Semi-Lagrangian coupling of physics to dynamics

Martina Tudor Hirlam/Aladin All-Staff Meeting/Workshop Oslo,Norway 23-26 April 2007

Contents

- existing second order accurate solutions for dynamics and physics
- Aladin uses physics from the origin point
- possibilities for coupling of physics to dynamics
- what is coded in Aladin
- first results
- conclusions

Introduction

- semi-lagrangian $\frac{d\psi}{dt} = A + P$
- where A is dynamics and P physics
- dynamical contribution A = B + N is split into a linear term B and a non-linear residual N
- semi-implicit discretization in two-time-levels

$$\psi_F^{t+\Delta t} - \psi_O^t = \frac{\Delta t}{2} (B_F^{t+\Delta t} + B_O^t) + \frac{\Delta t}{2} (N_F^{t+\Delta t} + N_O^t) + \frac{\Delta t}{2} (P_F^{t+\Delta t} + P_O^t)$$

but in the real world, we use

$$\psi_F^{t+\Delta t} - \psi_O^t = \frac{\Delta t}{2} \beta (B_F^{t+\Delta t} + B_O^t) + \Delta t N_M^{t+\frac{\Delta t}{2}} + \Delta t P_M^{t+\frac{\Delta t}{2}}$$

LSETTLS scheme

 stable extrapolation for a two-time-level scheme (Hortal, 1998)

$$N_M^{t + \frac{\Delta t}{2}} = N_O^t + \frac{1}{2} \left(N_F^t - N_O^{t - \Delta t} \right) = \frac{1}{2} \left(2N_O^t - N_O^{t - \Delta t} + N_F^t \right)$$

for the non-linear term

$$\vec{V}_{M}^{t + \frac{\Delta t}{2}} = \vec{V}_{O}^{t} + \frac{1}{2} \left(\vec{V}_{F}^{t} - \vec{V}_{O}^{t - \Delta t} \right) = \frac{1}{2} \left(2\vec{V}_{O}^{t} - \vec{V}_{O}^{t - \Delta t} + \vec{V}_{F}^{t} \right)$$

- to compute the origin point
- second order accuracy accomplished

Dynamics solution

 non-linear terms and wind for trajectory estimated in M

 M_{Λ}

$$\Delta t P_M^{t + \frac{\Delta t}{2}}$$

$$\mathbf{O} P_M^{t + \frac{\Delta t}{2}} = P_C^t$$

SLAVEPP

IFS/HIRLAM used

$$P_M^{t + \frac{\Delta t}{2}} = P_F^{t + \Delta t}$$

 semi-lagrangian averaging of physics parameterizations (Wedi, 1999)

$$P_{M}^{t+\frac{\Delta t}{2}} = \frac{1}{2}P_{O}^{t}(rad, cnv, cloud) + \frac{1}{2}P_{F}^{t+\Delta t}(rad, cnv, cloud) + P_{F}^{t+\Delta t}(turb, gwd)$$

 call physics after explicit dynamics and interpolate in next time-step

Aladin physics

 computed before the dynamics and interpolated to the origin point

$$P_M^{t + \frac{\Delta t}{2}} = P_O^t$$

- first order accurate coupling
- how to accomplish second order accuracy in coupling it to the semi-lagrangian dynamics?

Choices

- Termonia and Hamdi (2007)
 - physics computed before or after dynamics
 - physics and dynamics computed in parallel or sequential manner
 - physics tendency coupled to dynamics in different points on trajectory
- plenty of remaining constraints
 - availability of horizontal derivatives
 - avoid multiple calls to physics

Different points on trajectory

 Coupling of physics to dynamics in different points on trajectory

Accuracy criterion

- Integrate the forecast with operational time-step (327.273 sec for Croatian domain, 360 seconds for Czech domain)
- Integrate the forecast with much shorter timestep (30 seconds) and compute the difference

$$dev = \sqrt{(F_{\Delta t = 360} - F_{\Delta t = 30})^2}$$

the one with smaller difference is more accurate

Effect on wind field

 differences between forecasts computed with operational and very short time-step for operational coupling of physics to dynamics (red) and closer to the middle point (blue) time is 1 for analysis, 4 is 9 hour forecast, 25 is 72 hour forecast.

Effect on pressure field

 differences between forecasts computed with operational and very short time-step for operational coupling of physics to dynamics (red) and closer to the middle point (blue), time is 1 for analysis, 4 is 9 hour forecast, 25 is 72 hour forecast.

Effect on geopotentiel

• differences between forecasts computed with operational and very short time-step for operational coupling of physics to dynamics (red) and closer to the middle point (blue), time is 1 for analysis, 4 is 9 hour forecast, 25 is 72 hour forecast.

Effect on temperature

 differences between forecasts computed with operational and very short time-step for operational coupling of physics to dynamics (red) and closer to the middle point (blue), time is 1 for analysis, 4 is 9 hour forecast, 25 is 72 hour forecast.

Effect on relative humidity

 differences between forecasts computed with operational and very short time-step for operational coupling of physics to dynamics (red) and closer to the middle point (blue), time is 1 for analysis, 4 is 9 hour forecast, 25 is 72 hour forecast.

Parallel or sequential

 update the wind field used for trajectory computations with the physics contribution

$$\vec{V}_M^{t+\frac{\Delta t}{2}} = \frac{1}{2} \left[2 \left(\vec{V}_O^t + \Delta_{phy} \vec{V}_O^t \right) - \left(\vec{V}_O^{t-\Delta t} + \Delta_{phy} \vec{V}_O^{t-\Delta t} \right) + \left(\vec{V}_F^t + \Delta_{phy} \vec{V}_F^t \right) \right]$$

- coded only for LSETTLS, switch LPIT
 - PXRL0 contains wind used in origin point for trajectory research
 - PXRL contains wind used in final point for trajectory research

Impact on the forecast

• differences between forecasts computed with operational and very short time-step for operational coupling of physics to dynamics (red) and closer to the middle point (blue), time is 1 for analysis, 4 is 9 hour forecast, 8 is 21 hour forecast.

Impact on the wind field

 differences between forecasts computed with operational and very short time-step for operational coupling of physics to dynamics (red) and closer to the middle point (blue), time is 1 for analysis, 4 is 9 hour forecast, 8 is 21 hour forecast.

Before or after dynamics

- Coupling of physics computed before dynamics in the final point of trajectory is unstable.
- A lagged call to Aladin/Alaro physics package is coded
- it runs but ...
- problems with coupling, DFI, zero accumulated fluxes,
- model blows up for some runs with operational time-step and some other with 30 second timestep.

Conclusions

- Averaging physics tendency between origin and final points has a beneficial impact on accuracy
- Its effects on stability to be studied.
- Problems remaining
 - better consistency in time and space
 - test the lagged option
 - check the surface
- Having sequential instead of parallel computations inside the physics package