BSRN measurements at Concordia

M. Busetto, C. Lanconelli, M. Mazzola, A. Lupi, B. Petkov and V. Vitale

Institute of Atmospheric Science and Climate National Research Council Bologna (Italy)

CONCODDIA Clywark chara 20.21 March Taulausa (Eranaa)

BASELINE SURFACE RADIATION NETWORK

Microl-Wingstein-Institut für Rufen und Mexicologie living in der Helmholty Genetrischaft

<u>Measurements of downwelling radiation: BSRN site</u>

SINCE 2006

Direct short-wave (CH1,NIP) Global short-wave (CM22) Diffuse short-wave (CM22) long-wave (CG4). During some summer campaign also photometric measurements

Measurements of upwelling radiation: ALBEDO rack

SINCE 2007

Short-wave (CM22), long-wave (CG4) and snow temperature at two depths (pt100)

Measurements chain

First visual check made on the Concordia PC (made on raw data)

Make a daily graph that can be seen by the operator at Dome C to check measurement quality.

These graphs can see also form Concordia intranet to give at the scientific crew some visual information about the daily radiation regime at Dome C

Correction made on 1-min data (at ISAC)

Pyranometers : $F_{sw} = S R(T) R(cos SZA) (V-V_0)$

Pyrheliometers : $F_{sw} = S R(T) (V-V_0)$

Pygeometerss : $F_{LW} = S R(T) V$

F is the IRRADIANCE V is the MEASURED SIGNAL S is the RADIOMETER SENSITIVITY R(T) is the TEMPERATURE CORRECTION R(cos SZA) is the COSINE CORRECTION V₀ is the NIGHT OFFSET

OFFSET CORRECTION :

more important for diffuse radiation because of its lower value

Pyranometersabout -2 W/m2 (depending on the thermal incoming radiation)Pyreliometersless then instrument accurancy (no correction)Pyrgeometersdon't need offset correction

<u>COSINE CORRECTION</u> : more important for global radiation

Pyranometerscorrection between -1.5 and 1.5 W/m2Pyreliometersdon't need cosine correctionPyrgeometersdon't need cosine correction

TEMPERATURE CORRECTION

Problem:

The sensitivity correction due to temperature is given by the manufacturer only until -20 °C and the temperature range at Dome C is from -80 °C to -25 °C

TEMPERATURE CORRECTION

Su et al., J. Atmos. Oceanic Technol, 2008

dependency of the instrumental sensitivity from temperature: third degree polynomial extrapolation of manufacturer sensitivity curve (pyranometers and pyreliometers)

At -60 °C sensitivity correction of 10%

This method seems better then keeping the correction constant below -20 °C

Absolut values

BSRN	qua	lity c	check	

	PPL [W/m^2]		ERL [W/m^2]	
	Min	Max	Min	Max
Global	-4	$1.5S_a\mu_0^{1.2}+100$	-2	$1.2S_a \mu_0^{1.2} + 50$
Diffuse	-4	$0.95 S_a \mu_0^{1.2} + 50$	-2	$0.75 S_a \mu_0^{1.2} + 30$
Direct	-4	S _a	-2	$0.95S_a\mu_0^{0.2}+10$
Longwave	40	700	60	500

Compared quantities

	SZA < 75°	93° > SZA > 75°
Ratio of Global over Sum [g/(D+d)]	$0.92 < \frac{g}{(D+d)} < 1.08$	$0.85 < \frac{g}{(D+d)} < 1.15$
Diffuse Ratio [d/g]	$\frac{d}{g} < 1.05$	$\frac{d}{g} < 1.10$
Longwave to Air	$0.4\sigma T_{air}^4 < L^2$	$W < \sigma T_{air}^4 + 25$

Automatically eliminated from dataset to be submitted:

out of PPL limit

out of ERL limits and respective AQ measured during tracker return ('round midnight) for direct and diffuse out of AQ and only one quantity (gl, dr, df) dramatically change during polar night if diffuse, direct or global are higher than offset

Last check.....VISUAL CHECK

Ready to submit to BSRN archive WWW.BSRN.AWI.DE

Quality of Dome C data

Probably the lower ERL for LW is too low !!

YEAR: 06 - STA: dom

Measurements

≻ppl

100

YEAR: 07 - STA: dom

Measurements

>pp1

Л

Across Quantities

S O N D

Across Quantities

- SIH: dom

100

Other radiation measurements (not BSRN) : UV radiation

- November 2007 installation of UV-RAD radiometer :
- UV spectral measurements in the range 300-400 nm
- ozone content and UV flux

DOWNELLING FLUXES CLIMATOLOGY

	gl [MJ/m^2]			Lw [MJ/m^2]		
	2006	2007	2008	2006	2007	2008
1	1021	1057	1053	274	282	291
2	689	671	674	235	236	200
3	286	291	230	229	264	217
4	50	17	96	213	199	220
5	0.5	0.4	0.1	187	239	206
6	0.0	0.0	0.0	179	209	197
7	0.1	0.2	0.3	199	187	191
8	5.5	13.5	13	179	189	230
9	157	150	157	196	180	214
10	469	454	507	203	227	174
11	1016	944	927	211	218	268
12	1208	1158	1189	247	284	284

CLOUDS DETECTION

In sunny months (Jan, Feb, Oct, Nov, Dec) : use of LONG (JGR 2000) SHORT-WAVE

Clear sky index

Always : use of Town (J. of Clim. 2007) LONG-WAVE

Percentage of clear-sky:
Jan 57%, Feb 68%, Mar 43%
Apr 49%, May 32%, Jun 57%
Jul 49%, Aug 42%, Sep 44%
Oct 53%, Nov 38%, Dec 62%

ALBEDO

Statistic

Time pattern of snow albedo: the minimum is not at local noon

due to a slope in snow surface??

Monthly statistic

Solar elevation effects

Parameterization of emissivity

From radiosounding: Presence of surface-based temperature inversion

it's better define the emissivity as function of T max

$$\epsilon^{m} = LWI_{cls} / (\sigma T_{m}^{4})$$

To calculate LWI using only ground temperature both in case of inversion and not inversion

$$LWI_{cls} = \epsilon_{cls} \sigma T_g^4$$

We can rewrite the definition of emissivity such as:

$$\varepsilon_{cls} = \varepsilon^m \left(\frac{T_m}{T_g} \right)^4$$

From radiosounding : T max is in linear relationship w.r.t T ground

ϵ^{m} is in linear relationship w.r.t T max

260

We can evaluate the emissivity only knowing T ground (easy to measure)

In the temperature range of Dome C this method works better then other parameterizations

UV measurements: total ozone amount and erythemal dose

Dome C total ozone amount, retrieved from UV-RAD for summer 2007-2008, and from OMI satellite.

UV-RAD overestimated OMI by about 3%

Erythemal daily dose measured by UV-RAD at Dome C during 2007-2008 austral summer and corresponding values computed by radiative transfer model (TUV).

Preliminary analysis AOD and alpha values – summer 2009-2010

Clear sky cases

Negative alpha values due to too low AOD values

