# A comparison of mesoscale analysis and dynamic adaptation methods for initial conditions for ALADIN over Slovenia



Benedikt Strajnar University of Ljubljana, Slovenia

#### Introduction

- accurate initial conditions cruical for successful forecast
- comparison of two operationally used strategies of initial conditions for LAMs
  - dynamic adaptation (e.g. Slovenia)
    - interpolation of global model analysis (ARPEGE)
    - assumption: processes on mesoscale mainly a result of adjustment to surface characteristics
  - mesoscale analysis (e.g. Hungary)
    - observations enter directly into the mesoscale model through data assimilation - higher resolution of observations
- comparison between model outputs and against observations
- we are interested in key differences and some cases

#### Assimilation sistems and models

- 4D-VAR analysis in ARPEGE
- upper-air 3D-VAR mesoscale analysis for ALADIN-HU
- NMC-type construction of **B** matrix
- no additional observation types in mesoscale assimilation but higher resolution (weaker thinning)
- soil analysis for ALADIN-HU taken from ARPEGE
- some differences between ALADIN models
  - ALADIN-SI: 9.5 km grid, 37 levels
  - ALADIN-HU: 8.0 km grid, 49 levels
- some configuration differences model outputs (forecasts) not directly comparable

## Data set and methodology

- 00 UTC analyses and 24h forecasts for the period of June 2006
- mesoscale analyses and forecasts provided by HMS
- post-processing to ALPS domain (covering the whole Alps and Slovenia) using *FullPos*
- horizontal resolution of 10 km, interpolation on pressure levels for easier interpretation
- gridpoint difference statistics for main fields

#### domain ALPS (in colors)



104 X 68 gridpoints,  $\Delta x = 10 \text{ km}$ 

#### Analysis: ALADIN-HU - ARPEGE



#### 24-hour forecasts: ALADIN-HU - ALADIN-SI



# Relief representation of the analysis

- quite many large differences in orography representation
- greatest differences:
  - on sharp mountain ridges
  - in the valleys and basins inside mountaineous regions



# Spatial distribution of significant differences



- interesting results under 700 hPa (1/10 greatest are shown)
  - geopotencial: observable differences in hilly regions
  - temperature: warmer ALADIN-HU, Po basin
  - wind: differences are random (rare soundings)
  - moisture: more moist ALADIN-SI, differences in analysis connected with orography differences

# Spatial distribution of significant differences





# Verification - 2 m temperature



■ MAE
■ RMSE
■ bias
■ AC

solid line: ALADIN-HU, dashed line: ARPEGE/ALADIN-SI

#### Verification - 10 m wind



■ MAE ■ RMSE ■ bias ■ AC

solid line: ALADIN-HU, dashed line: ARPEGE/ALADIN-SI

#### Verification of precipitation

- multi-category verification
  - 11 slovenian automatic stations
  - 4 X 4 contingency tables 4 standard classes
  - columns: observations
  - rows: forecasts



|                   | , , , , , , , , , , , , , , , , , , , , |         |       |        |
|-------------------|-----------------------------------------|---------|-------|--------|
| forecast/observed | <=0.1 mm                                | >0.1 mm | >2 mm | >10 mm |
| <=0.1 mm          | 84                                      | 6       | 1     | 2      |
| >0.1 mm           | 68                                      | 19      | 10    | 2      |
| >2 mm             | 52                                      | 17      | 16    | 7      |
|                   |                                         |         |       |        |

3

>10 mm

#### **ALADIN-HU**

ALADINI-SI

| forecast/observed | <=0.1mm | >0.1mm | >2mm | >10mm |
|-------------------|---------|--------|------|-------|
| <=0.1mm           | 123     | 8      | 6    | 1     |
| >0.1mm            | 55      | 22     | 8    | 3     |
| >2mm              | 29      | 14     | 15   | 9     |
| >10mm             | 0       | 1      | 2    | 4     |

- both models predict too little dry days (precipitation amount <= 0.1 mm)
- both models predict too many rain events in categories 2 and 3
- ALADIN-HU more sucessful, except for cases with more than 10 mm precipitation

- binary verification: occurence or non-occurence of the event (given by threshold)
- 2 X 2 contingency tables, various scores, ROC

| forecast/observed | yes       | no                    |
|-------------------|-----------|-----------------------|
| yes               | a (hit)   | b (false alarm)       |
| no                | c  (miss) | d (correct rejection) |



| symbol    | name                   | definition                 | ALADIN-SI        |                   | ALADIN-HU |      |
|-----------|------------------------|----------------------------|------------------|-------------------|-----------|------|
| threshold |                        | $1 \mathrm{\ mm}$          | $10~\mathrm{mm}$ | $1 \mathrm{\ mm}$ | 10 mm     |      |
| Н         | hit rate               | $\frac{a}{a+c}$            | 0.73             | 0.38              | 0.69      | 0.25 |
| F         | false alarm rate       | $\frac{b}{b+d}$            | 0.39             | 0.04              | 0.23      | 0.01 |
| PC        | proportion correct     | $\frac{a+d}{n}$            | 0.63             | 0.93              | 0.75      | 0.95 |
| BIAS      | bias                   | $\frac{a+b}{a+c}$          | 2.28             | 1.00              | 1.61      | 0.44 |
| HSS       | Heidke skill score     | $\frac{PC-E}{1-E}$         | 0.23             | 0.34              | 0.37      | 0.33 |
| PSS       | Pierce skill score     | $\frac{ad-bc}{(a+c)(b+d)}$ | 0.34             | 0.34              | 0.45      | 0.24 |
| CSI       | critical success index | $\frac{a}{a+b+c}$          | 0.29             | 0.23              | 0.36      | 0.21 |

## Case study

- 30th June 2006: passage of a weak front associated with some thunderstorms in the early morning
- simulations repeated on ALPS domain using ALADIN-SI

better forecast provided by mesoscale analysis 500 hPa cold core



# Case study

- convective part of precipitation similar in all forecasts,
   differences in stratiform (resolved) part
- more low-level moisture in ARPEGE analysis
- convergence zone more pronounced in ARPEGE analysis (field too smooth)



ALADIN-HU analysis

## Case study

- impact of observations in 2006/06/30/00 UTC analysis?
- additional simulations using first guesses (2006/06/29/18 UTC analysis)
- observations tend to lower the precipitation amounts too little observations in the area
- precise first guess was important



#### **Conclusions**

- there are some differences between dynamic adaptation and mesoscale analysis in June 2006 over Slovenia
  - differences pronounced in mountaineous regions in temperature and moisture fields
- the overall success of both strategies approximately equal
  - 3 x higher resolution of mesoscale analysis, but poorer assimilation method
  - neutral impact on wind, degradations in temperature, better precipitation forecast (more balanced structures)
- the benefits of mesoscale analysis can be found in special cases also indicated by some other studies
- the sample relatively small, for more reliable comparison longer time period and use of the same model would be needed
- significant improvements expected with more high-resolution observations and better asimilation algorithms

Thank you for your attention!
Questions, comments?