
Local Validation to the reference

+ OpenMP and optimization

Filip Váňa

filip.vana@chmi.cz

ONPP / ČHMÚ - LACE

Outline

Local validation of source code

OpenMP

Optimization

Maintenance Training, Toulouse September 20-22 – p.1

How to regard this presentation

The aim is to install locally a model cycle.

The local code should be made available for the
others (means that some parts are supposed to be
modified and recompiled) and perhaps also to store it
under some versioning system.

No specific platform, compilation tool or versioning
system is a prior assumed here.

Still the typical decisioning follows situation at CHMI
(no interest to run global model, limited amount of
configurations to be validated, usually all validated
configurations aims to run operationally)

Maintenance Training, Toulouse September 20-22 – p.2

Before starting...

Make sure the cycle is worth to be installed in your
service.

Do we need the particular cycle?

Is there anything interesting, we would like to have
for our operational?

Do we plan to do some new research possibly
changing significant part of the code?

If there’s only a particular code which attracts us,
couldn’t it be just back phased or applied as a patch
to my actual cycle? (Example: simple bugfix, new
computation of diagnostic cloudiness, new T2m or
RH2m diagnostics...)

Maintenance Training, Toulouse September 20-22 – p.3

Before starting... II.

Validation is a long process (sometimes full of
surprises)

Not necessary new cycle = better cycle

Usually new cycle implies higher cost and/or memory
requirements

Frequent local validation helps to keep the track with
the changes

⇒ Some good compromise for the validation frequency
should be found.

(at CHMI since 2003 locally installed 10 full cycles: AL25T1 , AL25T2,

AL28T1 , AL28T3 , AL29T2 , AL31T0, AL32T1 , AL34, AL35T1 ,

AL36T1)

Maintenance Training, Toulouse September 20-22 – p.4

Before starting... III.

Now we are sure (our boss is sure) we want the new
cycle.

Take the export version (if available): cougar
marp001/pub/export/
Sometimes it needs to be taken directly from the
ClearCase.

Collect information: (read phasing reports, ask
phasers, ask contributors, ...) → be sure about all
norm changes, new cpp directives, new tricks in
ODB,...

Make sure about the content of reference cycle (your
previous one).

Maintenance Training, Toulouse September 20-22 – p.5

Getting started...
Unpack tarball

Clean the content (*txt, *doc, *sh, sym links,
Makefiles, ...)

Remove projects of no specific interest (aeo, obt,
scr,...)

Change names (if needed) :

.mnh/.f90 -> *.F90

capital letters -> small letters (su_so4_A1B2000.F90 ->

su_so4_a1b2000.F90,...)

writesurf_flake_confn.f90 -> writesurf_flake_conf_n.F90

Remove duplicates (if needed)

Move routines to their original place to maintain
some inter-cycle continuity (if you care)

Maintenance Training, Toulouse September 20-22 – p.6

Local modifications

Incorporate local modification to the code not promoted
to the common source

monitor routines: wrmlppa, cnt4, sufpc, elsirf + ishell

local fixes: (poor-man norms diagnostics: wrgp2fa)

if necessary local version of system routines (mpif.h,
...)

Maintenance Training, Toulouse September 20-22 – p.7

Preparing executable

Prepare compilation options: xrd, mse, mpa,...

Scan for dependencies (*.d)

Compile

Fix compilation errors:

some notorious recidivists causing problem to a
local compiler (NEC:
sat/rtlimb/rtlimb_traceray_2d(_tl/_ad).F90,
mpa/chem/internals/ch_jac.f90)

new issues (always new issues) ⇒ fix and report
back to TLS

make executable (problem can appear also here: too
many entry points, not enough memory on stack,...)

Maintenance Training, Toulouse September 20-22 – p.8

Namelist preparation

Prepare namelist: Usually the best method is to start
from previous/reference cycle namelist and to update
it according to a new namelist example.

