professiona Operations Survey Frameworks

Integration Description Indicators

Conclusion and Outlooks

Accounting for SNOWMAKING ⁹

- U.S.A
- Austria
- Switzerland
- Canada
- Spanish and French Pyrenees
- Germany
- Andorra
- Australia
- New-Zealand

⁹Gilaberte-Búrdalo et al. (2014), "Impacts of climate change on ski industry" in Environmental Science & Policy

Impact studies accounting for snowmaking: major limitations

Home page

Introduction Ski Industry A review Framework

Phys. Impact Grooming Snowmaking

Professiona Operations Survey Frameworks

Integration Description Indicators

Conclusion and Outlooks

- French Alps are not covered
- Spatial representations of ski resorts may be coarse

Impact studies accounting for snowmaking: major limitations

Home page

Introduction Ski Industry A review Framework

- Phys. Impact Grooming Snowmaking
- Professiona Operations Survey Frameworks
- Integration
- Description Indicators
- Conclusion and Outlooks

- French Alps are not covered
- Spatial representations of ski resorts may be coarse

Impact studies accounting for snowmaking: major limitations

Home page

- Introduction Ski Industry A review Framework
- Phys. Impact Grooming Snowmaking
- Professiona Operations Survey Frameworks
- Integration
- Description Indicators
- Conclusion and Outlooks

- French Alps are not covered
- Spatial representations of ski resorts may be coarse

Impact studies accounting for snowmaking: major limitations

Home page

- Introduction Ski Industry A review Framework
- Phys. Impact Grooming Snowmaking
- Professiona Operations Survey Frameworks
- Integration
- Description Indicators
- Conclusion and Outlooks

Accounting for SNOWMAKING: major limitations

- French Alps are not covered
- Spatial representations of ski resorts may be coarse

Home page

Impact studies accounting for snowmaking: major limitations

Home page

Introduction Ski Industry A review Framework

Phys. Impact Grooming Snowmaking

Professiona Operations Survey Frameworks

Integration Description Indicators

Conclusion and Outlooks

- French Alps are not covered
- Spatial representations of ski resorts may be coarse
- Transfer/generalization may not be possible

Impact studies accounting for snowmaking: major limitations

Home page

Introduction Ski Industry A review Framework

Phys. Impact Grooming Snowmaking

Professional Operations Survey Frameworks

Integration Description Indicators

Conclusion and Outlooks

- French Alps are not covered
- Spatial representations of ski resorts may be coarse
- Transfer/generalization may not be possible
- Grooming impact on snow properties may not be considered
- Machine made snow properties may not be considered

Impact studies accounting for snowmaking: major limitations

Home page

Introduction Ski Industry A review Framework

Phys. Impact Grooming Snowmaking

Professional Operations Survey Frameworks

Integration Description Indicators

Conclusion and Outlooks

- French Alps are not covered
- Spatial representations of ski resorts may be coarse
- Transfer/generalization may not be possible
- Grooming impact on snow properties may not be considered
- Machine made snow properties may not be considered
- Key periods (Christmas, February) may not be considered
- Specificities of French ski industry may not be considered

Research publications Present investigation: initial state

Home page

- Introduction Ski Industry A review Framework
- Phys. Impact Grooming Snowmaking
- Professional Operations Survey Frameworks
- Integration Description Indicators
- Conclusion and Outlooks

Remaining MAJOR CHALLENGES

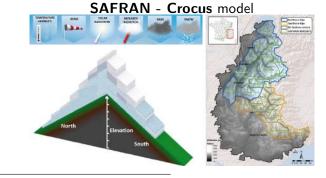
- French Alps are not covered
- Spatial representations of ski resorts may be coarse
- Transfer/generalization may not be possible
- Grooming impact on snow properties may not be considered
- Machine made snow properties may not be considered
- Key periods (Christmas, February) may not be considered
- Specificities of French ski industry may not be considered

Present investigation: initial state

Home page

Introduction Ski Industry A review Framework

Phys. Impact Grooming Snowmaking


Professiona Operations Survey Frameworks

Integration Description

Conclusion and Outlooks

Initial state based on NATURAL SNOW¹⁰

- French Alps
- Transfer/generalization

¹⁰Vionnet et al. (2012), "The detailed snowpack scheme Crocus [...]" in *Geosci. Model. Dev.*

