

Outline

1. Main features of radar assimilation within AROME

- Short history
- Radar network over France
- Impact on forecast performance

1. Illustrations

- Importance of quality of raw data
- Importance of « no-rain » assimilation

1. Planned activities

Towards the use of European radars (OPERA)

Assimilation of radar data in AROME: a short history

- Since 2005: Development of the AROME data assimilation system:
 - ALADIN heritage: 3D-Var + observations but with 3-h cycling
 - Choice of radar data and method:
 - French territory fully covered with 24 Doppler radars
 - High frequency observations of radial wind and reflectivity
 - Assimilation of volume data from individual radars
 - Computation of model reflectivities using modelled hydrometeors, to compare with observations
 - Strong interactions with the Météo-France radar expert team (DSO/CMR) to define scientific and technical needs

Current operational use of rada data

French ARAMIS network

 24 Doppler radars, 10 Polarimetric, between 3 and 11 PPIs in 15'

Within AROME:

- Radial wind from from 22 radars
- Reflectivity from 24 radars

Radar observations considered as profiles in the model

Data usage in the AROME 3D-Var system

•November 2008: AROME becomes operational including radar radial winds

•Summer 2009 : Assimilation of improved radar radial winds

•Spring 2010 : Operational assimilation of radar reflectivities

Autumn 2010 : Improved assimilation of « no rain » information from reflectivities

cumul mensuel de nombre d'obs

Precipitation Brier Skill Score

Large improvement in short range forecast since assimilation of radar reflectivities in April 2010

Lead time 6h

Screening: pre-processing and quality control

- Useful information provided by the radar producers (CMR): ground clutter, clear air echoes, sea clutter, anomalous propagation, rain attenuation, pixels below noise level, ...
- Importance of pre-processing and post-processing: very restrictive data selection

Example of pre-processing of radial wind

Use of « no rain » information

Experience has demonstated the importance of accounting for the « no-rain » information in the assimilation

Precipitation scores

Scores over 36 days in winter: average of time series

Significant impact on scores of:

- Better quality of radial wind
- reflectivity

- Reference (with assimilation of radial wind)
- Assimilation of radial wind of better quality
- Assimilation with the added reflectivity

Conclusions

- Operational assimilation of radar data in AROME with a positive impact
- Strong involvement of various teams at Météo-France (CNRM/GMME, CNRM/GMAP, DSO/CMR) and collaborations have started with HIRLAM and ALADIN consortia
- Application to other models :
 - Assimilation of radial winds was tested in ALADIN 3D-Var
 - Assimilation of reflectivities can be introduced in ALARO 3D-Var (despite different microphysics)
 - Assimilation of radial winds and reflectivities started in HARMONIE 3D-Var (Norway, Netherlands)

Outlook

- The availability of radar reflectivities is growing within the EUMETNET OPERA project (112 Radars from 16 Countries) but are not exchanged
- Radial winds are not available (could be easily exploitable)
- The exchange of radar data could benefit to data assimilation systems in Europe,
 at the cost of necessary telecommunication infrastructure
- Radar networks can be upgraded without changing all the radars (eg Doppler, polarimetry)
- Required information in OPERA files to identify non-meteorological echoes and non-rainy areas:
 need to work with data producers in different countries to improve data usefulness
- Strong positive feedback to OPERA needed to specify demands

Questions?

An example of radar data assimilation in 3D-Var AROME

Available radar data (33550)

Assimilated RH profiles (1242)

Heterogeneous radar network over France – Lack of European radars

Data thinning (16x16 km2) + QC + rainy areas

1D+3D-Var methodology

Illustration – Analysis differences with and without radar reflectivity assimilation

46.8°N 46.65°N 46.5°N 46.35°N 46.2°N 46.05°N 45.9°N 45.75°N 45.6°N

Effect on 3D-Var analysis

On the use of « no rain » information

Experience has demonstated the importance of accounting for the « norain » information in the assimilation => better balance between creation and destruction of rainy areas in the model

Rain in radar (SNR>0)

Good radar can dry the model

No information from poor radar

Requirement: knowledge of the sensitivity of each individual radar to be able to correct the model

Minimum detectable Z as a function of distance from the radar

But beware...

1. 2 problems:

- If too much noisy pixels, smoothing by filters but weak quality of wind field after filtering
- => **Need for a good quality of radial wind** (identification of clear sky echoes, low SNR) and **need for a** quality flag
- Nyquist velocity is often reduced for a better quality of data, but then areas of strong winds are removed and high convective gusts are lost or smoothed
- => Need for a minimum Nyquist velocity around 30 m/s

1.

