IASI on MetOp A : highlights on the current results

Thierry PHULPIN, CNES DCT/SI/IM With many contributions

CENTRE NATIONAL D'ÉTUDES SPATIALES

CONCORDIASI Conference, Toulouse 29-31 March 2010

Outline

■IASI description

■IASI performances

Impact on NWP

Products

- Temperature and humidity profiles
- Surface Temperature and emissivity
- Clouds
- Aerosols
- Emissions: NH3, biomass burning emissions (methanol, formic acid, etc.)
- Transport O3, CO, HNO3, Ash
- Ozone Columns and Profiles
- CO for GEMS-MACC
- GHG : CO2, CH4, N2O, CFC

Conclusions

IASI instrument and observing mode

• 12 km pixel x 4 @ nadir

• 120 spectra along the swath (\pm 48.3° Scan \rightarrow 2100 km), each 50 km along the track

Small ground pixel size

Global coverage twice daily (morning and evening orbits)

MetOp: First European meteorological platform on polar orbit (EPS system) **launched by** Eumetsat & IASI built by CNES.

• Spectral coverage = $645-2760 \text{ cm}^{-1}$

• Spectral resolution = 0.5 cm⁻¹

• Radiometric noise ~ <0.1-0.2 K

Broad spectral coverage without gaps

Medium spectral resolution High radiometric performances

IASI instrument and observing mode

Overview of the EUMETSAT Ground Segment

EPS Milestones

2010-2012:

- Metop-B TV-test and launch preparations
- Preparation of the EPS ground segment to support 2 Metop satellites in parallel
- Launch of Metop-B in March 2012 from Baikonour

2016

Launch of Metop-C

IASI Performances monitoring

- TEC (CNES Toulouse): designed and developed Level1 processing, carried out commissioning, monitors instrument and software performances and proposes actions. Periodic meeting with Eumetsat
- Eumetsat : in charge of command/control (change of parameters), runs level1 (and 2) processing. Monitoring of level1 spectra
- End users : feedback on data quality

Overall quality of L0/L1 data

	PN 1	PN 2	PN 3	PN 4
Total % of rejected spectra	0.83	1.01	0.88	0.77
% of rejected spectra by L0 processing (on- board)	0.81	0.99	0.86	0.75

- Main contributors : spikes in B3 (0.55%), NZPD detection failure (0.15), Radiometric calibration failure (0.02%), Over/Underflows (0.02%)
- In NOp, 99% of good quality spectra
- Ground segment is very reliable

Stable since end of Cal/Val

nes

IASI RM: OBS-CALC – Radiance Difference 24h avg

25th ISSWG 21-22/04/2009 Darmstadt

Instrument transmission since last decontamination (March 2008)

Instrument transmission evolution

Next decontamination

•<u>Criteria :</u> maximum noise increase of 20% (= transmission loss of 20%)

•<u>Last IASI decontamination :</u> 21-24th March 2008 (1.5 year after launch)

•Next one : End of 2010

E. Pequignot - ISSWG2 – 2009/04/21

Double-Difference versus SNOs

SNO Results

Smoothed SNO and DD

Longwave SNOs smaller than DD, DD spectra have more contrast SNO and DD agree to ~ 0.1 K or better *except* near 1000 cm⁻¹ 1000 cm⁻¹ disagreement may be AIRS scene dependent polarization

✓ After 36 months in orbit

- IASI is performing very well
 - no redundancy used
 - all mission requirements are met : both instrument and processing
 - the instrument is extremely stable : radiometry, spectral, geometry
 - mechanisms (Cube Corner, Scan) show no evolution in orbit
 - radiator (passive cooling) show no evolution in orbit
- ✓ During the routine phase, IASI Technical Expertise Center (IASI TEC in CNES premises in Toulouse) takes care of :
 - In-depth Performance monitoring, Processing parameters updating
- ✓ In parallel with the operational monitoring performed by the EUMETSAT EPS/CGS teams :
 - Near Real Time PDU analyses, Radiance monitoring

