Stability of the physics-dynamics interface

Rafiq Hamdi and Piet Termonia

Royal Meteorological Institute of Belgium

Contents

- METHODOLOGY: drastically compressed version of my lectures at the TCWGPDI in Prague
- CHOICES: modular criteria for stability and accuracy ↔ the organisation of the time step

Room for coupling

- where on the semi-lagrangian trajectory?
- before or after the dynamics?
- parallel or sequential (= fractional)?

Where on SL trajectory?

Stability of the physics-dynamics interface - p.4/21

•

• simple system, but with EXACT solutions

•

- simple system, but with EXACT solutions
- Staniforth, Wood, and Côté, 2002

$$\frac{\partial F}{\partial t} + U \frac{\partial F}{\partial x} + i\omega F = -\beta F + R e^{i[kx + \Omega]}$$

۲

- simple system, but with EXACT solutions
- Staniforth, Wood, and Côté, 2002

$$\frac{\partial F}{\partial t} + U \frac{\partial F}{\partial x} + i\omega F = -\beta F + R e^{i[kx + \Omega]}$$

solution 1: free solution (homogeneous Eq.)

$$F(x,t) = F_k^{free} e^{-\beta t} e^{i[kx - (\omega + kU)t]}$$

۲

- simple system, but with EXACT solutions
- Staniforth, Wood, and Côté, 2002

$$\frac{\partial F}{\partial t} + U \frac{\partial F}{\partial x} + i\omega F = -\beta F + R e^{i[kx + \Omega]}$$

solution 2: forced regular solution

$$F(x,t) = \frac{R}{\beta + i(\omega + kU + \Omega)} e^{i[kx + \Omega t]}$$
$$\beta + i(\omega + kU + \Omega) \neq 0$$

۲

- simple system, but with EXACT solutions
- Staniforth, Wood, and Côté, 2002

$$\frac{\partial F}{\partial t} + U \frac{\partial F}{\partial x} + i\omega F = -\beta F + R e^{i[kx + \Omega]}$$

solution 3: forced resonant solution

$$F(x,t) = R t e^{i[kx + \Omega t]}$$

$$\beta = 0 \text{ and } \omega + kU + \Omega = 0$$

ALADIN/ARPEGE

•

	computation	result
1	inv. FFT, inv. Legendre transformation	F(t)
2	call physics (APLPAR)	Φ
3	update tendencies	$F_A^* = F(t) + \Delta t \Phi$
4	compute departure(, middle) point (D , M)	
5	interpolate to D (, M)	F_D^*
6	explicit part dynamics	F^{exp}
7	FFT, Legendre transformation	
8	Helmholtz, Horizontal diffusion	F_A^+

ECMWF: SLAVEPP

•

	computation	result
1	inv. FFT, inv. Legendre transformation	F(t)
2	lin. terms, non-lin. $R(t)$ and $R(t - \Delta t)$	L^0_A, R^A, R^0_A
3	compute departure point (D)	
4	interpolate to D	$L^0, R^0 = (2R - R^-)$
5	adiabatic explicit tendencies at arrival point (A)	$ ilde{D}$
6	interpolate diab. tendencies of rad., conv. and cl. at t to ${\bf D}$	P^0
7	tendencies of parameterized processes	$P^+(F(t), \tilde{D}, fractional)$
8	add tendencies of adiabatic and diabatic processes	$F_D^0 - \frac{1}{2}L^0 + \Delta t (R^{\frac{1}{2}} + P^{\frac{1}{2}})$
9	FFT, Legendre transformation	
10	Helmholtz, Horizontal diffusion	F^+

Algorithmics: PARALLEL

• Stability of the physics-dynamics interface - p.10/21

The choice?

۲

•

•

The choice?

۲

Stability of the physics-dynamics interface - p.11/21

Actually, what is stability?

- Wish list: I have my physics wich I have thoroughly validated in dynamics *X* with time step organisation *x* and I want to plug it in dynamics *Y*. It is stable in *X* with time step organisation *x* so ...
- it is a priori not clear it will be stable in another ΦD coupling
- need for more severe criteria, recall: stable, unconditionally stable, ...

3 steps toward more unconditionality

• absolute stability $\left|\frac{F^+}{F^0}\right| \rightarrow \left|\frac{F^+}{F^{exact}}\right|$,

- restriction to schemes where stability is independent of the dynamics (read ω̃*) compare to the exact solution, i.e.
- we want Φ to be stable modulo the stability of D, modular stability:

$$\left|\frac{F^{+}}{F^{semi\ exact}}\right|$$

$$F^{semi\ exact} \equiv e^{-\beta\Delta t} \otimes \frac{\left(1 - \frac{i}{2}\tilde{\omega}\right)e^{-i\tilde{U}} - \frac{i}{2}\left(\tilde{\omega} - \tilde{\omega}^{*}\right)}{1 + \frac{i}{2}\tilde{\omega}^{*}}$$

Stability independent of *D*

•

Absolute stability

•

Stability of the physics-dynamics interface - p.15/21

Independent of D

۲

Relative stability

•

... in English

- there are two levels of where we get (de)stablization:
 - "in" the interface, i.e. where we couple to the model
 - below the interface, due to the amount of (split-) implicitness
- moving the interface later in the time step organisation has a stablizing effect

Accuracy

۲

is take the coefficient of the second-order term in the expansion in Δt .

For instance in the case $\epsilon = 0, \nu = 0$:

$$\xi P_{\alpha_1}^{exp} \to D^{exp} \to (1-\xi)P_{\alpha_1}^{imp} \to D^{imp}$$

yields

$$\frac{1}{2}\beta F^{0}\left[\left(\beta-2\beta\xi+2\beta\xi^{2}\alpha_{1}\right)+i\left(\omega^{*}-\xi\omega\right)\right]\Delta t^{2}$$

•
$$\xi = 1 \alpha_1 = \frac{1}{2}$$
: ARPEGE/ALADIN

• $\xi = \frac{1}{2} \alpha_1 = 0$: ECMWF compromise (Wedi paper)

•

• we don't want to jump to conclusions ... BUT

- we don't want to jump to conclusions ... BUT
- it seems as if ARPEGE/ALADIN uses the wrong choice ...?

- we don't want to jump to conclusions ... BUT
- it seems as if ARPEGE/ALADIN uses the wrong choice ...?
- HOWEVER this knife cuts at 2 sides:

- we don't want to jump to conclusions ... BUT
- it seems as if ARPEGE/ALADIN uses the wrong choice ...?
- HOWEVER this knife cuts at 2 sides:
- this probably means that ARPEGE/ALADIN physics satisfies more severe "unconditionally" stability criteria!

۲

to the organisers for this opportunity to start paying back my debt to science...