Home page

Present investigation: initial state

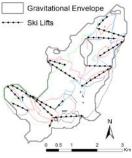
Home page

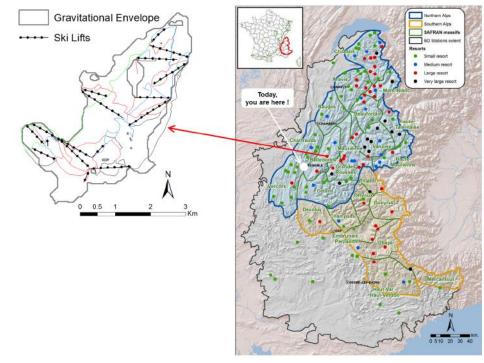
Introduction Ski Industry A review Framework

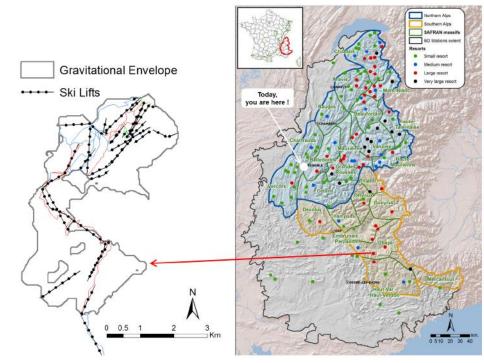
Phys. Impact Grooming Snowmaking

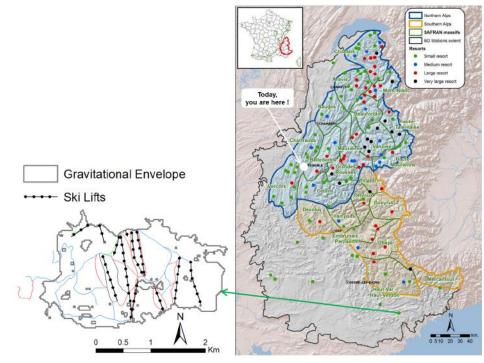
Professional Operations Survey Frameworks

Integration Description Indicators


Conclusion and Outlooks

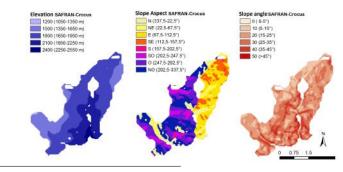

Initial state based on a SOCIO - ECONOMIC DATABASE¹¹


- French Alps
- Spatial representations of ski resorts
- Transfer/generalization



¹¹Marcelpoil et al. (2012), Atlas des stations du massif des Alpes
 ¹²Example: Sept Laux ski resort (Belledonne, France)

Research publications


Present investigation: initial state

Home page

- Introduction Ski Industry A review Framework
- Phys. Impact Grooming Snowmaking
- Professiona Operations Survey Frameworks
- Integration Description
- Conclusion and Outlooks

Initial state based on a SOCIO - ECONOMIC DATABASE

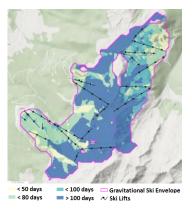
- French Alps
- Spatial representations of ski resorts¹³
- Transfer/generalization

¹³Francois et al. (2016), "Croisement de simulations numériques des conditions d'enneigement [...]" in La Houille Blanche

Research publications Present investigation: initial state

Home page

Introduction Ski Industry A review Framework

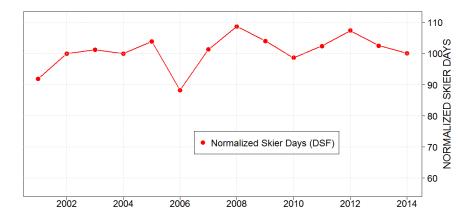

Phys. Impac Grooming Snowmaking

Professiona Operations Survey Frameworks

Integration Description Indicators

Conclusion and Outlooks

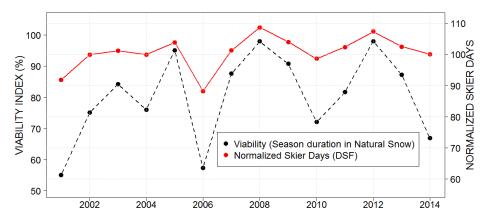
A proof of concept based on NATURAL SNOW conditions¹⁴


Sept Laux ski resort | Season duration (days) | 2006-2007

¹⁴François et al. (2014), "Crossing numerical simulations [...]" in Cold Regions Science and Technology

Home page

Initial state


Proportion of a ski resort fulfilling the "100 days" rule weighed by resorts ski lift power

