

From D95 to Explicit Snow scheme - experiences from offline and first NWP experiments

SURFEX Users workshop, Toulouse, 27 February 2017 Mariken Homleid and Aspelien

Introduction

Snow status in HARMONIE-AROME

- Default options in current cycle (40h1.1 with SURFEX 7.3)
 - · 1-layer snow scheme (CSNOW=D95)
 - · Snow analysis by Optimum Interpolation using snow depth observations
- Performance with respect to snow
 - · Realistic snow amounts (SWE) in regions with representative observations
 - · Problematic surface temperatures in cold season...several reasons for that...

Experiments with Explicit Snow scheme (CSNOW=3-L)

- Offline experiments with several versions, options, time periode and stations
 - · to evaluate the performance with respect to snow accumulation and melting
 - · Offline runs are not very useful for evaluating the effect on surface temperatures....
- First NWP experiments with cycle 40h1.1 and SURFEX7.3
 - · ISBA Force Restore
 - No surface assimilation

Introduction

Snow status in HARMONIE-AROME

- Default options in current cycle (40h1.1 with SURFEX 7.3)
 - · 1-layer snow scheme (CSNOW=D95)
 - · Snow analysis by Optimum Interpolation using snow depth observations
- Performance with respect to snow
 - · Realistic snow amounts (SWE) in regions with representative observations
 - · Problematic surface temperatures in cold season...several reasons for that...

Experiments with Explicit Snow scheme (CSNOW=3-L)

- Offline experiments with SURFEX7.3 and SURFEX8.0
 - · CSNOW=D95/3-L, CISBA=3-L/DIF, LISBA_CANOPY=T/F, NPATCH=1/2
 - · Wnter 2014/2015 on 30 Norwegian and Swedish stations
- First NWP experiments with cycle 40h1.1 and SURFEX7.3
 - · REF: CSNOW=D95, CISBA=3-L, LISBA_CANOPY=T, NPATCH=1
 - · EXP: CSNOW=3-L, CISBA=3-L, LISBA_CANOPY=T, NPATCH=1

SURFEX offline experiments at 30 stations

	1 patch	1 patch	2 patches	2 patches
	SURFEX 7.3	SURFEX 8.0	SURFEX 7.3	SURFEX 8.0
"Operational": CISBA=3-L CSNOW=D95	C7.3	C		Р
CISBA=3-L CSNOW=3-L	D7.3	D	Q7.3	Q
CISBA=DIF CSNOW=3-L	E7.3	E		R

On the following slides are

- some conclusions based on all offline experiments
- illustrated by examples from experiment C,D and Q at 5 stations

Evaluation of snow accumulation and melting

D95 snow scheme

- realistic accumulation and melting, but generally slightly too much snow and too late melting
- similar performance with SURFEX 7.3 and SURFEX 8.0
- similar performance with 1 and 2 patches

Explicit Snow scheme

- 1 patch
 - realistic snow accumulation, but too rapid melting at most stations (except stations with fraction of forest (P2) close to 0)
 - similar performance with SURFEX 7.3 and SURFEX 8.0
- 2 patches
 - realistic snow accumulation/melting, generally less than with D95 and too little at some stations (e.g. Hakadal, Bjørnholt)
 - · slightly less snow with SURFEX 8.0 than SURFEX 7.3

Midtstova frac(open land)=1 frac(forest)=0 HJERKINI BRĂUTĂU VENABU BEITOSTÄDLEN NESBYEN

Beitostølen frac(open land)=0.7 frac(forest)=0.3 HJERKINI VENABU BEITO STĀDLEN NESBYEN

CSNOW=3-L, NPATCH=1: realistic snow accumulation, BUT too rapid melting

CSNOW=3-L, NPATCH=2: realistic snow accumulation and melting

Sodankylä frac(open land)=0.6 frac(forest)=0.4

CSNOW=3-L, NPATCH=1: realistic snow accumulation, BUT too rapid melting

CSNOW=3-L, NPATCH=2: realistic snow, better than with NPATCH=1

Hakadal frac(open land)=0.6 frac(forest)=0.4

CSNOW=3-L, NPATCH=1: maybe realistic snow accumulation, BUT too rapid melting

CSNOW=3-L, NPATCH=2: better than with NPATCH=1

Bjørnholt frac(open land)=0.1 frac(forest)=0.9

CSNOW=3-L, NPATCH=1: maybe realistic snow accumulation, BUT too rapid melting

CSNOW=3-L, NPATCH=2: underestimation, but better than with NPATCH=1, snow amount on patch1 is close to observed

First NWP experiments with Explicit Snow sheme in HARMONIE-AROME

Snow status in HARMONIE-AROME

- Default options in current cycle (40h1.1 with SURFEX 7.3)
 - · 1-layer snow scheme (CSNOW=D95)
 - · Snow analysis by Optimum Interpolation using snow depth observations
- Performance with respect to snow
 - · Realistic snow amounts (SWE) in regions with representative observations
 - · Problematic surface temperatures in cold season...several reasons for that...

Experiments with cycle 40h1.1 and SURFEX7.3

- Time period: 1. December 15. December 2016
- No surface assimilation
- ISBA Force-Restore, Surface Boundary Layer scheme
- REF: CSNOW=D95
- EXP: CSNOW=3-L

Experiences so far

- Crash when initialisating with SWE from ECMWF boundary grib files
 - Due to very low surface temperatures in a few grid points with no snow surrounded by initial maximum snow amount (XSWEMAX=500 kg/m²)
 - · «walk arround» by reducing XSWEMAX to 30 kg/m²
- Too rapid melting as seen also in offline experiments

