

Lambertian snow emissivities

Summary of recent work and application to Antarctica

R. Chawn Harlow, CONCORDIASI Workshop, 30 March 2010

© Crown copyright Met Office

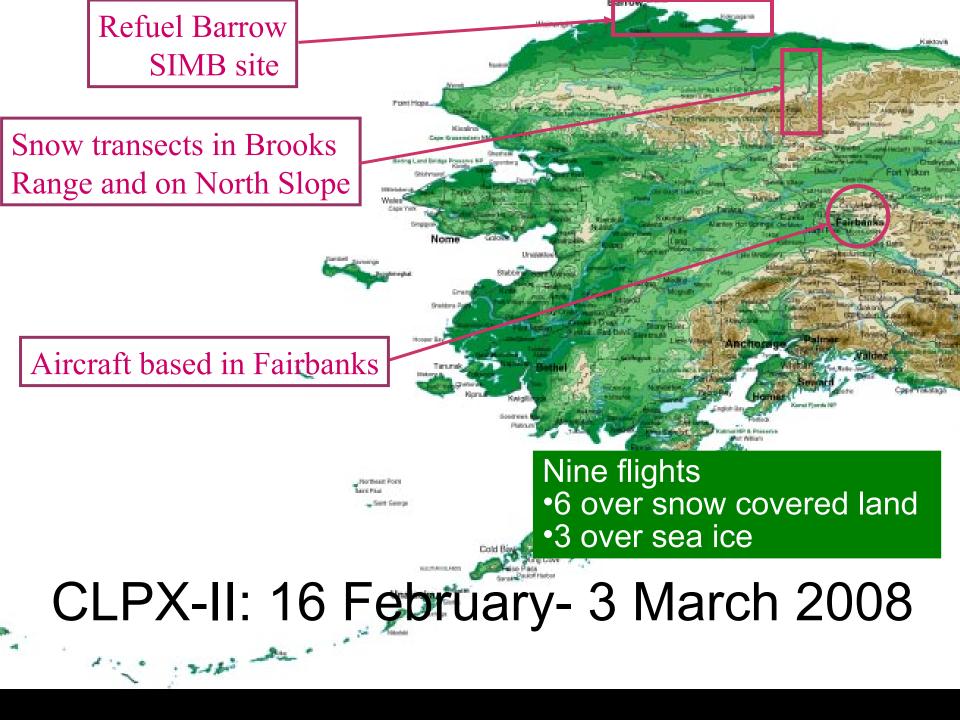
CLPX-II Collaborators

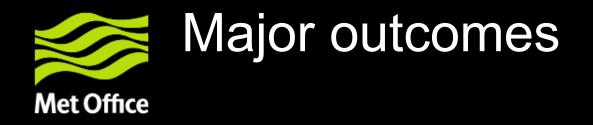
- Richard Essery, University of Edinburgh
 Nick Rutter, University of Sheffield
- Don Cline of NOAA, NOHRSC
- Kelly Elder of USDA US Forest Service
- Simon Yueh of NASA JPL
- Jared Entin of NASA Terrestrial Hydrology Program
- FAAM and Met Office aircraft crew taking part.

Introduction

- Outcomes of CLPX-II and POLEX campaigns
- Implications for efforts in Antarctica.

