In situ Measurements of Stratospheric Ozone during Concordiasi

Linnea M. Avallone and Lars E. Kalnajs University of Colorado

> Robyn Schofield Alfred Wegener Institute

Sep 11 2003

Outline

- Outstanding questions about stratospheric ozone depletion
- Ozone measurement requirements
- Instrumentation
- Analysis plans

Polar Stratospheric Ozone Loss

- Linked to catalytic reactions of chlorine and bromine oxides
 - Source of halogens is CFCs and Halons
 - Critical role of PSCs in halogen activation
 - Details of photochemistry determine extent of ozone loss

- When will the Antarctic "ozone hole" disappear?
 - Nominally, when chlorine levels drop below a threshold of about ~2 ppb
 - But, details of temperature and water vapor,
 PSC formation and chemical reactions matter

When will the Antarctic "ozone hole" disappear?

Newman et al., GRL, 2006

When will the Antarctic "ozone hole" disappear?

WMO, 2006

- What causes interannual variations in ozone loss within the Antarctic polar vortex?
- What is happening to ozone in the "collar" region along the edge of the Antarctic polar vortex?
- Will ozone in the Arctic "recover" in the same way as in the Antarctic?

Complexities of interaction between chemistry and dynamics

How well do we need to measure O_3 ?

 Model calculations suggest that ozone loss rates in the Antarctic during the austral spring range from <u>1 – 10 ppb</u> per sunlit hour [e.g. Hoppel et al., 2005]

 To resolve these changes, need to have an instrument precision of better than 1 ppb per hour-long measurement

Instrument Design Requirements

- Adequate precision and accuracy to resolve anticipated ozone changes
- Lowest power consumption possible
- High reliability for operation on long flight
- Redundancy in case of equipment failure
- Low cost

Instrument Design

- UV absorption at 254 nm Beer-Lambert Law
- UV-LED light source low power
- Fully redundant detection and flow system components

UCOz on Gondola and in Lab

Instrument Performance

Accuracy: 7 – 10 %

Precision: 0.7 ppb @ 10 sec

Data Analysis Plans

 Collaboration with R. Schofield and M. Rex of Alfred Wegener Institute (Potsdam)

 Modeling of ozone loss along balloon trajectories

 Incorporate methodologies used in MATCH technique

Example: Vorcore Flight 2

Position of balloon: Day 260 – Day 340

Example: Vorcore Flight 2

Example: Vorcore Flight 2

