SLHD

(Recent status and perspectives)

Filip Váňa

filip.vana@chmi.cz

ONPP / ČHMÚ - LACE

 parameterization of unresolved scales or filter removing the waves with no predictive skills

- parameterization of unresolved scales or filter removing the waves with no predictive skills
- mostly expressed by linear higher order operators of the form $K\nabla^{2n}$ (more general approaches based on non-linear or empirical formulas are less convenient)

- parameterization of unresolved scales or filter removing the waves with no predictive skills
- mostly expressed by linear higher order operators of the form $K\nabla^{2n}$ (more general approaches based on non-linear or empirical formulas are less convenient)
 - efficient and stable implicit formulation

- parameterization of unresolved scales or filter removing the waves with no predictive skills
- mostly expressed by linear higher order operators of the form $K\nabla^{2n}$ (more general approaches based on non-linear or empirical formulas are less convenient)
 - efficient and stable implicit formulation
 - straightforward control and tuning

- parameterization of unresolved scales or filter removing the waves with no predictive skills
- mostly expressed by linear higher order operators of the form $K\nabla^{2n}$ (more general approaches based on non-linear or empirical formulas are less convenient)
 - efficient and stable implicit formulation
 - straightforward control and tuning
 - coefficient of diffusion K should be reduced with the increased model spatial resolution

- parameterization of unresolved scales or filter removing the waves with no predictive skills
- mostly expressed by linear higher order operators of the form $K\nabla^{2n}$ (more general approaches based on non-linear or empirical formulas are less convenient)
 - efficient and stable implicit formulation
 - straightforward control and tuning
 - coefficient of diffusion K should be reduced with the increased model spatial resolution
 - only little theoretical or observational foundation

Horizontal diffusion in ALADIN - I.

Spectral diffusion

r = 4

- $K = -\frac{\exp(-0.5\pi i r)}{(2\pi)^r} \left[\frac{L_x^2}{\mathcal{M}^2} + \frac{L_y^2}{\mathcal{N}^2}\right]^{\frac{r}{2}} \frac{g(l)}{\mathsf{RDAMP}_{\Psi}(1+0.5r_{nlginc})^{2.5}[\Delta X]_{gp}}$
- preserves mean
- affected by extension zone (LAM only)
- suitable to just spectral fields
- difficulty with sloped coordinate
 - causes false advection
 - in presence of orographic features targets might be masked

Horizontal diffusion in ALADIN - II.

SLHD (since 2003)

- grid point space scheme
- non-linear scheme $\approx K(d) \nabla^r X$
- triggered by flow field deformation
- ∇^r represented by sL interpolators ($r \approx 2-4$) $I = (1 - \kappa)I_A + \kappa I_D = I_A + \kappa (I_D - I_A)$
- special care to control orography triggered noise
- Iocal and 3D character
- efficient (for NL diffusion) and stable

SLHD design - I_D

Linear vs. homogeneous interpolation

SLHD design - κ

$$\kappa = \frac{f(d^0)\Delta t}{1 + f(d^0)\Delta t}$$

$$\kappa = \frac{f(d^0)\Delta t}{1 + f(d^0)\Delta t}$$

$$f(d) = ad\left(\max\left[1, \frac{d}{d_0}\right]\right)$$
 SLHDB

$$d = \frac{1}{2}\sqrt{\left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y}\right)^2 + \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right)^2}$$

$$\kappa = \frac{f(d^0)\Delta t}{1 + f(d^0)\Delta t}$$

$$f(d) = ad\left(\max\left[1, \frac{d}{d_0}\right]\right)$$
 SLHDB

$$d = \frac{1}{2} \sqrt{\left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y}\right)^2 + \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right)^2}$$

$$a = 2 \quad \text{SLHDA0} \quad \left(\frac{[\Delta x]_{ref}}{[\Delta x]}\right) \quad \text{ZSLHDP1}$$
$$d_0 = \frac{\text{SLHDD00}}{2} \quad \left(\frac{[\Delta x]_{ref}}{[\Delta x]}\right) \quad \text{ZSLHDP3}$$

$$\kappa = \frac{f(d^0)\Delta t}{1 + f(d^0)\Delta t}$$

$$f(d) = ad \left(\max \left[1, \frac{d}{d_0} \right] \right)^{\text{SLHDB}}$$

$$d = \frac{1}{2} \sqrt{\left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right)^2 + \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)^2}$$

$$a = 2 \quad \text{SLHDA0} \quad \left(\frac{[\Delta x]_{ref}}{[\Delta x]} \right)^{\text{ZSLHDP1}} \longrightarrow d = d(\Delta x)$$

$$d_0 = \frac{\text{SLHDD00}}{2} \quad \left(\frac{[\Delta x]_{ref}}{[\Delta x]} \right)^{\text{ZSLHDP3}} \longrightarrow d_{75\%} = d_{75\%}(\Delta x)$$

SLHD tuning - experimental setup

- various domains and resolutions between 2.2 km 17 km
- linear and quadratic truncations considered
- 6 hours forecast in adiabatic mode
- recomputed to relative wave-numbers (all experiments directly comparable)
- diffusion impact diagnosed for each wave as: $\frac{\zeta_{0i'}-\zeta_{i'}}{\zeta_{0i'}}$

