TOUCANS: An attempt at synthesising new findings in turbulence + diffusion over the past 10 years

Ivan Bašták Ďurán¹, Jean-François Geleyn², Filip Váňa³

FMFI UK KAFZM Bratislava¹, CNRM/Météo-France², ONPP/CHMI Praha³ bastak@fmph.uniba.sk 1 ,jean-francois.geleyn@meteo.fr 2 ,filip.vana@chmi.cz 3

cronym

TOUCANS:

- T Third
- O Order moments (TOMs)
- U Unified
- C Condensation
- A Accounting and
- N N-dependent
- S Solver (for turbulence and diffusion)

- $\overline{w'^3}$, $\overline{w'^2\theta'_L}$, $w'\theta'^2_L$, $w'q'^2_T$, $\overline{w'^2q'_T}$
- incorporation of non-local effects
- inclusion in eTKE scheme framework without additional prognostic equations [1]

Anisotropy of turbulence

- isotropy only in the 'free convective limit'
- with increasing stability grows anisotropy $\Rightarrow \frac{\partial \chi_3(Ri)}{\partial Ri} \neq 0$, $\frac{\partial \phi_3^I(Ri)}{\partial Ri} \neq 0$

critical Richardson number $oldsymbol{Ri_{cr}}$?

- recent measurements confirm existence of $Ri>Ri_{cr}$
- recent theories [7], [6]: there is no Ri_{cr}
- $\Rightarrow \lim_{Ri o\infty} \chi_3(Ri) = const > 0$

full prognostic TKE (Turbulence Kinetic Energy) equation

$$egin{aligned} rac{\partial E}{\partial t} &= A dv(E) + rac{1}{
ho} rac{
ho K_m}{\sqrt{C_K.C_\epsilon}} rac{\partial E}{\partial z} \ &+ K_m \left[\left(rac{\partial \overline{u}}{\partial z}
ight)^2 + \left(rac{\partial \overline{v}}{\partial z}
ight)^2
ight] - rac{g}{ heta} K_h rac{\partial \overline{ heta}}{\partial z} - C_\epsilon rac{(E)^rac{3}{2}}{L} \ K_m &= L C_K \sqrt{E} \chi_3(Ri) \quad K_h = L C_K C_3 \sqrt{E} \phi_3(Ri) \end{aligned}$$

- $E=rac{1}{2}(\overline{u'\cdot u'+v'\cdot v'+w'\cdot w'})$ -TKE,
- C_K , C_ϵ closure constants, L mixing length, Ri Richardson number heta - potential temperature, ho -density, u, v , w - wind components , z - height
- computation separated in two steps: static($\frac{dE}{dt} = 0$), prognostic
- can emulate multiple turbulent schemes: QNSE [6], CCH02 [2]
- separation of the stability dependencies for momentum $(\chi_3(Ri))$ and for heat/moisture $(\phi_3(Ri))$

'Filtering condition'

- = TKE equation in stationary equilibrium $(\frac{dE}{dt} = 0)$ [5]
- expresses conservation of
- TT(otal)E=TKE+TP(otential)E [7]
- leads to using $oldsymbol{R}oldsymbol{i}$ instead of N^2 (B-V frequency) and S^2 (shear) separately
- $\Rightarrow \frac{\partial \phi_3^H}{\partial R_i} \neq 0$

- derived from CCH02 [2] with assumptions
- 3 degrees of freedom:
 - C_3 inverse Prandtl number at neutrality
 - R parameter characterising the flow's anisotropy $-\chi_3(Ri)$, $\phi_3(Ri)$ functions are separated
 - $Ri_{fc} = \lim_{Ri o \infty} Ri_f$ critical flux-Richardson number

$$\chi_3(Ri) = \underbrace{\frac{f(Ri)}{f(Ri).R+1-R}}$$

$$\phi_3(Ri) = \underbrace{\frac{1}{Q}\left(1 - \frac{1-Q}{f(Ri).R+1-R}\right)}_{T}\underbrace{\frac{1}{1 + \frac{3\lambda_0Ri}{f(Ri).Q}}}_{T}$$

 ϕ_3^I : anisotropy ϕ_3^{II} : TPE \Leftrightarrow TKE conversion $Ri_{f} = rac{C_{3}Ri\phi_{3}(Ri)}{\chi_{3}(Ri)}, \hspace{0.5cm} f(Ri) = \chi_{3}(Ri)(1-Ri_{f}) \ Q = Q(R,\,C_{3}), \hspace{0.5cm} \lambda_{0} = \lambda_{0}(R,\,C_{3},\,Ri_{fc})$

 $-\chi_3(Ri)$, $\phi_3(Ri)$ functions are fully separated

ISE scheme

- QNSE (Quasi-Normal Scale Elimination) [6]
- spectral approach
- valid mainly for stable stratification
- 'extend' for Ri < 0 with modified CCH02
- QNSE is outside the modified CCH02 plane of "physical solution" in (R,Ri_{fc},C_3) -space:

hallow convection cloudiness - SCC

- 'moist' link between turbulence and diffusion (displaces staggering problem from diffusion to radiative input)
- computed from modified Ri [3] at beginning of physics time-step \Leftarrow link between N^2 and SCC

References

- [1] Canuto, V.M., Cheng, Y., and Howard, A.M., 2007: Non-local ocean mixing model and a new plume model for deep convection, Ocean Modelling, 16, 28-46. [2] Cheng, Y., V.M. Canuto, A.M. Howard., 2002., An Improved Model for the Turbulent PBL". J. Atmos. Sci. 59, 1550-1565.
- [3] Geleyn, J. F., 1987. "Use of a modified Richardson number for parameterizing the effect of shallow convection". J. Meteor. Soc. Japan special NWP Symp. vol.:141–149.
- [4] Geleyn, J.-F., J. Cedilnik, M. Tudor, F. Vana, 2006:,, ACDIFUS_prog (or pseudo-TKE) and its ingredients".
- [5] Redelsperger, J., F. Mahe, P. Carlotti, 2001: "A simple and general subgrid model suitable both for surface layer and free stream turbulence". Bound.-Layer Meteor., 101, 375-408.
- [6] Sukoriansky, S., B. Galperin, and V. Perov, 2006: "A quasi-normal scale elimination model of turbulence and its application to stably stratified flows". Nonlinear Processes in Geophysics, 13,9-22.
- [7] Zilitinkevich, S.S., T. Elperin, N. Kleeorin, I. Rogachevskii, I. Esau, T. Mauritsen and M. W. Miles, 2008. Turbulence energetics in stably stratified geophysical flows: strong and weak mixing regimes. Quarterly Journal of the Royal Meteorological Society, 134(633), 793-799.