Simplified physics in Arpège/Aladin

Olivier Rivière (olivier.riviere@meteo.fr)

C.Loo, A.Dziedzic...

Introduction

- Simplified physics is the basis for developpement of linear-tangent and adjoint models used for:
 - variational assimilation (Arpege/IFS 4D-VAR)
 - singular vectors computations
 - adjoint sensitivity studies (in Arpege/Aladin...)
- Now only dry simplified physics used operationally at Météo-France ⇒ need for better representation of moist processes

Position of the problem

- Parametrization of moist processes highly nonlinear in the full physics: how to represent them with more regular simplified parametrizations ?
- How close to the full physics must simplified parametrizations be ?
 For practical reasons a strategy with simplified parametrizations kept independent from the full physics was made.
- Validity of LT hypothesis when going to higher resolutions (as in Aladin France or Arpege in the future) ?

Existing simplified parametrizations (TL/AD)

Param.	Type of scheme	Used in Arpege 4DVAR
Vertical Diffusion	K taken from trajectory	Yes
Large scale precip	$P \propto (q - qsat)$	No
Gravity wave drag	Close to old oper. version	Yes (but LT hypothesis)
Convection	Simplified Mass-Flux Scheme	No
Radiation	Simplified scheme	No
Mesospheric drag		Yes but little impact

Several tasks ongoing for simplified physics:

- New LSP scheme (done), fix of the old one (done)
- Improvement of GWD scheme by neglecting perturbations of some terms in the GWD formulation (done and currently in test)
- New convection scheme (in progress)

Outline of the talk

- Description of new simplified scheme for large-scale precipitation (LSP)
- Results in Arpege
 - LT diagnostics
 - 4D-VAR results
- Tests in Aladin France

Computation of condensed water using the Smith scheme

$$Q_c = Q_v - Q_{sat}$$

Inside a gridbox: $q'_c = Q_c + s$ with s the local variation of Q_c . Statistics of s are given by a distribution function G(s)

•
$$q_c = \int_{-Q_c}^{\infty} (Q(c) + sG(s))ds$$
 and $N = \int_{-Q_c}^{\infty} G(s)ds$

Overview of the new scheme

- Smith scheme used for computing Q_C in a **diagnostic** way \Rightarrow No condensed water and/or precipitation handled prognostically.
- Retrieval of a cloud fraction C taking any possible value between 0 and 1: scheme more suitable for linearization.
- Diabatic heating corresponding to precipitation of all Q_c (to be improved ?)
- Possible evolutions:
 - Choice of a more regular probability distribution function
 - **Prognostic** Q_c
 - Activation of autoconversion (coded)

Tuning of distribution's shape.

- IT diagnostics show large sensitivity to choice of σ
- After tuning of σ , reduction of ϵ_{moist} in the tropics and in the midlatitudes.

Tangent-linear diagnostics: impact of precipitation 1/2

RMS of $\epsilon = M(X_0 + \delta X_0) - M(X_0) - L\delta X_0$ averaged over the globe (3h)

12/20

Tangent-linear diagnostics: impact of precipitation 2/2

RMS of $\epsilon = M(X_0 + \delta X_0) - M(X_0) - L\delta X_0$ averaged over the globe (3h)

13/20

Application to Arpege's 4DVAR

- E-suite: 20 days experiment (4/02/09->25/02/09)
- Same resolution than operational suite (forecast:T538,minim1:T107,minim2:T224)
- New simplified parametrization for LSP included in both minimizations.

Application to Arpege's 4DVAR: first scores.

Reference: ECMWF analysis

- Blue: introduction of LSP improves forecast compared to operational suite
- Scores neutral to slightly positive
- New moist parametrization performs better than old one (not shown)
- Tests currently done at higher resolution (T105/T224/T399)

When to introduce moist processes in 4D-VAR ?

Largest positive impact of inclusion of moist processes especially if introduced during two last minimizations. 16/20

Vests of the linearized physics in Aladin France

- Adjoint and LT models are also mantained in Aladin.
- Basic configuration of Aladin 4D VAR (not validated) is existing under Olive
- Tangent-linear diagnostics (Conf 501li):
 - $M(X + \delta X) M(X)$ compared to $L\delta X$
 - δX : guess-analysis taken from Aladin-FR oper. suite.
 - Tests performed over 3 and 6h
 - Domain: Aladin France

Inearization error in Aladin over 3h with different simplified physics

 \Rightarrow Important error around 300 hPa: dynamics ?

18/20

Conclusion

- New LSP simplified parametrization performs well in terms of LT approximation and slightly increases scores in 4D-VAR but more added value is expected at higher resolutions
- New GWD parametrization cheaper in terms of CPU and improving LT model
- Ongoing work on convection with a simplified Betts-Miller scheme coded and LT version being tested.
- At very high resolution, role of the nonlinearities to be assessed.