SLHD tuning

Ideal tuning
 ZSLHDP1 = 1.7
 SLHDB = 0

SLHD tuning

- Ideal tuning
 ZSLHDP1 = 1.7
 SLHDB = 0
- Compromise tuning
 ZSLHDP1 = 1.7
 ZSLHDP3 = 0.6

SLHD tuning

- Ideal tuning
 ZSLHDP1 = 1.7
 SLHDB = 0
- Compromise tuning
 ZSLHDP1 = 1.7
 ZSLHDP3 = 0.6
- Spectral diffusion

• treated as 1D phenomena \rightarrow horizontal homogenization is desirable

- treated as 1D phenomena \rightarrow horizontal homogenization is desirable
- ideally sophisticated physical parameterization resolves more SG effects

- treated as 1D phenomena \rightarrow horizontal homogenization is desirable
- ideally sophisticated physical parameterization resolves more SG effects
- prognostic schemes are already smoothed through sL advection

- treated as 1D phenomena \rightarrow horizontal homogenization is desirable
- ideally sophisticated physical parameterization resolves more SG effects
- prognostic schemes are already smoothed through sL advection
- SLHD allows more activity in the atmosphere

- treated as 1D phenomena \rightarrow horizontal homogenization is desirable
- ideally sophisticated physical parameterization resolves more SG effects
- prognostic schemes are already smoothed through sL advection
- SLHD allows more activity in the atmosphere

- treated as 1D phenomena \rightarrow horizontal homogenization is desirable
- ideally sophisticated physical parameterization resolves more SG effects
- prognostic schemes are already smoothed through sL advection
- SLHD allows more activity in the atmosphere

Experiment (CY32T1, linear diffusion):

preALARO (diagnostic physics used in ALADIN/CE)

- treated as 1D phenomena \rightarrow horizontal homogenization is desirable
- ideally sophisticated physical parameterization resolves more SG effects
- prognostic schemes are already smoothed through sL advection
- SLHD allows more activity in the atmosphere

- **preALARO** (diagnostic physics used in ALADIN/CE)
- ALADIN/France (Lopez microphysics, ECMWF radiation scheme, QM in sL advection)

- treated as 1D phenomena \rightarrow horizontal homogenization is desirable
- ideally sophisticated physical parameterization resolves more SG effects
- prognostic schemes are already smoothed through sL advection
- SLHD allows more activity in the atmosphere

- **preALARO** (diagnostic physics used in ALADIN/CE)
- ALADIN/France (Lopez microphysics, ECMWF radiation scheme, QM in sL advection)
- ALARO 3MT (prognostic microphysics and TKE, cloud-radiation interaction,...)

- treated as 1D phenomena \rightarrow horizontal homogenization is desirable
- ideally sophisticated physical parameterization resolves more SG effects
- prognostic schemes are already smoothed through sL advection
- SLHD allows more activity in the atmosphere

- **preALARO** (diagnostic physics used in ALADIN/CE)
- ALADIN/France (Lopez microphysics, ECMWF radiation scheme, QM in sL advection)
- ALARO 3MT (prognostic microphysics and TKE, cloud-radiation interaction,...)
- ALARO (3MT included)

What about the physics? - II.

SLHD on moisture

Total cloudiness forecast for December 15th, 2004

linear diffusion vs. SLHD

SLHD and prognostic fields from physics

TKE (at 1500 m above flat terrain)

spline Lagr. cubic Lagr. cub. + SLHD

ALADIN WS / HIRLAM ASM, Oslo, April 2007 – p. 12

SLHD and progn. fields from physics - II.

q_l (at 110 m above mountain region)

SLHD and progn. fields from physics - II.

q_l (at 110 m above mountain region)

SLHD and progn. fields from physics - II.

q_l (at 110 m above mountain region)

SLHD at kilometric scale

00 +15 UTC May 22nd, 2006

Radar

AROME with spectral diffusion

SLHD at kilometric scale

00 +15 UTC May 22nd, 2006

Radar

AROME with SLHD

SLHD at kilometric scale - II.

24 hours accumulated precipitation over Austria for the 23/06/2006

SLHD outperforms linear diffusion schemes

- SLHD outperforms linear diffusion schemes
- offers elegant solution for BBC condition in NH

- SLHD outperforms linear diffusion schemes
- offers elegant solution for BBC condition in NH
- gives more flexibility for diffusion of GP variables

- SLHD outperforms linear diffusion schemes
- offers elegant solution for BBC condition in NH
- gives more flexibility for diffusion of GP variables
- offers some physical behavior in horizontal (3D) extent

- SLHD outperforms linear diffusion schemes
- offers elegant solution for BBC condition in NH
- gives more flexibility for diffusion of GP variables
- offers some physical behavior in horizontal (3D) extent
- there's no universal tuning for SLHD

- SLHD outperforms linear diffusion schemes
- offers elegant solution for BBC condition in NH
- gives more flexibility for diffusion of GP variables
- offers some physical behavior in horizontal (3D) extent
- there's no universal tuning for SLHD
- it is numerical scheme \rightarrow can't substitute the physics (3D turbulence)