Optimizing the ALADIN cloudiness parameterization

T. Haiden

Central Institute for Meteorology and Geodynamics, Vienna

- The problem with Xu-Randall
- Critical relative humidity
- Use of raob and synop observations
- Optimization of namelist settings

The problem with Xu-Randall

CRM data: cloudiness <1 at rh=100%

Chaboreau and Bechtold (2002)

Xu and Randall (1996)

14th ALADIN Workshop, Innsbruck

Very wide tuning range for rhcrit \rightarrow what do observations show?

probability of no high cloudiness

Based on SYNOP and RAOB observations Vienna, 12Z (1999-2004): most rapid drop between 35% and 65% relative humidity

probability of no mid-level cloudiness

Based on SYNOP and RAOB observations Vienna, 12Z (1999-2004): significant drop begins around 65% relative humidity

 \rightarrow different profile shape suggested by observations

14th ALADIN Workshop, Innsbruck

Functional form of rhcrit

 $rhcrit = 1 - HUCOE\eta^{NPCLO1}(1-\eta)^{NPCLO2}[1 + \sqrt{HUTIL}(\eta - 0.5)]$

Can the inactive exponents NPCLO1, NPCLO2 be used to obtain the suggested shape of rhcrit?

What are the optimal values for HUCOE, HUTIL, NPCLO1, NPCLO2?

High: HUCOE=1.1 HUTIL=1.3 NPCLO1=0.0 NPCLO2=1.1

Mid-level: HUCOE=0.7 HUTIL=1.3 NPCLO1=0.0 NPCLO2=1.1

Validation results for mid-level clouds

	ACNEBN version	rhcrit profile	MAE (%)	BIAS (%)
MF oper	Xu-Randall	classical	11.3	-2.6
MF oper new	Xu-Randall + LRNUMX	classical	10.3	-0.7
ZAMG exp	classical	new shape	7.7	-0.4
MF exp	Xu-Randall + LRNUMX (different tuning!)	new shape	8.1	-0.6

QSSC (shallow convection): the smaller the better, but 200-400 ok

Further possible improvements

In model with 1st-order closure: parameterize σ_s via vertical gradients of q_t , θ_l

Conclusions based on Vienna data

Use modified critical relative humidity profile

- Xu-Randall no real advantage for med+hi clouds
- Off-line tuning useful for exploring parameter space

Next steps

- Test results on other raob stations (June 2004)
- Test optimized tuning in parallel suite (July 2004)
- Put into operations (Aug 2004?)
- Test if statistical scheme improves cloud diagnostic