Summary of models and data usage

		Testi	n	g Operat	tional				
MetO	Model	Domain		Model Top/	Horiz	Assimilati	20	Rips	
	Woder	Domain		N Levels	Resn.	System	511	Correction	
Met	et Global Global		80km/L70	~60km	4D-Var		Harris&Kelly		
Office	NAE	N Atlantio & Europe	c e	39km/L38	~12km	4D-Var		Harris&Kelly	
	UK4/UKVD	UK		40km/L70	4/1.5km	3D(or4D)- Var		Harris&Kelly	
Météo-	ARPEGE	Global		0.1hPa/L60	10-60km	4D-Var		VarBC	
France	rance ALADIN W Europe 0.1hPa/L70 7.5km		7.5km	3D-Var	3D-Var				
	AROME	France		1hPa/L60	2.5km	3D-Var		VarBC	
ECMWF	Global	Global		80km/L91	~25km	4D-Var		VarBC	
DWD	GME	Global		10hPa/L60	40km	3D-Var		Harris&Kelly	
	COSMO- EU	Europe		20hPa/L40	7km	m Nudging		Harris&Kelly	
met.no	HARMONIE	N Pole & Europe		0.2hPa/L60	11-16km	n 3D-Var		VarBC	
NCEP	GFS	Global	0	.27hPa/L64	~35km	3D-Var	\	/arBC	
	NAM	Regional	2	2hPa/L60 12km 3D-Var		3D-Var	\	VarBC	
Env. Canada	GEM	Global	0	.1hPa/L80	~33km	4D-Var	E s	Dynamic, self-updating H&K-like"	
NRL	NAVDAS- AR	Global	0	.4hPa/L42	~55km	4D-Var	ŀ	Harris&Kelly	

NWP

2. Impact of IASI when preparing next operational of AROME

 Impact on precipitation prediction example of 12h precipitation between 00 and 12UTC on 21 May 2009

12h forecast range

Reference: no IASI

First step: IASI 125km

Verif.: Rain gauges

Impact on forecasts

- Impact in global models is very positive, even on top of ATOVS and AIRS
- More impact in Southern Hemisphere
- All variables are improved (each with a different amplitude)
- Impact in limited-area models good for upper-air fields (from geop. to wind) precipitation forecast somewhat improved

2nd IASI Conference

Issues & Areas of research

- Usage of water vapour still far less than we expected
- Description / retrieval of surface parameters is a keypoint for a wider usage over land / sea-ice
- When assimilating cloud-affected radiances, interaction with model microphysical variables is an ultimate goal moving forward aerosol-affected radiances
- Statistics used in the assimilation can be improved: background and observation error covariance matrices

TEMPERATURE AND HUMIDITY PROFILES

29/04/07 Case Study – JAIVEX campaign 27.03 -90.44

3-D Atmospheric Temperature, H₂O, O₃, and CO Structure over France

- A movie showing IASI T, H₂O, O₃, and CO cross-sections on November 4, 2007
 - T and H₂O as a function of altitude
 - T and H₂O along satellite track
 - T and H₂O x-track

•

- CO and O_3 as a function of altitude

Cnes

Thanks to Xu Liu, CIMSS

SURFACE TEMPERATURE AND EMISSIVITY

Values consistent with reported errors on Ts found in the literature.
Bias : keep in mind the 1 hour time shift between IASI and TERRA (21h30 .vs. 22h30).

Map of emissivity at 4.05 microns for IASI and MODIS041 for June 2008

Comparison of MetOp IASI Cloud Products

Cloud products comparison:

- •Cloud Pressure maps and scatter plots
- •Effective amount differences
- •Distribution of cloud layers

Impact on use of cloudy channels:

•Nb of channels with (Btcal – Btobs) <1K

Lowest assimilated channels

Example 4: Australian dust storm (Sep 2009)

ULB

LATM

Lieven Clarisse, Annecy, 26 January 2010

Example 1: Chaiten Volcanic Eruption (May 2008)

Lieven Clarisse, Annecy, 26 January 2010

Trace gases

Trace gas products from IASI

Average 1°x1°, 10 days, 18-28 August 2008

Clerbaux et al, ACP IASI Special Issue, 2009

Tropospheric emissions

Tropospheric sources

→ Ammonia

2008 average

Mapping from local to global scale
→ 28 emission hotspots identified

Monthly/seasonal variations

Cnes

Tropospheric sources

→ VOCS HCOOH, CH_3OH

018

molec.

