SICE: simple sea ice scheme

Yurii Batrak (MET-Norway)

The problem

- SURFEX 7 no sea ice scheme
 - diagnostics only
 - prescribed SST/SIST field
 - in case of operational setup
- HARMONIE in NWP mode
 - SST field from the boundaries
 - SST remains constant during forecast

Possible solutions

- Switch to SURFEX 8
 - + advanced sea ice handling (by GELATO)
 - advanced scheme may require advanced initialization routines
 - SURFEX 7/8 code bases are not very compatible
- Couple with an external ocean model
 - + full strength of external ocean model
 - + detailed description of ice processes
 - computationally heavy
 - requires more resources for its implementation
- Put an existing sea ice scheme into SURFEX
 - + well tested production ready scheme can be used
 - an external ice scheme may use its own approach for init and output
- Introduce a new sea ice scheme in SURFEX 7
 - + minimal affect
 - + scheme can be lightweight
 - + can be implemented in short time
 - only partial representation of ice processes

SICE

- 1D simplistic ice scheme
- Constant ice thickness
- SIC (SST SIST) driven
- Snow on ice by ISBA ES

Limitations

- 1D model without any parameterization of ice dynamics
- Prescribed ice thickness
- Scheme is driven by the external ice fraction field
- Snow-free setup is not realistic and causes too warm ice surface
 - but snow-enabled configuration has several problems
- Simplistic initialization procedure
- No assimilation
 - ice scheme runs freely from cycle to cycle

Ice fraction handling

- SURFEX 7 does not use information about the ice fraction
- SICE: ice fraction from the SST field or from an external data source

Provided by boundaries

Ice fraction handling

R – ref run; S – SICE is enabled (white shade – ice covered area) I – SIC chart by the ice service

• In the reference Harmonie version sea grid cells are filled by T_0 which is affected by land surface temperature

How it's done when SICE is enabled:

- Ocean grid points contains SST only data
- SST and SIC fields are extrapolated to fill gaps
- Usage of the ice fraction data provided by boundaries requires high spatial resolution of the external SIC data

Snow on ice

- Bare ice and snow enabled setups are available
- No snow fraction
- Simplified representation of the snow-ice interaction processes
- 3L explicit snow scheme
 - + Advanced snow scheme
 - + Explicit snow approach allows us to use an existing scheme with minimal impact to the existing code base
 - 3L snow scheme in SURFEX 7 is known to have issues and the improved version of 3L scheme from SURFEX 8 should be used instead

Snow on ice

Svalbard airport (2011/2012) SURFEX HIGHTSI shade – ice thickness solid lines – snow thickness

SICE with 3L explicit snow:

- Two PREP options for snow on ice
 - Start from the snow free ice surface
 - Uniform snow field (same for SEA and NATURE tiles)
- Increased minimal value of snow albedo
- Snow accumulation is not limited

HIGHTSI:

Advanced thermodynamical sea ice model

10 meter wind speed over ice surface

 $A - V_{10m}$ mean error, 7 Svalbard stations B – floating ice as seen by SURFEX C – floating ice in real life

- Positive bias of 10m wind speed when SICE is enabled
 - Caused by introduction of the ice fraction field
 - Grid cells with *SIC* < 1 contain some amount of open water
 - As result average Cd from such grid cell is decreased
- Ice fraction handling utilizes standard SURFEX approach for averaging
 - $F_{SEA} = (1 \alpha)F_{water} + \alpha F_{ice}$

10 meter wind speed over ice surface

10 MAR 2013 00:00Z

- Introduce additional drag caused by ice obstacles
 - $C_{dn} = (1 \alpha) C_{d,w} + \alpha \cdot C_{d,i} + C_{d,f}$
 - $C_{df} = A(1-\alpha)^B \alpha$

AROME experiments

- Experiments have been ran over MetCoOp and Arctic domains
- Default setup uses SST/SIST from ECMWF

AROME experiments

- SICE setup
 - snow-free configuration
 - 4 layers of ice
 - ice thickness 0.5m
 - SIC from HIROMB data
- cycle initialization
 - SIST from the previous forecast
 - new ice is initialized by simple extrapolation from the border of the existing ice
 - linear temperature profile for the new ice

AROME experiments

A1: SICE structure

- Maximal usage of the existing code
- Data should be stored locally without spreading on different modules

SICE it's a combination of the already existing routines

A2: Implementation

- Fortran 2003
- Abstract interface for an ice scheme with two realizations
 - Default ICEFLUX scheme
 - SICE
- Data are stored locally in the corresponding derived types
- Unified descriptor-based IO processing for all ice-related fields

A3: Why the OO solution

```
select case(CSCHEME)
  case('SCHEME A')
    ! Scheme call...
                                   call scheme%run(...)
  case('SCHEME_B')
    ! Scheme call...
end select
  call _qfortran_select_string
                                             -488(%rbp), %rax
                                    movq
  testl %eax, %eax
                                             8(%rax), %rax
                                    movq
  ie .L3
                                             40(%rax), %rax
                                    movq
  cmpl $1, %eax
                                    call
                                             *%rax
  ie .L4
 /*...*/
.1.3

    Shorter code, clear structure

/*...*/

    Eliminated call to the Fortran runtime

  call scheme a
 /*...*/
```

