

The 25 th ALADIN HIRLAM All Staff Workshop

13- 16 April 2015 Conference location: Conventum centre, Helsingjør, Denmark Some thoughts about predictability on meso-scales and HARMONIE data assimilation performance or... Uncertainty about Uncertainty

Jelena Bojarova on behalf of the HIRLAM Team

We learn little from victory, much from defeat ... (Japanease Proverb)

Analysis error verified against AIREP observations

HARMONIE FC+3

HARMONIE FC+3 + LSM ECMWF

HARMONIE AROME 3DVAR 3hRUC ECJAN domain; 800x800, 2.5km, conventional + scatterometer winds (from Gert-Jan Marseille)

Whom to blame?...

- \rightarrow 1) structure functions?
- \rightarrow 2) unrealistic small scale structures?
- \rightarrow 3) systematic errors (model biases) ?

Verification of the HARMONIE / 2.5km forecasts for extreme we event

(from Xiaohua Yang (DMI) & Lisa Bengtsson et al (SMHI))

Radar data 31.08 00UTC - 12UTC

HARMONIE AROME + 30h (MetCoOp)

The HARMONIE AROME **is capable** in many cases to predict convective precipitation events (severe high impact weather events);

Stochastic nature of the convective phenomena should be taken into account both for verification and in post-processing (timing and location uncertainty);

The quality of the short-term forecasts in the operational runs is not satisfactory : **coupling strategy and data assimilation to be blamed** What to do ? => First of all, try to simulate and understand what happens (more exactly what goes wrong) during the data assimilation process in HARMONIE AROME 2.5

The Scheme: generation of perturbations with the structure of B-matrix covariance.

A typical (!) analysis increment in the experiment (12 – 25 August 2012)

Surface pressure is too high and we are not able to correct it...

Forecast length: +00h

Surface pressure (control)

13 06 2012 03UTC

Ens. Memb 2 - Control

13 06 2012 05UTC

Ens. Memb 1 - Control

Ens. Memb 2 - Control

Forecast length:

+03h

Ens. Memb 1 - Control

Ens. Memb 2 - Control

03 06 2012 03UTC Forecast length +00h

03 06 2012 07UTC Forecast length +04h

Why does the surface pressure increment escape?

Surface pressure is an integrated quantity => <u>if</u> surface pressure increment escapes, some mis-balances in the model field must be present =>**How?**

> Unbalance of non-hydrostatic part of the flow (pressure departure, vertical divergence) ?
> Inconsistent the GFL fields due to hydrostatic DA increment (liquid water, solid water, rain, snow, graupel) ?
> Unrealistic non-physical structure functions?

Technical bug?

We still do not understand what happens...

What do structure functions say...

Aliasing of high-order terms on $2\Delta x$, $3\Delta x$, $4\Delta x$, $5\Delta x$ waves

(from Nils Gustafsson SMHI)

The preliminary results using **cubic grid truncation** (Mariano Hortal implementation) show results encouraging further investigations : even with the current grid-point space resolution **numerical stability of the scheme is increased and longer time stepping in the semi-lagrangian forward propagation is allowed**. Processes are solved in the grid-point space and smoothed out in the spectral space.

Structure functions (balanced part of the increment) contains very little energy on scales below 100 km =>Linear balance constraint is not supported by the data on meso-scales.. We must start to trust our data more and learn more from them...

Small scales structure : noise or realistic small-scale variability?

Surface pressure

Processes represented on scales beyond $5\Delta x$ should be interpreted with care!

HARMONIE fields look very noisy. Transformation to the pressure levels, transformation to the physical quantities, change of resolution add small scale noise: Why? =>

Physics-numerics interactions?
Numerical truncation ?
…?

Climatological structure functions (6 EDA based HarmonEPS perturbations; 06UTC +12h)

Climatological structure functions (6 EDA based HarmonEPS perturbations; 06UTC + 12h)

Climatological structure functions (6 EDA based HarmonEPS perturbations; 06UTC + 12h)

Climatological structure functions (6 EDA based HarmonEPS perturbations; 06UTC + 12h)

How to extract the signal ?

Even a small size HARMONIE ensemble contains clear response to orographic conditions because the orography is a not stochastic process in itself => Strong potential of HARMONIE ensemble representing convective scale phenomena, *in particular those induced by surface and PBL!*,

Wrong large scale environment => useless meso-scale data assimilation.
Constrain large scale environment

II). Avoid averaging and relax homogeneity and isotropy assumptions **Allow flow-dependency**

III). Sample uncertainty and filter out noise. Localisation on a prescribed scale is harmful for data assimilation => Try scale-dependent localisation (Mark Buehner approach)

Two-dimensional surface analysis might be a feasible environment to develop this scheme

What can we learn from this experiment:

1) We cannot come much further forward without flowdependent structure functions!=> homogeneity and isotropy assumption about the forecast error statistics do not hold for the convective scale phenomena;

2) Small scales structures and noise is a dangerous combination => Go for "cubic grid" truncations, possibly low-resolution orography; We need to rethink about initialisation on convective scales

3) Near linear regime of development is valid for certain phenomena up to 3-4h because the advection seems to dominate => hope for 4DVAR HARMONIE! Development of advanced data assimilation scheme requires a common system.

4) Ensembles have big potential for data assimilation on convective scales (processes driven by surface and PBL conditions) => Go for Ensemble Variational techniques using convection permitting ensembles. Allow scale-dependent localisation!

There is no elevator to the success

YOU WILL HAVE TO TAKE THE STAIRS!