./cm²

₃**01** *F. Karagulian, A. Razavi*

October 2008

High correlation HCOOH/CO/fire → Biomass burning

April 2009

High correlation HCOOH/CH₃OH Weak correlation HCOOH/CO/fires → Biogenic emissions?

CH₃OH CH3OH 200904 daytime

Chemistry/Transport

→ Nitric acid

No vertical information in the measurement \rightarrow stratospheric column has to be subtracted

Using a stratospheric assimilated field (Bascoe)

[HNO₃]_{tropo} = [HNO₃]_{total/IASI} – [HNO₃]_{strato/BASCOE}

Using a background column

 $d[HNO_{3}]_{tropo} = [HNO_{3}]_{total/IASI} - [HNO_{3}]_{background}$

Global but requires computational efforts Stratospheric contamination remain

Simple, robust but tropical regions mainly. Provides a tropospheric "enhancement" rather than a column

Chemistry/Transport

 \rightarrow Chemistry in fire plumes

Australian fires (February 2009)

CH₃OH

Enhancement ratios $\Delta X / \Delta CO$ vs. time \rightarrow chemistry in the fire plume Coheur et al., ACP, 2009

Chemistry/Transport

\rightarrow SO₂ in volcanic plumes

Volcanic plumes tracked by IASI (starting January 2008)

O3 (ECMWF)

Verify against MLS (20090615-20090630)

Ozone, total column: polar ozone

Sept 4 to Sept 7 (2009)

Courtesy A. Boynard, LATMOS, 2009

Ozone *profiles*

New results: Global profiles and PC from FORLI

Preliminary comparisons with GOME-2 partial columns (from operational profiles)

Carbon monoxide total column

Medium-lived trace gases

Carbon monoxide

Comparisons with other satellite data; Preliminary cross-validation

George et al., ACP

Assimilation of NRT CO total column data from IASI

- Near-real time CO total column data from IASI produced by LATMOS-ULB have been assimilated in the GEMS/MACC near-real time analysis began on 12 February 2009, 0z
- Data look good. Departures and standard deviations are a considerably smaller than they were for the previously monitored (and assimilated) EUMETSAT CO product
- Analysis is drawing to the data. Bias and standard deviation of departures are reduced.

Cathy Clerbaux, Novembre 2009, CU Ether

CLIMATE

A word on climate: CO_2 / CH_4

04 0.06 0.08 0.1 dq_{CO2}/dq_{CO2} (ppmv/ppmv)

0.1

0.12 0.14

0.16

0 0.02 0.04

CH₄: 4 days average (October 2008) on a 4x4° grid

Crevoisier et al., ACP, 2009

0

Latitude

10

20

-20

-10

Razavi et al., ACPD, 2009

Conclusions

IASI measures a dozen of species with a range of lifetimes, *routinely* and *globally* twice a day

Long-lived species (years)

→ Climate

+ CO, O_3 (months)

→ Chemistry, AQ, Transport

Short-lived species + aerosols (days)

→ Sources, emission inventories

Air quality CO (O3?) in *FP7-*GEMS/MACC; *FP7-*CITIZEN

Fire monitoring (POLARCAT; **ESA-**STSE/ALANIS?

ESA-ECVs?

Volcanic monitoring (**ESA-**SAVAA/SACS+; **FP7-**EVOS)

Open issues

Thermal contrast:

situation better than expected; how reliable are Ts-T1 from operational L2? **PCA**:

what will be lost? study ongoing. Other alternatives to compression? (for current application 750-1400 cm⁻¹ + 2140-2180 cm⁻¹ range is used)

RT Algorithms:

Many research algorithms in addition to operational EUMETSAT. Cross-validation needed. Next step?

CONCLUSIONS

Excellent performances

Development of applications in progress

AC : From detection to to quantisation

From science to operational

- NWP : Cautious introduction going towards wider use (areas, cloudy conditions, channels, etc.)
- Assisting weather forecast

Many expectations

- Specially for climate (>15 years and more with IASI –NG on Post EPS)
- More on weather forecast specially in LAM
- With CONCORDIASI!

