
Development constraints

including presentation of constraints due to shared

code with Arp/Ifs

Filip Váňa

filip.vana@chmi.cz

ONPP / ČHMÚ - LACE

Maintenance Training, Toulouse September 20-22 – p. 1

Outline

Basic rules

Parallelization principles

Concept of NPROMA

Data structures

Maintenance Training, Toulouse September 20-22 – p. 2

Basic code rules

Coding rules and conventions (Karim’s talk)

Maintenance Training, Toulouse September 20-22 – p. 3

Basic code rules

Coding rules and conventions (Karim’s talk)

Bit reproducibility (with respect to different NPROMA
values and different no. of PEs)

Maintenance Training, Toulouse September 20-22 – p. 3

Basic code rules

Coding rules and conventions (Karim’s talk)

Bit reproducibility (with respect to different NPROMA
values and different no. of PEs)

Platform independence - optimized for Scalar and Vector
platforms

Maintenance Training, Toulouse September 20-22 – p. 3

Basic code rules

Coding rules and conventions (Karim’s talk)

Bit reproducibility (with respect to different NPROMA
values and different no. of PEs)

Platform independence - optimized for Scalar and Vector
platforms

Parallel code - allows parallel computation, supports MPI
and OpenMP standards

Maintenance Training, Toulouse September 20-22 – p. 3

Basic code rules

Coding rules and conventions (Karim’s talk)

Bit reproducibility (with respect to different NPROMA
values and different no. of PEs)

Platform independence - optimized for Scalar and Vector
platforms

Parallel code - allows parallel computation, supports MPI
and OpenMP standards

MPI/OpenMP called only through MPL/OML modules
(wrappers), CDSTRING should be set to the name of the
caller routine

Maintenance Training, Toulouse September 20-22 – p. 3

Some more rules...

Source code written in FORTRAN (F90, F77) and C
(soon also C++)

Maintenance Training, Toulouse September 20-22 – p. 4

Some more rules...

Source code written in FORTRAN (F90, F77) and C
(soon also C++)

DGEMM is only standard library routine

Maintenance Training, Toulouse September 20-22 – p. 4

Some more rules...

Source code written in FORTRAN (F90, F77) and C
(soon also C++)

DGEMM is only standard library routine

Error trapping usable for operational applications

Maintenance Training, Toulouse September 20-22 – p. 4

Some more rules...

Source code written in FORTRAN (F90, F77) and C
(soon also C++)

DGEMM is only standard library routine

Error trapping usable for operational applications

64 bit arithmetic and 64 bit addressing

Maintenance Training, Toulouse September 20-22 – p. 4

Some more rules...

Source code written in FORTRAN (F90, F77) and C
(soon also C++)

DGEMM is only standard library routine

Error trapping usable for operational applications

64 bit arithmetic and 64 bit addressing

Spectral model = specific timestep organization
(S → M → L → G → L → M → S)

Maintenance Training, Toulouse September 20-22 – p. 4

Some more rules...

Source code written in FORTRAN (F90, F77) and C
(soon also C++)

DGEMM is only standard library routine

Error trapping usable for operational applications

64 bit arithmetic and 64 bit addressing

Spectral model = specific timestep organization
(S → M → L → G → L → M → S)

No a prior ordering of model fields

Maintenance Training, Toulouse September 20-22 – p. 4

Some more rules...

Source code written in FORTRAN (F90, F77) and C
(soon also C++)

DGEMM is only standard library routine

Error trapping usable for operational applications

64 bit arithmetic and 64 bit addressing

Spectral model = specific timestep organization
(S → M → L → G → L → M → S)

No a prior ordering of model fields

Indexing of model arrays is not arbitrary

Maintenance Training, Toulouse September 20-22 – p. 4

Some more rules...