¹⁵François et al. (2014), "Crossing numerical simulations [...]" in Cold Regions Science and Technology

Initial state

Proportion of a ski resort fulfilling the "100 days" rule weighed by resorts ski lift power

¹⁶François et al. (2014), "Crossing numerical simulations [...]" in Cold Regions Science and Technology

Problematic

Present investigation: major challenges

Home page

Introduction Ski Industry A review Framework

Phys. Impact Grooming Snowmaking

Professiona Operations Survey Frameworks

Integration Description

Conclusion and Outlooks

Remaining MAJOR CHALLENGES

- French Alps
- Spatial representations of ski resorts
- Transfer/generalization

Problematic

Present investigation: major challenges

Home page

Introduction Ski Industry A review Framework

Phys. Impact Grooming Snowmaking

Professiona Operations Survey Frameworks

Integration Description Indicators

Conclusion and Outlooks

Remaining MAJOR CHALLENGES

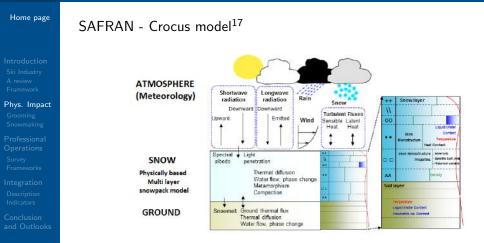
- French Alps
- Spatial representations of ski resorts
- Transfer/generalization
- Grooming impact on snow properties
- Machine made snow properties

Problematic

Present investigation: major challenges

Home page

- Introduction Ski Industry A review Framework
- Phys. Impact Grooming Snowmaking
- Professiona Operations Survey Frameworks
- Integration Description Indicators
- Conclusion and Outlooks


Remaining MAJOR CHALLENGES

- French Alps
- Spatial representations of ski resorts
- Transfer/generalization
- Grooming impact on snow properties
- Machine made snow properties
- Key periods (Christmas, February)
- Analysis and specificities of French ski industry

Part 1 Observations and modelling of snow management impact on snow properties

Physical Impact

Observations and modelling of snow management in ski resorts

¹⁷Vionnet et al. (2012), "The detailed snowpack scheme Crocus [...]" in Geosci. Model. Dev.

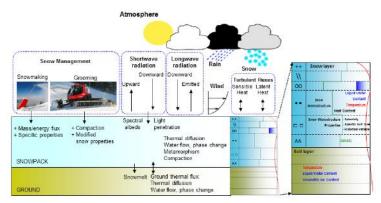
Physical Impact

Observations and modelling of snow management in ski resorts

Home page

Introduction Ski Industry A review Framework

Phys. Impact


Grooming Snowmaking

Professiona Operations Survey Frameworks

Integration Description

Conclusion and Outlooks

SAFRAN - Crocus Resort¹⁸

¹⁸Spandre et al. (2016), "Integration of snow management [...]" in Cold Regions Science and Technology

Physical Impact Observations and modelling of snow management in ski resorts¹⁹

Home page

Introduction Ski Industry A review Framework

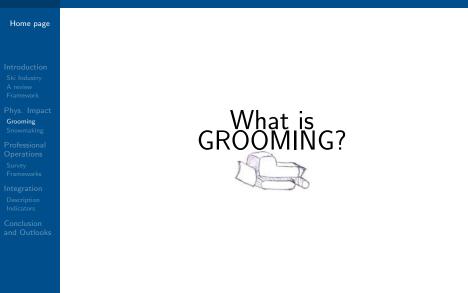
Phys. Impact Grooming Snowmaking

Professiona Operations Survey Frameworks

Integration Description Indicators

Conclusion and Outlooks

Observations in four ski resorts Autrans, Chamrousse, Les 2 Alpes, Tignes over two winter seasons


- 19 ski patrollers involved
- 64 observations by ski patrollers
- 45 additional observations

Many thanks to all of them!!