Try to run it. If problem, go to the previous item.

Maintenance Training, Toulouse September 20-22 – p.9

Real validation starts

See the output listing files (NODE.*)

Make sure all tunables are equally set to the
reference cycle. (tkdiff, gvimdiff,...)

Don’t expect to find the same norms already after the
first execution. (We are living in real world.)

Target should be to see:

norms identity for e(e927)

norms identity for dynamics (adiabatic model)

norms identity for odb, screening,...

5-6 digits identity after 5-10 time-steps for physics,
e701

Maintenance Training, Toulouse September 20-22 – p.10

Real validation continues
Try to deactivate the known changes responsible for the
norms difference:

By namelist

Directly in the code

Example (adiabatic run of CY36T1 compared to CY35T1):

Known changes causing norms difference:

reordering of loops in spectral computation (espchor.F90)

scale (in)dependent horizontal deformation computation in

SLHD becomes aware of map factor (sudyn.F90)

⇒ By deactivating those two, the two cycles gives identical norms.

Maintenance Training, Toulouse September 20-22 – p.11

Real validation continues II.
Indeed not every time the situation is that favorable to
allow a direct comparison. In such a case:

Check less aggressive optimization, different
memory organization (static, stack, OpenMP)

Look at the results: compare fields (precipitations,
vertical velocity,...)

Compare scores against observations.

Check some other characteristics (number of
observations,...)

In general there’s no universal guidance. At CHMI we
keep rule to understand all differences in the norms. Any
effort during this step pays back at the end!

Maintenance Training, Toulouse September 20-22 – p.12

Parallelization validation
MPI (1,2, more CPUs) - usually OK as it is validated
in Toulouse

OpenMP more frequently problem (overseen during
phasing, race conflicts invisible when OpenMP is not
used)
Beware also of:

Platform dependent synchronization of OpenMP
in adjoint of SL code (with LVECADIN=.F.)

There’s a bug for NPROMA optimization in LAM
with more than two OpenMP threads. Always use
negative value in such case.

Mixed MPI and OpenMP solution - usually OK when
MPI and OpenMP are validated.

Maintenance Training, Toulouse September 20-22 – p.13

Parallelization validation II.
OpenMP debugging crash course:
-P openmp doesn’t run even for 1 thread - worst case,

indicates problem in memory overwriting

-P openmp code run fine but only for 1 thread - typical
problem of OpenMP

multithread job crashes or deadlock - some part is
not initialized or problem of synchronization → fix
not trivial (locate the place and ask OpenMP
expert to help)

it runs smoothly just giving wrong results - race
conflict = incorrect use of private/global arrays

Problem location is simple: deactivate OpenMP for
suspicious regions (at the code level) and see the
impact...

Maintenance Training, Toulouse September 20-22 – p.14

Local code optimization
profiling charts should look similar to previous cycle

no routine with really poor performance within the
TOP 20

Total CPU Time : 0:12’02"741 (722.741 sec.)

PROC.NAME FREQUENCY EXCLUSIVE AVER.TIME MOPS MFLOPS V.OP AVER.

TIME[sec](%) [msec] RATIO V.LEN

ismax 35578558 440.630(61.0) 0.012 435.0 47.2 72.73 145.1

caspia 175714 118.431(16.4) 0.674 790.2 14.6 79.86 32.9

casgqa 260113 59.605(8.2) 0.229 490.7 131.2 28.91 144.4

minv.geco 171186 27.854(3.9) 0.163 393.8 62.9 58.81 27.4

minv.gedi 171186 11.471(1.6) 0.067 381.3 62.9 46.41 13.7

Total CPU Time : 0:04’08"323 (248.323 sec.)

PROC.NAME FREQUENCY EXCLUSIVE AVER.TIME MOPS MFLOPS V.OP AVER.