Source code written in FORTRAN (F90, F77) and C
(soon also C++)

DGEMM is only standard library routine

Error trapping usable for operational applications

64 bit arithmetic and 64 bit addressing

Spectral model = specific timestep organization
(S → M → L → G → L → M → S)

No a prior ordering of model fields

Indexing of model arrays is not arbitrary

all configurations share a single top-level call tree (the
control levels has to be preserved:
MASTER -> CNT0 -> CNT1 -> CNT2 -> CNT3 -> CNT4 -> STEPO

MASTER -> CNT0 -> CVA1 -> CVA2 -> CONGRAD -> SIM4D -> CNT3 -> ...)
Maintenance Training, Toulouse September 20-22 – p. 4

Parallelization

Computer architecture fundamentals:

CPU

CPU

...

︸ ︷︷ ︸

OpenMP

node

CPU

CPU

...

︸ ︷︷ ︸

OpenMP

node

...

︸ ︷︷ ︸

MPI

distributed memory cluster

CPU - vector or scalar

node = collection of CPU with share a common memory

Maintenance Training, Toulouse September 20-22 – p. 5

Parallelization strategy

MPI = Distributed memory parallelization - available
since AL08

OpenMP = Shared memory parallelization - available
since AL29 (for AD code on Vector since AL32T2)

Mixed/hybrid MPI and OpenMP parallelization - available
since AL35T2

Maintenance Training, Toulouse September 20-22 – p. 6

Parallelization strategy - MPI

Transposition strategy = complete data required is
redistributed at various stages of a timestep so that the
arithmetic computations between two consecutive
transpositions can be performed without any
inter-processor communication.

Inter-processor communication is localized in a few
routines and rest of the model need have no knowledge
of this activity.

Communication is realized through relatively long
messages (1Mbytes)
(Remember: short messages are bounded by latency of

interconnect; long messages are bounded by bandwidth of

interconnect)

Maintenance Training, Toulouse September 20-22 – p. 7

Parallelization strategy - MPI II.

Different types of blocking strategy:

MP TYPE = 1 blocked mode

MP TYPE = 2 buffered mode - MPI_BSEND can return before
the receive is called on the receiving processor. (This
allows to reuse/destroy the sending array.)

MP TYPE = 3 immediate mode - send and receive are
returned immediately as the comms are performed in the
background. Additional calls are then required to check
or wait for the completion of a comm. (Sending array can
be reused/destroyed only after MPI is confirmed to do
so.)

Maintenance Training, Toulouse September 20-22 – p. 8

Parallelization strategy - MPI III.

GP computation

NPROC Total number of processors to be used

NPRGPNS Number of PEs in the North-South direction

NPRGPEW Number of PEs in the East-West direction

LSPLIT Allows the splitting of latitude rows

Maintenance Training, Toulouse September 20-22 – p. 9

Parallelization strategy - MPI III.

GP computation

NPROC Total number of processors to be used

NPRGPNS Number of PEs in the North-South direction

NPRGPEW Number of PEs in the East-West direction

LSPLIT Allows the splitting of latitude rows

SL comms as a specific feature

squarer shape of domain =

reduced comm volume for

SL

SL on demand - targets (=

reduces) the area of comms

computed from VMAX2

Maintenance Training, Toulouse September 20-22 – p. 9

Parallelization strategy - MPI IV.

Fourier transformation
NPRTRW Number of processors in zonal/meridional decomposition

(usually NPRTRW=NPRGPNS)

NPRTRV Number of processors in vertical decomposition

(usually NPRTRV=NPRGPEW)

Decomposition along latitudes/longitudes * levels
(there’s no further independence across the fields).

This means that for example Alaro/CE with 540*432
points and 87 levels reaches scalability limit for
transformation at around 432*87=37584 MPI processes.
(GP decomposition of the same domain and
NPROMA=20 reaches its limit at around
421*540/20=11367 MPI processes.)

Maintenance Training, Toulouse September 20-22 – p. 10

Parallelization strategy - MPI V.

Spectral SI calculation

decomposition along NPRTRN = NPRTRV - trivial as
there’s only vertical dependency for SI, (but might be
more complicated for LIMPF=.T.)

transpositions inside spectral space computation

Maintenance Training, Toulouse September 20-22 – p. 11

Parallelization strategy - MPI VI.