Introduction

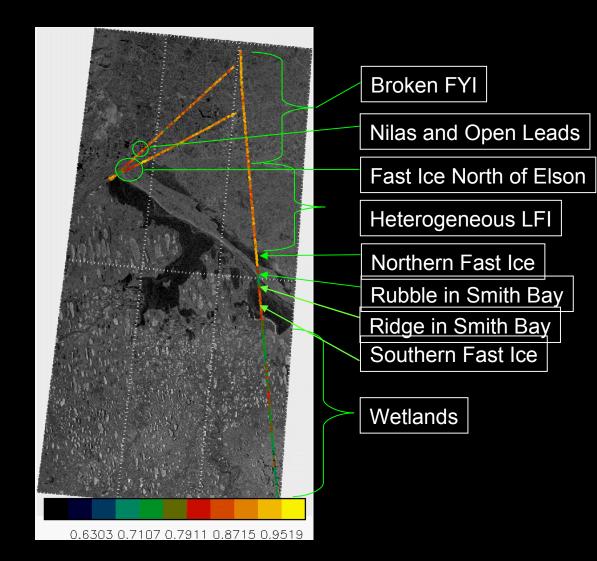

© Crown copyright Met Office


Motivation

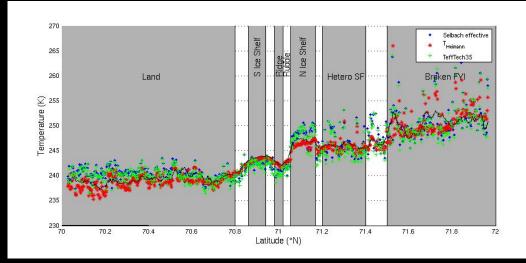
- Hope to assimilate satellite microwave (AMSU and MHS) data over land and sea ice
 - Provide atmospheric temp and humidity profile information where there are holes in the conventional profile data.
- Need surface emissivity information derived from models and satellite observations.
- New snow module to be included in future Met Office land surface component JULES. Future data assimilation opportunities?
- First need to validate snow radiative transfer models in 20 to 200 GHz range.

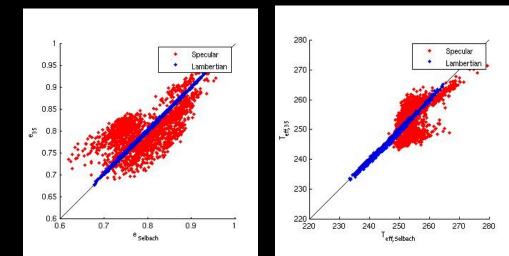
POLEX Campaign March 2001

- Five flights over sea ice
 - Three over pack ice
 - Two over Marginal Ice Zone
- One flight over snow covered land



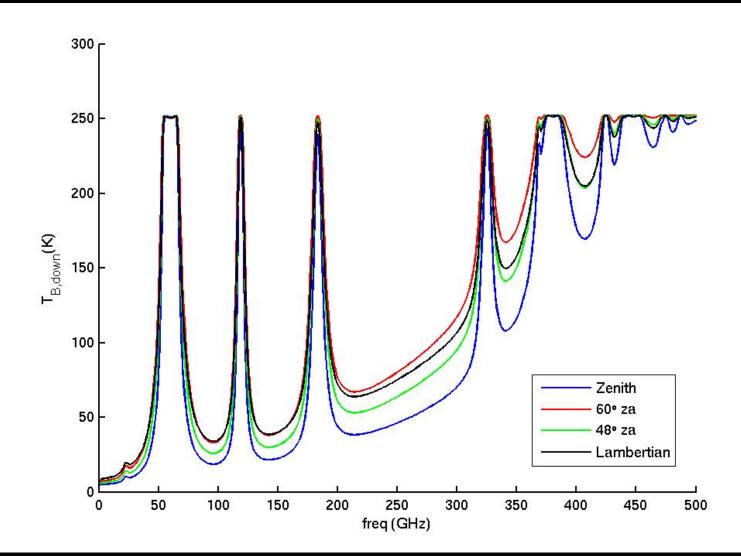
- AMSU-B emissivities at 89, 157 and 183 GHz.
 - mm-waves
- Snow surfaces are Lambertian at 183 GHz (Harlow, 2009).
- Sea ice mm-wave Lambertian emissivities can be related to sea ice type through typical snow cover stratigraphic sequences (Harlow, 2010a).
 - Coupled atmosphere-snow-ice-ocean models may lead to better analysis of snow water content, ice type, and atmospheric temperature and humidity via assimilation of microwave emissivities on the 20-200GHz range.
- mm-wave Lambertian snow emissivities may be modeled with MEMLS if mm-scale surface roughness is taken into account (Harlow, 2010b).
 - Extension of MEMLS to ~200GHz.
 - To be confirmed in future campaigns.



