Using IFS initial and boundary conditions in the ALADIN/HU model

Sándor Kertész

Presented by Gergely Bölöni

Hungarian Meteorological Service

RC LACE

ALADIN/HIRLAM Workshop 23-26 April, 2007 Oslo

Introduction

Research carried out in the framework of the ECMWF Special Project for

"Investigation of coupling the ALADIN and AROME models to boundary conditions from ECMWF and ERA model data"

- Part of the Data Manager's work of RC-LACE
- The main goal of the present study: using T799 IFS forecasts as IC and BC conditions for ALADIN
- It is a continuation of the experiments Gergely Bölöni carried out last year with using T511 BCs in dynamical adaptation
- The feasibility of operational usage was investigated
- Both dynamical adaptation and 3D-VAR were tested.

IC+BC generation

IC+BC generation method (running on HPCE at ECMWF):

Handling of surface fields

- Simple copy of the surface fields from the ARPEGE analysis file into the initial condition file
- BC files are not modified because surface fields are not coupled from the BC files during the integration
- This solution gives better results (one 48h run with dynamical adaptation)

Investigation #1

- Dynamical adaptation runs (+48h) for 00 and 12 UTC
- Two configurations:
 - ARPE_dyna: IC+BC is provided by ARPEGE
 - **ECMF_dyna**: IC+BC provided by T799 IFS (stream oper).
- 14 days (08-21 August, 2006)
- The applied ALADIN configuration:
 - AL28T3
 - 8km horizontal resolution
 - 49 levels

TEMP-based verification

700 -D

RMSE differences: <u>ARPE-ECMF</u>
Red shades indicate that <u>ECMF is</u>
better.

SYNOP-based verification

On the surface ECMF_dyna performs similarly than ARPE_dyna!!

Investigation #2

- Problem with operational applications: IFS forecasts not available at the desired time
- For instance:
 - 00 UTC ALADIN/HU run ends at 3:30 UTC
 - 00 UTC IFS run starts only at after 5:00 UTC
- Solution: the previous IFS run should be used as IC+BC (like in HIRLAM)
 - The 18 UTC IFS run for 00 UTC
 - The 06 UTC IFS run for 12 UTC
- The 06 and 18 UTC IFS runs are available in stream SCDA, provide forecast up to 96h
- The 6h shifted BC usage was tested with dynamical adaptation and 3D-VAR

Investigation #2

- IFS BCs were tested with the 6h shift
 - ARPE_dyna: dynamical adaptation with ARPEGE
 - ARPE 3d: 3D-VAR with ARPEGE
 - ECM6_dyn: dynamical adaptation with IFS SCDA
 - ECM6_3d: 3D-VAR with SCDA (to simulate the operational environment OPER is used in the cycling)
- 14 days (08-21 August, 2006), 48 h forecasts at 00 and 12 UTC
- 3D-VAR cycling started 4 days earlier from the same background in both cases

Geopotential

ARPE dyn - ECM6 dyn

ECM6 dyn - ECM6 3d

Temperature

ECM6 dyn - ECM6 3d

Relative humidity

ARPE dyn - ECM6 dyn

ECM6 dyn - ECM6 3d

U wind component

ECM6 dyn - ECM6 3d

SYNOP-based verification

- •The two 3D-VAR conf. performs similarly
- •3D-VAR in general improved the T2 forecast of ECM6
- For RHU2 and windspeed the differences are smaller

Conclusions

- Using IFS IC+BC in ALADIN/HU improved the upper air forecasts significantly
- For an operational applications only the previous (6h earlier) IFS forecasts can be used as IC+BC → ECM6
- With dynamical adaptation ECM6 is worse than using ARPEGE IC+BC
- With 3D-VAR ECM6 improved significantly and the forecast quality is as good as with ARPEGE BCs on the surface and slightly better for the upper air parameters
- An optimal usage of IFS surface fields should be further investigated (improvement of e901)