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Nederlandse samenvatting
–Summary in Dutch–

Klimaatmodellen, en in het bijzonder regionale klimaatmodellen vinden hun oor-
sprong in numerieke weersvoorspellingsmodellen. Belangrijke ontwikkelingen in
weersvoorspellingsmodellen leidden midden jaren 1950 tot de eerste toepassingen
van globale klimaatmodellen. De huidige globale klimaatmodellen hebben een
ruimtelijke resolutie van ongeveer 100−200 km, en zijn een essentieel hulpmid-
del om grootschalige mechanismen en fenomenen in ons klimaatsysteem, zoals
de algemene atmosferisch circulatie, te bepalen en beter te begrijpen. De lage
ruimtelijke resolutie van de globale modellen schiet echter tekort om vele belan-
grijke regionale en lokale aspecten in ons klimaatsysteem, en diens onderliggende
kleinschalige fysische processen, zoals bijvoorbeeld extreme neerslag, in rekening
te brengen. Om een oplossing te bieden voor dit schaalverschil tussen enerzijds de
grootschalige informatie afkomstig van globale klimaatmodellen en anderzijds de
kleinschalige en lokale informatie die uiterst relevant is voor impactstudies, werd
de zogenaamde neerschalingstechniek ingevoerd.

Een veel gebruikte neerschalingstechniek, is de dynamische neerschaling, en
in het bijzonder de nesting procedure. Hierbij worden grootschalige meteorolo-
gische velden van globale klimaatmodellen of van analyses van observaties ge-
bruikt als initiële meteorologische randvoorwaarden voor een hoge-resolutie Lim-
ited Area Model (een model over een beperkt gebied zoals Europa of België) of re-
gionaal klimaatmodel. De voorbije decennia kenden de regionale klimaatmodellen
een opmerkelijke vooruitgang in hun ontwikkeling, gekenmerkt door een betere
beschrijving van landschaps- en oppervlakte eigenschappen, en kleinschalige fy-
sische effecten, evenals een verhoging in de ruimtelijke resolutie (tot minder dan
10 km). Vandaag de dag zijn regionale klimaatmodellen een veelgebruikt hulp-
middel voor regionale klimaatmodellering, waarbij meerjarige simulaties worden
uitgevoerd om belangrijke regionale en lokale klimaatprocessen, zoals bijvoor-
beeld extreme gebeurtenissen, te bestuderen.

Deze thesis beoogt in detail te onderzoeken in welke mate het operationele
weermodel van het Koninklijk Meteorologisch Instituut (KMI) van België (i.e.
ALARO-0) gebruikt kan worden voor regionale klimaatmodellering in België van
(i) extreme neerslag en van (ii) meteorologische condities die ongunstig zijn voor
de verspreiding van luchtvervuiling. Neerslag is één van de meest belangrijke kli-
maatvariabelen. Bovendien spelen de onderliggende neerslagprocessen een cru-
ciale rol in de atmosferische toestand en het regionale en globale klimaat. Een
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correcte beschrijving van de neerslagprocessen in de klimaatmodellen is dus van
uiterst belang. Tekortkomingen in de parametrisaties voor neerslag, en in het bi-
jzonder voor diepe convectie, maken het echter voor klimaatmodellen doorgaans
moeilijk om de ruimtelijke en temporele variaties, evenals de frequentie en inten-
siteit van neerslag correct te modelleren. De nieuwe fysische parametrisaties voor
diepe convectie en wolken in het ALARO-0 model werden specifiek ontwikkeld
in de context van numerieke weersvoorspellingen voor de mesoschalen tot de
schalen waarop convectie plaatsvindt (zogenaamde schalen in de “grijze” zone).
Er werd inderdaad aangetoond dat deze fysische parametrisaties, of het “Modular
Multiscale Microphysics and Transport (3MT)” schema, gekenmerkt worden door
hun meerschaligheid, hetgeen consistente en realistische weersvoorspellingen im-
pliceert voor ruimtelijke resoluties gaande van 10 km tot hoge resoluties van 4
km.