Summary

Maintenance Training, Toulouse September 20-22 – p. 12

Parallelization strategy - OpenMP

Parallelize Loops between MPI calls

High level (all GP computation is done within only 3
OpenMP parallel regions) and Loop level (leftovers like
I/O)

Strong sequential equivalence required to obtain bit-wise
identical results - if multiple threads combine results into
a single value, sequential order must be enforced (weak
SE allowed but optionally only)

Easy to implement but requires more maintenance to
remain thread-save (bugs can lurk unknown)

Maintenance Training, Toulouse September 20-22 – p. 13

Parallelization - MPI+OpenMP

Pros

Lower MPI overheads

Memory saving (if done properly!!!)

Frees up processors for OS functions

Helps balancing

Cons

Whole code needs to be done (but not comms)

Need some special care for vector platform (high values
of NPROMA requires further optimization w.r.t. number
of threads)

Maintenance Training, Toulouse September 20-22 – p. 14

NPROMA

Original code (designed for vector computers) coded
with inner loops over horizontal in groups of NPROMA to
give long vectors

Maintenance Training, Toulouse September 20-22 – p. 15

NPROMA

Original code (designed for vector computers) coded
with inner loops over horizontal in groups of NPROMA to
give long vectors

No dependency in horizontal (important for avoiding
memory conflicts)

Maintenance Training, Toulouse September 20-22 – p. 15

NPROMA

Original code (designed for vector computers) coded
with inner loops over horizontal in groups of NPROMA to
give long vectors

No dependency in horizontal (important for avoiding
memory conflicts)

Physics and Dynamics computed in blocks of NPROMA

Maintenance Training, Toulouse September 20-22 – p. 15

NPROMA

Original code (designed for vector computers) coded
with inner loops over horizontal in groups of NPROMA to
give long vectors

No dependency in horizontal (important for avoiding
memory conflicts)

Physics and Dynamics computed in blocks of NPROMA

Bit reproducible with different NPROMA & no. of PEs

Maintenance Training, Toulouse September 20-22 – p. 15

NPROMA

Original code (designed for vector computers) coded
with inner loops over horizontal in groups of NPROMA to
give long vectors

No dependency in horizontal (important for avoiding
memory conflicts)

Physics and Dynamics computed in blocks of NPROMA

Bit reproducible with different NPROMA & no. of PEs

The same design now good for cache

Maintenance Training, Toulouse September 20-22 – p. 15

NPROMA

Original code (designed for vector computers) coded
with inner loops over horizontal in groups of NPROMA to
give long vectors

No dependency in horizontal (important for avoiding
memory conflicts)

Physics and Dynamics computed in blocks of NPROMA

Bit reproducible with different NPROMA & no. of PEs

The same design now good for cache

NPROMA : Long for vector; short for scalar/cache

Maintenance Training, Toulouse September 20-22 – p. 15

NPROMA

Original code (designed for vector computers) coded
with inner loops over horizontal in groups of NPROMA to
give long vectors

No dependency in horizontal (important for avoiding
memory conflicts)

Physics and Dynamics computed in blocks of NPROMA

Bit reproducible with different NPROMA & no. of PEs

The same design now good for cache

NPROMA : Long for vector; short for scalar/cache

Memory saving and easy OpenMP implementation

Maintenance Training, Toulouse September 20-22 – p. 15

NPROMA

Original code (designed for vector computers) coded
with inner loops over horizontal in groups of NPROMA to
give long vectors

No dependency in horizontal (important for avoiding
memory conflicts)

Physics and Dynamics computed in blocks of NPROMA

Bit reproducible with different NPROMA & no. of PEs

The same design now good for cache

NPROMA : Long for vector; short for scalar/cache

Memory saving and easy OpenMP implementation

Variability of NPROMA allows to keep control over
memory conflicts (by over-dimensioning)

Maintenance Training, Toulouse September 20-22 – p. 15

NPROMA II.

Illustration of NPROMA influence to model performance

Maintenance Training, Toulouse September 20-22 – p. 16

Memory conflict

SX Shared Memory with 32 x 128 = 4096 memory banks
and vector a(:)

If a(:) becomes A(NPROMA,NFLEVG) and by chance
NPROMA=4096. In such case any loop over second
dimension will cause bank conflict.