¹⁹Spandre et al. (2016), "Integration of snow management [...]" in Cold Regions Science and Technology

Physical Impact of GROOMING Observations and modelling of snow management in ski resorts

Physical Impact of GROOMING Observations and modelling of snow management in ski resorts²⁰

Home page

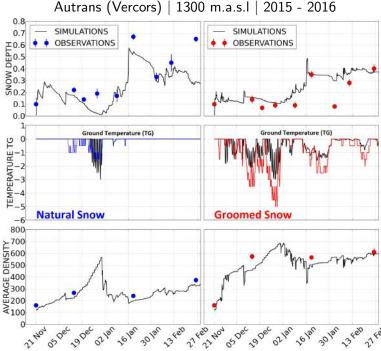
- Grooming

What is grooming? Physical impact

- Static weight 🚮
- Mixing and evolution effect

Grooming schedule

- From November 1 to April 15
- From 20 p.m to 21 p.m
- Minimum 20 kg m⁻²



²⁰Spandre et al. (2016), "Integration of snow management [...]" in Cold Regions Science and Technology

Autrans (Vercors) | 1300 m.a.s.l | 2015 - 2016

Physical Impact of SNOWMAKING Observations and modelling of snow management in ski resorts

Physical impact of SNOWMAKING

Physical Impact of SNOWMAKING Observations and modelling of snow management in ski resorts²¹

Home page

Introduction Ski Industry A review Framework

Phys. Impact Grooming Snowmaking

Professiona Operations Survey Frameworks


Integration Description Indicators

Conclusion and Outlooks

• Machine Made snow properties

Production conditions

- Start and End dates
- From 6 p.m to 8 a.m
- Wet bulb temperature threshold (°C)
- Precipitation rate (kg $m^{-2} s^{-1}$)
- Production duration (s)
 Or threshold snow depth (m)
 Or threshold snow mass (kg m⁻²)

²¹Spandre et al. (2016), "Integration of snow management [...]" in Cold Regions Science and Technology

Physical Impact of SNOWMAKING Observations and modelling of snow management in ski resorts²²

Home page

- Introduction Ski Industry A review Framework
- Phys. Impac Grooming Snowmaking
- Professiona Operations Survey Frameworks
- Integration Description Indicators
- Conclusion and Outlooks

Differences in water volumes (2014 - 2015)

- $\bullet >\! 25\%$ in Tignes
- $\bullet~\pm 50\%$ in Les 2 Alpes
- >50% in Chamrousse, Autrans

²²Spandre et al. (2016), "Integration of snow management [...]" in Cold Regions Science and Technology

Physical Impact of SNOWMAKING Observations and modelling of snow management in ski resorts ²³

Home page

Introduction Ski Industry A review Framework

Phys. Impact Grooming Snowmaking

Professional Operations Survey Frameworks

Integration Description Indicators

Conclusion and Outlooks

Dedicated field campaign Differences in water volumes (2015 - 2016)

- <10% due to thermodynamic losses (evaporation, sublimation)
- 30% unexplained (wind, obstacles, etc.)
 Overall 40% (±10%)
 differences

²³Spandre et al. (2016), "Seasonal evolution of a ski slope under natural and artificial snow [...]" in *The Cryosphere Discussions*

Part 2 Professional snow management operations in French ski resorts

Professional snow management operations in French ski resorts

Home page

Introduction Ski Industry A review Framework

Phys. Impac Grooming Snowmaking

Professiona Operations

Survey Framework

Integration Description Indicators

Conclusion and Outlooks

Major priorities for resorts operators²⁴

The satisfaction of skiers expectations

- To provide comfortable skiing conditions (9.0/10)
- To return back down the village by ski (8.8/10)

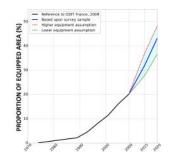
The guarantee of skiable conditions

- To build a snowpack resistant against erosion (8.2/10)
- To reach a threshold snow depth (8.1/10)

Average: February = 63cm | Minimum= 45cm

The promotion of the resort

• To have visually appealing slopes every morning (8.1/10)


²⁴Spandre et al. (2016), "Panel based assessment of snow management [...]" in Journal of Outdoor Recreation and Tourism

Professional snow management operations in French ski resorts

Home page

Technical means²⁵

- 70% of ski slopes groomed every day
- Increasing snowmaking requirements ²⁶

²⁵Our survey was realized before the 2015 announcement from "Auvergne Rhône Alpes" region of an investment plan in snowmaking facilities

²⁶Spandre et al. (2015), "Snowmaking in the French Alps. Climatic context [...]" in Journal of Alpine Research

Home page

- A review Framework Phys. Impac Grooming
- Professiona Operations
- Survey Framework
- Integration Description
- Conclusion and Outlooks

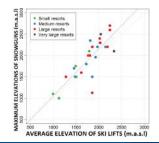
Professional snow management operations in French ski resorts

Home page

- Introduction Ski Industry A review Framework
- Phys. Impac Grooming Snowmaking
- Professiona Operations
- Survey Frameworl
- Integration Description
- Indicators
- Conclusion and Outlooks

