Experiments with the ALADIN 3D-FGAT system

Sándor Kertész

Presented by Gergely Bölöni

Hungarian Meteorological Service

ALADIN/HIRLAM Workshop 23-26 April, 2007 Oslo

Contents

- 3D-FGAT in ALADIN
- The position of the analysis increment
- Comparison with 3D-VAR
- Using all the SYNOP reports in 3D-FGAT
- Conclusions

Incremental 3D-FGAT in ALADIN

First guess at appropriate time

3D-FGAT is a simplification of 4D-VAR by setting the TL and AD model operators to the identity (**M=M**^{T=}**I**)

The innovation vector is computed is the same way as in 4D-VAR along the background trajectory. This is a main <u>advantage over 3D-VAR</u>

$$d_i = y_i - H(M_i(x_b))$$

$$J(\delta x) = \delta x^T B^{-1} \delta x + \sum_{i=1}^{n} (d_i - H_i \delta x)^T R_{i-1} (d_i - H_i \delta x)$$

The increment in Jo is not propagated in time with the TL. It is "static", without having temporal information disadvantage over 4D-VAR

Experiment set-up

- Model version: AL28T3
- Domain: 12km, 37 levels
- Period: 4-21 May, 2005
- Warm-up period: 4 days
- 48 h forecasts at 00 and 12 UTC
- 6h analysis cycling
- 7 timeslots in 3D-FGAT
- Observations available at the analysis time except <u>AIREP</u> and <u>satellite radiance</u> data

Position of the increment

Default settings:

Increment added at the beginning of the observation window (hard-coded in the model)

For a 48h forecast from 00 UTC a 51h integration is needed!

Modified set-up:

Increment is shifted by 3h to the middle of the observation window

Position of the increment

00 UTC scores:

RMSE differences.
Verification against ECMWF analyses. Red shades indicate that increment shift is better.

Comparison with 3D-VAR

- Only the handling of <u>AIREP</u> and <u>satellite radiance</u> data is different in the applied 3D-VAR and 3D-FGAT systems
- 3 configuration for both 3D-VAR and 3D-FGAT
 - AIRN: no AIREP was used (impact of satellite radiances)
 - AIR-1: AIREP data was used with a ±1h window
 - AIR-all: AIREP data was used with a ±3h window (all data was used!)
- The cycling in 3D-VAR and 3D-FGAT was started from the same background

3D-VAR/3D-FGAT: AIREP statistics

- For experiment AIR-all (using all AIREPS)
 - Observations are closer to the background in 3D-FGAT for T, U and V
 - Both mean and STD of departures are smaller
 - By 5% less AIREP data rejected in 3D-FGAT

Obs-Bg departures for all the analysis dates for the whole period

3D-VAR/3D-FGAT: Satellite radiance statistics

T_b statistics for all the analysis dates for the whole period

	Rejected data	Obs-Bg Mean 3D-VAR 3DFGAT		Obs-Bg STD 3D-VAR 3DFGAT	
NOAA15 AMSU-A	-1.3%	-0.05	-0.12	0.37	0.34
NOAA16 AMSU-A	-0.3%	-0.13	0.22	0.35	0.36
NOAA16 AMSU-B	-0.9%	0.04	0.01	2.95	2.89
NOAA17 AMSU-B	+0.02%	-0.49	-0.7	2.96	2.81

A slightly less observations are rejected in 3D-FGAT The departure mean is mostly smaller in 3D-VAR

The departure STD is mostly smaller in 3D-FGAT

The possible reason: the bias correction coefficients were computed by 3D-VAR using wrong timing information!

3D-VAR/3D-FGAT: Verification results

- The overall differences are rather small.
- Very small differences on the surface (verification against SYNOP + subjective evaluation)
- A bit larger differences in the upper air parameters for the 00 UTC runs, while little impact was found in the 12 UTC runs

3D-VAR/3D-FGAT: V

RMSE differences. Verification against ECMWF analyses. Red shades indicate that FGAT is better

3D-VAR/3D-FGAT: Why do they differ only at 00 UTC?

- There is little difference at 12 UTC even if AIREPs are not used at all
- The impact of satellite radiances
- The temporal distribution of satellite radiance data differs at 00 and 12 UTC
- At 12 UTC there are more data closer to the observation time, 3D-FGAT is closer to 3D-VAR

3D-VAR/3D-FGAT: Why do they differ only at 00 UTC?

- Several AIREP observations nearly at the same location but with different times
- Simplified approach: let's suppose there is only one observation location with n observations of the same type
 - the resulting analysis increment in 3D-VAR and 3D-FGAT:

$$(\delta \mathbf{x})_{k} = \frac{\sigma_{bk}^{2}}{\frac{\sigma_{o}^{2}}{n} + \sigma_{bk}^{2}} \frac{1}{n} \sum_{i=1}^{n} d_{i}$$

- the analysis increment is directly related to the mean innovation (background departure)
- 3D-FGAT differs from 3D-VAR if this mean is different.

3D-VAR/3D-FGAT: Why do they differ only at 00 UTC?

- Testing 00 UTC and 12 UTC AIREP usage
 - Boxes with the size of ~ 2km x 2km x 10hPa
 - For each box the mean of the innovations are computed both for 3D-FGAT (M_{fq}) and 3D-VAR (M_{3d})
 - Then the absolute value of the M_{fq} M_{3d} difference is computed

Relative frequency

AIREP usage in 3D-FGAT

AIR-all vs. AIR-1

- RMSE differences for the 00 UTC runs.
- Red shades indicate that AIRall is better
- The difference between the 12 UTC runs are very small in terms of RMSE

Conclusion: the longer AIREP window is better for 3D-FGAT

Using all the SYNOP reports

- In the former experiments only one SYNOP report per station (the closest one to the analysis time) was used in 3D-FGAT
- 3D-FGAT is able to take into account one SYNOP report in each time-slot for a station
- Using 7 one-hour-long time-slots even 7 SYNOP reports can be used for a given station
- In the presented experiments only surface pressure was assimilated from SYNOP (experiment SYNG)

Using all SYNOP reports

00 UTC scores:

- RMSE differences between AIR-all and SYNG.
- Verification against ECMWF analyses.
- Blue shades indicate that <u>SYNG is worse</u>.

- The same near neutral or negative impact was found for 12 UTC and for the surface parameters
- This approach should be possibly applied only in 4D-VAR

Conclusions

- 3D-FGAT in ALADIN was investigated
- It was verified that the 3D-FGAT analysis increment should be added to the background trajectory at the middle point
- 3D-VAR and 3D-FGAT were compared,
 - Little difference was found
 - Some improvement in wind for the 00 UTC runs.
- Using all the SYNOP reports in 3D-FGAT is not beneficial.
- 3D-FGAT may not be optimal if there are more observations nearly t the same location with different times