TIME[sec](%) [msec] RATIO V.LEN

caspia 175714 116.897(47.1) 0.665 800.6 14.8 79.86 32.9

casgqa 260113 32.594(13.1) 0.125 3919.2 768.7 91.59 179.5

minv.geco 171186 27.668(11.1) 0.162 396.4 63.4 58.81 27.4

minv.gedi 171186 11.305(4.6) 0.066 386.5 63.8 46.46 13.7

Maintenance Training, Toulouse September 20-22 – p.15

Output files validation

Very important step.

Must be done at the end.

We are using simple tool (off the model) comparing
two FA files for selected (sub)area and all records.
The output is either identity or RMSE and BIAS of
differences.

▽Maintenance Training, Toulouse September 20-22 – p.16

Output files validation

Land-sea mask difference of two model outputs
2009/03/04 06UTCBase
2009/03/04 09UTCValid

mma103@voodoo Wed Apr 1 07:30:53 2009 [ICMSHALAD+0003]

Maintenance Training, Toulouse September 20-22 – p.16

Validated...

new cycle seems to be validated and ready for local
use (operational and R&D)

record all the code changes or tricks (for next time
and for the others)

if there’s something of a common interest, don’t
forget to announce it (LACE forum,...) and to commit
it back to ClearCase

don’t forget to continuously monitor the other’s
experience...

Maintenance Training, Toulouse September 20-22 – p.17

OpenMP

model for parallel programming

shared memory parallelization

portable across shared-memory architectures

scalable (usually memory access creates limitation)

incremental parallelization

compiler based

extension to existing programming languages

mainly by directives

a few library routines

supports data parallelism

Maintenance Training, Toulouse September 20-22 – p.18

Why OpenMP?

Maintenance Training, Toulouse September 20-22 – p.19

OpenMP Programming Model
shared memory model

▽Maintenance Training, Toulouse September 20-22 – p.20

OpenMP Programming Model
shared memory model

workload is distributed between threads

▽Maintenance Training, Toulouse September 20-22 – p.20

OpenMP Programming Model
shared memory model

workload is distributed between threads

variable can be:

shared among all threads

duplicated for each thread

▽Maintenance Training, Toulouse September 20-22 – p.20

OpenMP Programming Model
shared memory model

workload is distributed between threads

variable can be:

shared among all threads

duplicated for each thread

threads communicate by sharing variables

▽Maintenance Training, Toulouse September 20-22 – p.20

OpenMP Programming Model
shared memory model

workload is distributed between threads

variable can be:

shared among all threads

duplicated for each thread

threads communicate by sharing variables

unintended sharing of data can lead to race
condition, i.e. when the program outcome changes
as the threads are scheduled differently

Maintenance Training, Toulouse September 20-22 – p.20

OpenMP Programming Model II.
synchronization available to control race condition

usually slows down the performance

careless use of synchronization can lead to the
dead-locks

▽Maintenance Training, Toulouse September 20-22 – p.21

OpenMP Programming Model II.
synchronization available to control race condition

usually slows down the performance

careless use of synchronization can lead to the
dead-locks

fork-join model of parallel execution

begin execution is a single process (master
thread)

start of parallel construct: MT creates team of
threads

completion of a parallel construct: implicit barrier

only master thread continues execution

Maintenance Training, Toulouse September 20-22 – p.21

OpenMP directive format (Fortran)

treated as Fortran comments

!$OMP directive_name[clause[[,]clause]...]

directive can be split to several lines by &

not case sensitive

Conditional compilation code after: !$

Maintenance Training, Toulouse September 20-22 – p.22

OpenMP data scope clauses
PRIVATE = variables private to each thread in a team

uninitialized values

private copy is not storage associated with the
original

JLAST = -999

!$OMP PARALLEL DO PRIVATE(JLAST)

DO J=1,1000

...

JLAST = J

ENDDO

!$OMP END PARALLEL

print *, JLAST --> writes -999 !!!