• Water supply

• Dedicated reservoirs (70% of resorts)


Average capacity 30 to 36 cm Machine Made (MM) snow (1500 to 1800 m³ ha⁻¹)

• 31% have this only source of water

Average capacity ${\bf 38}~{\rm cm}~{\rm MM}$ snow (1900 ${\rm m}^3~{\rm ha}^{-1})$

• Priority for snowguns set up

- To low elevation areas (excepted Very Large resorts)
- To slopes turned towards the village

Professional snow management operations in French ski resorts

Home page

Introduction Ski Industry A review Framework

Phys. Impact Grooming Snowmaking

Professiona Operations Survey Frameworks

Integration Description Indicators

Conclusion and Outlooks

Conclusions²⁷

• Frameworks for the production of MM snow and snow grooming

(i.e. periods, threshold snow depth, grooming frequency)

 Indications for the spatial modelling of ski slopes covered by snowmaking facilities

(i.e. % of equipment, slopes aspect, elevations)

²⁷Based on survey's results, interviews with professional snowmakers and literature

Part 3 Integration of professional snow management operations

Impact studies

Integration of professional snow management operations

Home page

Description

Frameworks for the production of MM snow and snow grooming²⁸

• Grooming every day

²⁸Spandre et al. (In Prep), "Investigations on socio economic indicators of French Alps [...]" in Journal of the Total environment

Impact studies

Integration of professional snow management operations

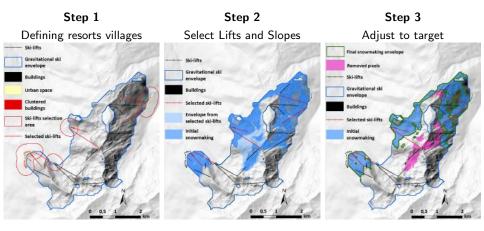
Home page

Introduction Ski Industry A review Framework

Phys. Impact Grooming Snowmaking

Professiona Operations Survey Frameworks

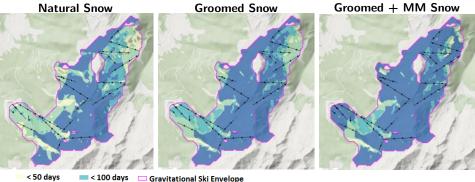
Integration Description


Conclusion

Frameworks for the production of MM snow and snow grooming $^{29} \ensuremath{\mathsf{}^{29}}$

- Grooming every day
- November 1 to December 15:
 "base layer" (150 kg m⁻² or 30 cm MM snow)
- December 15 to February 28: reach a threshold of 60 cm total snow depth
- March 1: STOP!

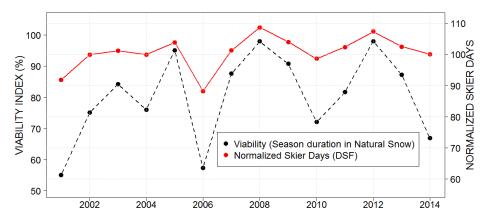
²⁹Spandre et al. (In Prep), "Investigations on socio economic indicators of French Alps [...]" in Journal of the Total environment


Spatial modelling of ski slopes covered by **snowmaking facilities**³⁰

Sept Laux ski resort, Belledonne, France

³⁰Spandre et al. (In Prep), "Investigations on socio economic indicators of French Alps [...]" in Journal of the Total environment

Explicit spatial modelling of managed snow on ski slopes


< 80 days > 100 days Gravitational Ski Envelop

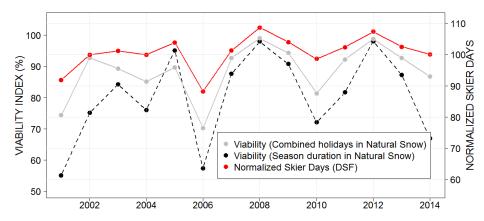
Sept Laux ski resort | Season duration (days) | 2006-2007

Interactions Snow reliability indicators for the economic activity of ski resorts

Initial state

Proportion of a ski resort fulfilling the "100 days" rule weighed by resorts ski lift power

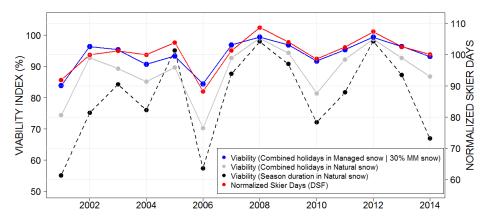
³¹François et al. (2014), "Crossing numerical simulations [...]" in Cold Regions Science and Technology


