

IASI 1DVAR retrievals of temperature and emissivity over sea ice and snow covered land validated by dropsondes

R. Chawn Harlow and Tom Emery, CONCORDIASI Workshop, 29 March 2010

Collaborators

- Tom Emery, Jonathan P. Taylor, Stuart Newman, Stephan Havemann, and Jean-Claude Thelen.
- The OBR and FAAM teams that were involved in CLPX-II.

- Introduction
- PC Radiative Transfer and 1DVAR
- Case study: B345
- Conclusions

Introduction

Why do IASI 1DVAR with PC radiative transfer?

- Currently Met Office assimilates a small subset of the 8400 channels IASI provides.
 - Computational efficiency reasons.
 - Positive impact on NWP scores
 - Data being thrown out may contain additional useful independent information
- PC RT provides a way to include this extra information at much lower computational cost.
- This talk discusses attempts to retrieve humidity and temperature.

PC Radiative Transfer

Couple HT-FRTC to 1d-Var

1st 100 PCs of Obs spectra

Havemann-Taylor Fast Radiative Transfer Code Works in PC space

Output profiles of: •Temp(z) •Wat Vap (z) •Ozone (z) •Surf Temp T* •15 Emissivity PC scores

Met Office 1d-Var – minimization of the Cost function

x = atmospheric stateT(z), q(z), O3(z), T*, E(PCs) y = observations Represented as PCs of the Radiance spectra

 $J(\mathbf{x}) = (\mathbf{x} - \mathbf{x}_0)^T \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}_0) + (\mathbf{y} - \mathbf{y}(\mathbf{x}))^T \mathbf{R}^{-1} (\mathbf{y} - \mathbf{y}(\mathbf{x}))$

B = Error covariance of Background profile – extended to include a block matrix with the error covariances of the surface emissivity PC scores R = Error covariance of measurements – extended to include the error covariances of the sum of the observational and model errors in Principal Component Space

Case study: B345

Constraints on 1DVAR

ECMWF model fields taken as background.

- 0.5° X 0.5° resolution
- AVHRR Channel 4 used as an estimate of the background surface temperature.
- B matrix for ECMWF model
 - Spatially invariant
 - Independent of flow conditions
- Sondes a local measurement
 - Provide a best estimate of the "truth"

B345 Coincidence between Dropsondes and IASI footprints

- Sonde humidity quite variable
- STD q= 5.7e-5 kg/kg
- STD rh= 7.9 %
- STD temp= 0.73 K

- Sonde humidity quite variable
- STD q= 5.7e-5 kg/kg
- STD rh= 7.9 %
- STD temp= 0.73 K
- Height and temp of trop inversion uncertain/variable
 - Not reflected in B matrix but expected in nature.

Retrieved surface emissivities

Comparison of background, and retrieved surface emissivity 1.00 0.99 0.98 Emissivity Background Bmatrix + 5 0.97 Brnatrix • 10 Bmatrix • 20 Brnatrix + 40 0.96 0.95 1000 900 1100 1200 800 Wavenumber (cm-1)

Retrieved relative humidities

Retrieved specific humidities

Comparison of ECMWF, retrieved and sonde specific humidity profiles 0 Background Bmatrix + 5 Bmatrix + 10 Bmatrix + 20 Bmatrix Bmatrix * 40 Bias : 9.7662E-05 2.4771E-06 -1.3133E-05 -1.9412E-05 -2.4755E-05 -2.9341E-05 RMS :1.9167E-04 8.8125E-05 8.0647E-05 7.9996E-05 8.4743E-05 1.0313E-04 200 ECMWF Background Sonde Brnatrix -0 400 Bmatrix + 5 Bmatrix + 10 Bmotrix • 20 Brnatrix + 40 Pressure (mb) 600 800 1000 1200 0.0002 0.0004 0.0000 0.0006 Specific Humidity (kg/kg)

Sonde 6, Footprint 7: Good humidity retrieval

Sonde 6, Footprint 7: Thermal coupling

Conclusions

	Temp (K)		RH (%)		SH (kg/kg)*10 ⁶	
	Bgrnd	Retr	Bgrnd	Retr	Bgrnd	Retr
RMSE	1.8	1.2	17.2	14.5	192	88.1
		(best)		(12.5)		(80.0)
				qX10		qX10
BIAS	-0.83	-0.33	9.86	1.22	97.7	2.5
		(best)		(best)		(best)
Sonde	0.73		7.9		57	
STD						

Conclusions

- 1DVAR using HT-FRTC retrievals better at matching sonde profiles than background
- However, there is room for even more improvement.
- B matrix is general global quantity
 - Need flow-dependent, local B matrix
- Sub-grid variability in temperature and humidity profiles as well as surface emissivity may be reducing quality of retrievals
- Thermal coupling induced in boundary layer by B matrix
 - Unrealistic in arctic winter conditions.
 - Reduces quality of profile and surface temperatures.
- Retrieval performed over flat, low-lying terrain
 - Expect greater difficulties over complex, elevated terrain.

• J.-C. Thelen, S. Havemann, S. M. Newman and J. P. Taylor, "Hyperspectral retrieval of land surface emissivities using ARIES," *Q. J. Roy. Meteor. Soc.*, vol. 135, pp. 2110-2124, 2009.