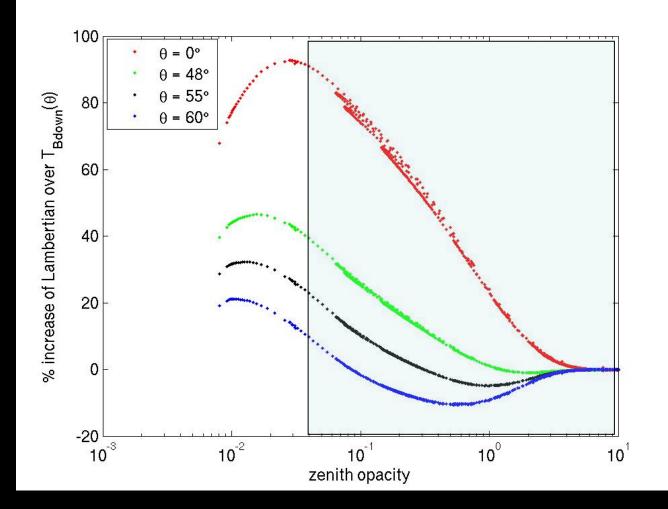

Snow surfaces are Lambertian at 183 GHz

- Two estimates of 183 GHz effective temperature and emissivity based on microwave T_B's
- Close agreement under Lambertian scattering
 - RMSD $\cong 0.5~K$
 - RMSD = 4.4 K for specular.
- Confirmed with data from 12 flights

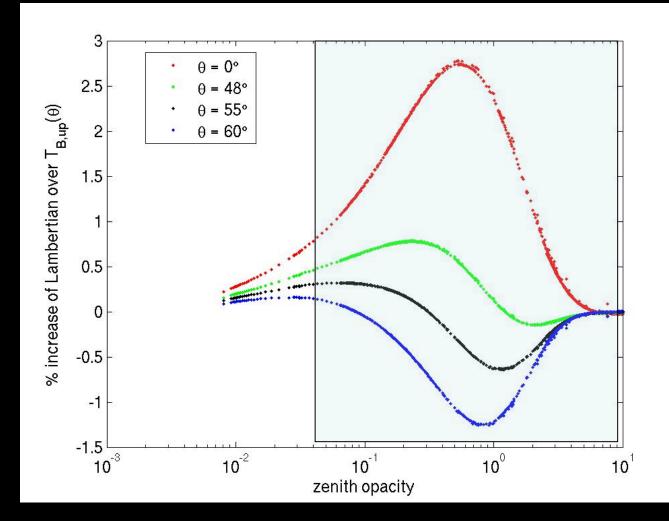
Met Office Impact of diffuse scattering in the 20-200 GHz range


- The degree to which Antarctic surface is Lambertian has been studied at 37 and 50 GHz by Rosenkranz and Matzler (2008).
 - Scattering characterized as linear combination of Lambertian and specular scattering with weight for Lambertian given by $\rm A_L$
 - $A_L \sim 0.7$ to 1.0 but spatially variable
- Guedj (2009) discussed emissivities retrieved with various degrees of Lambertivity (A_L)
 - Suggested seasonal variation from Lambertian in the winter to semi-Lambertian or specular in the summer.
- Goal now is to quantify the impact of Lambertian scattering on the upwelling radiation at the surface.

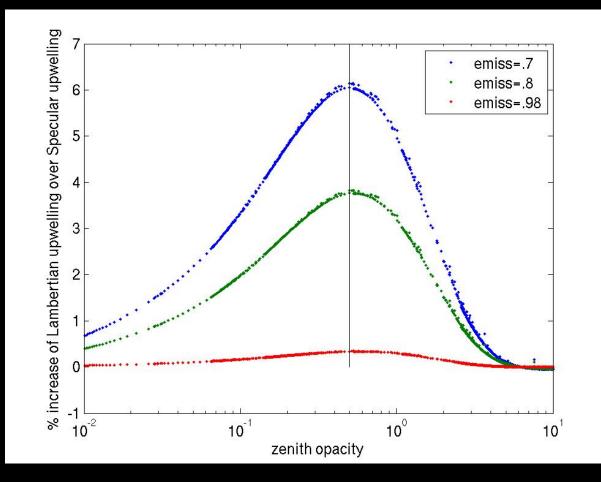
- Use ARTS to generate downwelling T_B 's at 10 zenith angles (θ) between 0 and 90°.
- Frequencies 1 to 1000 GHz in 1 GHz steps
- B345 atmospheric conditions– Cold and dry.
- Integrate T_B 's over the Lambertian BSF.
- This approximates the effective downwelling seen by a Lambertian surface.
- Specular surface reflects like a mirror so nadir measurements see reflections of the zenith $\rm T_{\rm B}$
- Compare Lambertian T_B 's to those from a specific direction θ in the sky for a range of optical depths
- Compare upwelling Lambertian and specular T_{B} 's.
- Summarize differences in terms of acceptable uncertainties for sounding.