Step 2

Accounting for the key periods

- Daily viability for every resort
- Computed for Christmas Holidays and February school break
- "Combined Holidays" viability = 15% Christmas + 85% February

Step 2


Accounting for the **key periods** weighed by resorts ski lift power

³²Spandre et al. (In Prep), "Investigations on socio economic indicators of French Alps [...]" in Journal of the Total environment

Step 3

Accounting for the key periods and **snow management** weighed by resorts ski lift power

³³Spandre et al. (In Prep), "Investigations on socio economic indicators of French Alps [...]" in Journal of the Total environment

Time! General conclusions

Home page

Introduction Ski Industry A review Framework

Phys. Impact Grooming Snowmaking

Professiona Operations Survey Frameworks

Integration Description Indicators

Conclusion and Outlooks Integrated approach, accounting for:

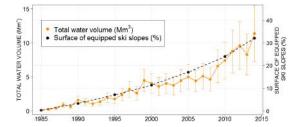
- Spatial representations of ski resorts
- Physical impacts of snow management
- Professional approaches of snow management
- Specificities of the ski industry economy

Leading to a wide range of applications!

Home page

Introduction Ski Industry A review Framework

Phys. Impact Grooming Snowmaking

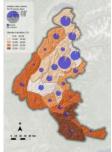

Professional Operations Survey Frameworks

Integration Description

Conclusion and Outlooks

An innovative approach to

• Compute water and energy requirements for snowmaking³⁴

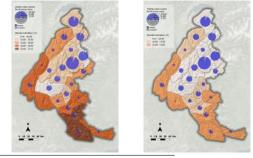

³⁴Spandre et al. (In Prep), "Investigations on socio economic indicators of French Alps [...]" in Journal of the Total environment

Home page

- Introduction Ski Industry A review Framework
- Phys. Impact Grooming Snowmaking
- Professional Operations Survey Frameworks
- Integration Description Indicators
- Conclusion and Outlooks

An innovative approach to

- Compute water requirements for snowmaking
- Investigate spatial and resorts categories variabilities³⁵ regarding natural snow conditions


³⁵Spandre et al. (In Prep), "Investigations on socio economic indicators of French Alps [...]" in Journal of the Total environment

Home page

- Introduction Ski Industry A review Framework
- Phys. Impact Grooming Snowmaking
- Professiona Operations Survey Frameworks
- Integration Description Indicators
- Conclusion and Outlooks

An innovative approach to

- Compute water requirements for snowmaking
- Investigate spatial and resorts categories variabilities
- Assess the evolution of snow conditions thanks to snow management³⁶

³⁶Spandre et al. (In Prep), "Investigations on socio economic indicators of French Alps [...]" in Journal of the Total environment

Home page

- Introduction Ski Industry A review Framework
- Phys. Impact Grooming Snowmaking
- Professiona Operations Survey Frameworks
- Integration Description Indicators
- Conclusion and Outlooks

An innovative approach to

- Compute water requirements for snowmaking
- Investigate spatial and resorts categories variabilities
- Assess the evolution of snow conditions
- Provide relevant and objective information for fruitful debates on local development in mountain regions

Outlooks

Outlooks Interactions between snow conditions and ski resorts activity

Home page

- Introduction Ski Industry A review Framework
- Phys. Impac Grooming Snowmaking
- Professiona Operations Survey Frameworks
- Integration Description
- Conclusion and Outlooks

Additional applications

- Generalization to all French mountain regions
 - (i.e. Pyrenees, Massif Central, Vosges, Jura)
- Ecological impact studies
 - (cf. grooming impact on ground temperatures)
- Hydrological applications
 - (i.e. water requirements)

Outlooks Interactions between snow conditions and ski resorts activity

Home page

- Introduction Ski Industry A review Framework
- Phys. Impac Grooming Snowmaking
- Professiona Operations Survey Frameworks
- Integration Description Indicators
- Conclusion and Outlooks

Additional applications

- Generalization to all French mountain regions
 - (i.e. Pyrenees, Massif Central, Vosges, Jura)
- Ecological impact studies
 - (cf. grooming impact on ground temperatures)
- Hydrological applications
 - (i.e. water requirements)
- Climate change impact studies
 - (i.e. evolution of resorts reliability, water requirements)
- Diagnosis for policy makers and resorts stakeholders

THANK YOU!! MERCI!!

321

sil