Maintenance Training, Toulouse September 20-22 – p. 17

Memory conflict

SX Shared Memory with 32 x 128 = 4096 memory banks
and vector a(:)

If a(:) becomes A(NPROMA,NFLEVG) and by chance
NPROMA=4096. In such case any loop over second
dimension will cause bank conflict.
⇒ Situation becomes much better when array is over-
dimensioned to NPROMA=4097.

Maintenance Training, Toulouse September 20-22 – p. 17

Data structures

Model arrays decomposition

usually no decomposition over levels and fields
Example for GP arrays:

Model Data(1:Decomp 2D Field,1:NFLEVG,1:NFIELDS)

⇒

Model Data(1:NPROMA,1:NFLEVG,1:NFIELDS,1:NGPBLKS)

various places (GLMS) use different decomposition ⇒

transpositions are moving data between processors to
form a new decomposition

Maintenance Training, Toulouse September 20-22 – p. 18

Data structures - GP space

GMV
prognostic variables involved in the SI

only attribute is field pointer (MU, MV,...)

three modules:

YOMGV : contain the main GP arrays (GMV, GMVT1, GMV5, GMV_DEPART, GMVS,

GMVT1S, GMV5S, GMVS_DEPART)

TYPE_GMVS: type descriptor to address the GMV arrays: (YT0, YT9, YT1, YPH9, YT5,

YAUX)

GMV_SUBS: Contains subroutines used for setting up GMV

usage (inside parallel regions):

DO JLEV=1,NFLEVG

DO JROF=KST,KPROF

PGMVT1(JROF,JLEV,YT1%MU)=PGMVT1(JROF,JLEV,YT1%MU)-POMVRL(JROF)

PGMVT1(JROF,JLEV,YT1%MV)=PGMVT1(JROF,JLEV,YT1%MV)-POMVRM(JROF)

ENDDO

ENDDO

Maintenance Training, Toulouse September 20-22 – p. 19

Data structures - GP space II

GFL

all other variables

can be GP or SP

plenty of attributes - very flexible field definition through namelist

...

Maintenance Training, Toulouse September 20-22 – p. 20

Data structures - GP space II

GFL

all other variables

can be GP or SP

plenty of attributes - very flexible field definition through namelist

...

SL buffers

PB1(NASLB1,NFLDSLB1) buffer for interpolations

PB2(NPROMA,NFLDSLB2,NGPBLKS) buffer to communicate non lagged to lagged dynamics

NASLB1 (over) number of columns in the core+halo region

NFLDSLB1 number of fields times vert. dimension in PB1

NFLDSLB2 number of fields times vert. dimension in PB2

Maintenance Training, Toulouse September 20-22 – p. 20

Data structures - Spectral space

Module YOMSP contains:

SPA1(NFLSUR,2) mean wind (in LAM only)

SPA2(NSPEC2, NS2D) 2D spectral arrays

SPA3(NFLSUR, NSPEC2,NS3D) 3D spectral arrays

They are not NPROMA arryas!!!

NFLSUR (over) number of vertical level

(bank conflict!)

NSPEC2 number of spectral coefficients

NS3D, NS2D number of 3D/2D spectral fields

Maintenance Training, Toulouse September 20-22 – p. 21

	Outline
	Basic code rules
	Basic code rules
	Basic code rules
	Basic code rules
	Basic code rules

	Some more rules...
	Some more rules...
	Some more rules...
	Some more rules...
	Some more rules...
	Some more rules...
	Some more rules...
	Some more rules...

	Parallelization
	Parallelization strategy
	Parallelization strategy - MPI
	Parallelization strategy - MPI II.
	Parallelization strategy - MPI III.
	Parallelization strategy - MPI III.

	Parallelization strategy - MPI IV.
	Parallelization strategy - MPI V.
	Parallelization strategy - MPI VI.
	Parallelization strategy - OpenMP
	Parallelization - MPI+OpenMP
	NPROMA
	NPROMA
	NPROMA
	NPROMA
	NPROMA
	NPROMA
	NPROMA
	NPROMA

	NPROMA II.
	Memory conflict
	Memory conflict

	Data structures
	Data structures - GP space
	Data structures - GP space II
	Data structures - GP space II

	Data structures - Spectral space