Maintenance Training, Toulouse September 20-22 – p.23

OpenMP data scope clauses II.

SHARED = variables shared among all threads in a
team

Sharing a variable might slow execution

Always careful when modifying SHARED variable

Default is SHARED, but:

local variables in called sub-programs are PRIVATE

control variable of parallel DO loops are PRIVATE

(automatic variables within a block are PRIVATE)

Maintenance Training, Toulouse September 20-22 – p.24

Race condition

Typical OpenMP error

JSUM = 0.

!$OMP PARALLEL DO

DO J=1,1000

...

JSUM = J + JSUM

ENDDO

!$OMP END PARALLEL

print *, JSUM

⇒ Result varies unpredictably based on specific order of
execution of the parallel section.

Program is wrong, but there will be no warning!

Maintenance Training, Toulouse September 20-22 – p.25

Example of OpenMP from Aladin
Extract from CALL_SL_AD:
!$OMP PARALLEL DO SCHEDULE(DYNAMIC,1) PRIVATE(JSTGLO,IST,IEND,IBL,IOFF)

DO JSTGLO=1,KGPTOT,NPROMA

IST=1

IEND=MIN(NPROMA,KGPTOT-JSTGLO+1)

IBL=(JSTGLO-1)/NPROMA+1

IOFF=JSTGLO

CALL LAPINEA5(IST,IEND,.TRUE.,&

& PCOLON(IOFF),PSILON(IOFF),PGM(IOFF),PGEMU(IOFF),&

& PGSQM2(IOFF),PGECLO(IOFF),PGESLO(IOFF),PGNORDL(IOFF),&

& PGNORDM(IOFF),PRINDX(IOFF),PRINDY(IOFF),

& PB15(1,1),PB2(1,1,IBL),&

& ZLON5(1,1,1,IBL),ZLAT5(1,1,1,IBL),&

& ZQX5(1,1,1,IBL),ZQY5(1,1,1,IBL),&

& ZUF5(1,1,1,IBL),ZVF5(1,1,1,IBL),&

& IL0(1,1,0,1,IBL),ILH0(1,1,0,IBL),&

& ZDLO5(1,1,0,1,IBL),ZCLO5(1,1,1,1,IBL),ZCLOSLD5(1,1,1,1,IBL),&

& ZDLAT5(1,1,1,IBL),ZCLA5(1,1,1,IBL),ZCLASLD5(1,1,1,IBL),&

& ZDVER5(1,1,1,IBL),ZVINTW5(1,1,1,IBL),ZVINTWSLD5(1,1,1,IBL),&

& ZCOSCO5(1,1,1,IBL),ZSINCO5(1,1,1,IBL),&

& ZCOPHI5(1,1,1,IBL),ZSINLA5(1,1,1,IBL),&

& ZLEV5(1,1,1,IBL),ZOUT5(1,1,1,IBL),IDEP(1,1,IBL))

ENDDO

!$OMP END PARALLEL DO

Maintenance Training, Toulouse September 20-22 – p.26

OpenMP summary
increasing importance for multi-core systems

capable to improve load balancing

reduces number of MPI processes - helps if scalability is an issue

depends on size of the problem (STATIC versus DYNAMIC

scheduling) - decreasingly important in Aladin as our domains gets

sufficiently big (still an issue for vector computers)

platform dependent (IBM doesn’t support to call function from

parallel region; to replace such function by subroutine would break

vectorization on NEC...)

easy to implement (mostly directives and not much to change in

the code - the bit-wise reproducibility might be an issue)

optimization: As much parallel code as possible, without frequent

synchronizations
Maintenance Training, Toulouse September 20-22 – p.27

Optimization
Typical optimization activities

Start with profiling - ftrace, Dr.Hook, xprofiler, hpm

Check compilation logs (*.L files)
- problems with vectorization
- some feature prevents optimization
- more appropriate compilation options & directives
- problem can be caused by bug in compiler

More directives (NODEP, UNROLL,...)