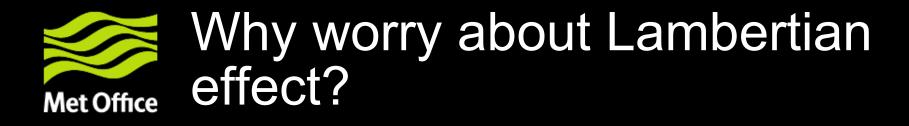
Lambertian effective downwelling



Impact of Lambertian scattering a function of zenith opacity



Difference between Lambertian and Specular upwelling when emiss=.85



Effect of Lambertian scattering as a function of zenith opacity

Max effect at Zen op of 0.5

- Lambertian effect is a function of zenith opacity: Change in spectral shape of retrieved surface emissivity.
 - Retrieval of geophysical variables must ingest any error in emissivity.
- These differences in emissivity introduce ambiguity of ~5-10 K in upwelling TB which may contaminate any retrieved profile using radiance assimilation at TOA.

Influence of Lambertian scattering on RT

- Where emissivities are relatively small there are large impacts on the radiances and thus retrieved emissivities particularly at opacities of 0.5.
- Lambertian scattering should have a strong impact for
 - snow covered surfaces in the microwave
 - desert surfaces in the IR.

- Microwave emissivities are likely to vary with frequency and elevation in Antarctica from ~0.7 to near unity (Picard et al, 2009; Guedj et al, 2009; etc.).
- For near nadir instruments (AMSU-A/B & MHS) the degree of diffuse scattering needs to be taken into account.
 - Up to 15 K error in upwelling at surface otherwise.
 - Up to 3 K for observations at 55° incidence (SSMI, SSMI/S, etc).
 - Both are larger than acceptable for sounding purposes (English, 2008).
- The seasonal variation needs to be investigated as well as the Lambertivity at frequencies lower than 183 GHz.

- Added capabilities from ISMAR
 - Suites of channels on 118 and 325 GHz water vapour lines will be useful in evaluating A_L at other frequencies.
- TAIGASEE in Finland
 - Nov 2012, Jan and Mar 2013
 - Evaluate performance of MEMLS over a season.
- Sea ice campaign 2013/14 in Alaska(?)

- [1] R.C. Harlow, "Millimeter microwave emissivities and effective temperatures of snow covered surfaces: Evidence for Lambertian surface scattering," *IEEE Trans. Geosci. Remote Sens.*, Vol. 37, No. 7, 1957-1970, July 2009.
- [2] R.C. Harlow, "Sea ice emissivities and effective temperatures at AMSU-B frequencies: An analysis of airborne microwave data measured during two campaigns," *submitted IEEE. Trans. Geosci. Remote Sens.*, 2010.
- [3] R.C. Harlow, "Tundra snow emissivities and effective temperatures at AMSU-B frequencies: An analysis of airborne microwave data measured during CLPX-II," *presented at MicroRad 2010, Washington, DC,* 2 March 2010.
- [4] Rosenkranz, P.W., and C. Matzler, "Dependence of AMSU-A Brightness Temperatures on Scattering From Antarctic Firn and Correlation With Polarization of SSM/I Data," *IEEE Geosci. Remote Sens. Lett.*, vol. 5, no. 4, pp. 769-773, Oct. 2008.
- [5] S. Guedj et al, "Toward a better modeling of surface emissivity to improve AMSU data assimilation over Antarctica," *presented at 2nd Workshop on Remote Sensing and Modeling of Surface Properties, Meteo France, Toulouse, France, 9-11 June 2009.*
- [6] G. Picard et al, "Modeling time series of microwave brightness temperature in Antarctica," *J. Glaciol.*, 55(191), pp. 537-551, 2009.
- [7] S.J. English, "The Importance of Accurate Skin Temperature in Assimilating Radiances From Satellite Sounding Instruments," *IEEE Trans. Geosci. Remote Sens.*, vol. 46, no. 2, pp. 403 408, Feb. 2008.