Incorporate intrinsic functions or idioms:
- sgemmx (NEC - MATMUL, VPP - dvmggm)
- laitri (IBM - fsel)

Add more OpenMP parallel regions

Remove copies and zeroing of arrays

Maintenance Training, Toulouse September 20-22 – p.28

Optimization II.
The code is multi-platform...

Always keep in mind the code is used by other centers with

different computers and for different domains. Would be your

optimization optimal for everyone?

The best solution is the same solution for everybody.

Duplication of code is possible (if unavoidable) but it increases

amount of maintenance (validation) and usually makes the source

less readable.

Unnecessary code duplication is justified for routines:

- belonging to TOP 10 exclusive time performers

- if there’s a chance to speed up the whole code performance by at

least 3-5%

- when there’s no other chance to run code for a given platform

Maintenance Training, Toulouse September 20-22 – p.29

Optimization III

Optimization is a continuous process

Always the best way of optimization is to write
efficient code

Make sure the "optimized code" will outperform the
previous one also for different problem size

Make sure the "optimized code" will outperform the
previous one also for different number of
processors/different parallelization technique

Make sure the source of problem is well understood
prior to any optimization

Maintenance Training, Toulouse September 20-22 – p.30

Profiling interpretation

Pure OpenMP job (9 threads) profiling for the CPG on
SX9:
PROC.NAME FREQUENCY EXCLUSIVE AVER.TIME MOPS MFLOPS V.OP AVER. VECTOR BANK CONFLICT

TIME[sec](%) [msec] RATIO V.LEN TIME CPU PORT NETWORK

cpg$1 729 13.935(4.0) 19.116 2331.2 0.1 98.70 249.2 8.242 0.326 6.503

-micro1 81 0.995(0.3) 12.289 3665.4 0.1 99.14 249.5 0.945 0.037 0.749

-micro2 81 1.292(0.4) 15.954 2829.9 0.1 98.91 249.5 0.928 0.037 0.732

-micro3 81 1.233(0.4) 15.228 2963.7 0.1 98.95 249.5 0.926 0.037 0.730

-micro4 81 1.303(0.4) 16.085 2807.1 0.1 98.90 249.5 0.928 0.037 0.732

-micro5 81 1.276(0.4) 15.755 2865.4 0.1 98.92 249.5 0.925 0.037 0.729

-micro6 81 1.270(0.4) 15.677 2879.4 0.1 98.92 249.5 0.927 0.037 0.731

-micro7 81 1.278(0.4) 15.775 2861.7 0.1 98.92 249.5 0.927 0.037 0.731

-micro8 81 1.265(0.4) 15.615 2891.0 0.1 98.93 249.5 0.925 0.037 0.729

-micro9 81 4.023(1.1) 49.662 805.7 0.0 96.43 246.3 0.812 0.032 0.641

What is wrong with CPG? And where the imbalance of
the last thread comes from?

Maintenance Training, Toulouse September 20-22 – p.31

	Outline
	How to regard this presentation
	Before starting...
	Before starting... II.
	Before starting... III.
	Getting started...
	Local modifications
	Preparing executable
	Namelist preparation
	Real validation starts
	Real validation continues
	Real validation continues II.
	Parallelization validation
	Parallelization validation II.
	Local code optimization
	Output files validation
	Output files validation

	Validated...
	OpenMP
	Why OpenMP?
	OpenMP Programming Model
	OpenMP Programming Model
	OpenMP Programming Model
	OpenMP Programming Model
	OpenMP Programming Model

	OpenMP Programming Model II.
	OpenMP Programming Model II.

	OpenMP directive format (Fortran)
	OpenMP data scope clauses
	OpenMP data scope clauses II.
	Race condition
	Example of OpenMP from Aladin
	OpenMP summary
	Optimization
	Optimization II.
	Optimization III
	Profiling interpretation