Sinds 2010 wordt het ALARO-0 model in het onderzoeksdepartement van het
KMI gebruikt voor regionale klimaatmodellering. Een gedetailleerde regionale
klimaat modelleringsstudie voor België werd sindsdien echter nog niet uitgevo-
erd. Het eerste doel van dit thesisonderzoek bestaat erin om in een klimaat context
een gedetailleerde beschrijving en validatie uit te voeren van het model en van de
nieuwe fysische parametrisaties dewelke het model kenmerken. Voor neerslag, en
in het bijzonder extreme neerslag, wordt de validatie van de neerschalingsresul-
taten van het ALARO-0 model uitgevoerd voor een reeks van ruimtelijke en tem-
porele resoluties, hetgeen ons tevens toelaat om als tweede doel te onderzoeken in
welke mate het model waardevolle fijnschalige temporele en ruimtelijke details to-
evoegt aan het lage resolutie klimaatmodel dat de globale randvoorwaarden biedt.
Algemeen omvatten modelresultaten van een neerschaling verschillende soorten
onzekerheden dewelke gelinkt zijn aan (i) modelformulering, (ii) onzekerheden
in de antropogene factoren voor klimaatforcering, en (iii) natuurlijke klimaatvari-
abiliteit. Een ensemble van meerdere modelsimulaties, dat toelaat om deze onzek-
erheden en spreiding op de modelresultaten te kwantificeren, vereist voldoende
rekencapaciteit, hetgeen voor een kleine instelling zoals het KMI niet mogelijk is.
Bijgevolg stellen we als laatste en derde doel in deze thesis om op een kwalitatieve
manier de onzekerheden van de regionale neerschalingsresultaten in te schatten.
Deze kwalitatieve inschatting gebeurt door onze modelresultaten onder toekom-
stige klimaatsomstandigheden in een ruimere context te plaatsen, en ze te vergeli-
jken met andere regionale klimaatsprojecties, dewelke idealiter gebaseerd zijn op
hetzelfde forceringsscenario.

Om deze doelstellingen te bereiken worden twee belangrijke onderzoeksstap-
pen ondernomen. In eerste instantie wordt het Belgisch ALARO-0 weermodel
gevalideerd voor klimatologische tijdschalen, waarbij zogenaamde “perfecte rand-
voorwaarden” afkomstig van globale reanalyses gebruikt worden aan de randen
van het geneste ALARO-0 domein. Vervolgens wordt het ALARO-0 model ge-
bruikt voor een klimaatprojectie van het A1B scenario beschreven door het “In-
tergovernmental Panel on Climate Change (IPCC)”, waarbij een globale simu-
latie van klimaatverandering dynamisch neergeschaald wordt, gebruikmakend van
het ALARO-0 model. De ALARO-0 simulaties in deze thesis worden uitgevoerd
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met een verticale resolutie van 46 modelniveaus, en een ruimtelijke resolutie tot
4 km, hetgeen overeenstemt met de kleinste atmosferische microschaal. Boven-
dien is deze horizontale en verticale resolutie veel hoger dan de resoluties van
100−200 km en 12 km die gehanteerd worden in de “state-of-the-art” globale en
regionale klimaatmodellen die gebruikt worden in internationale initiatieven zoals
het “Model Intercomparison Project Phase 5 (CMIP5)” en het EURO-CORDEX
project.

Een vergelijking van de verschillende opties in de parametrisaties voor
straling- en oppervlakte toont aan dat de combinatie van het stralingsschema
ACRANEB en het oppervlakteschema ISBA een aanvaardbare configuratie is
voor de simulatie van neerslag met het ALARO-0 model.

Algemeen tonen de resultaten van de validatie van extreme neerslag op
dagelijkse en subdagelijkse schaal aan dat het ALARO-0 model in staat is om op
een consistente en correcte manier de relevante eigenschappen voor neerslag in
achting te nemen, en dit voor atmosferische en overeenkomstige temporele schalen
gaande van de micro- tot de mesoschaal. De validatie van dagelijkse neerslag in
België toont aan dat de nieuwe 3MT parametrisatie, en in het bijzonder de meer-
schalige eigenschap van de parametrisatie, verantwoordelijk is voor een correcte
simulatie van extreme zomerneerslag voor verschillende horizontale resoluties,
gaande van 40 km tot 4 km resolutie. Vervolgens wordt onderzocht in welke
mate het ALARO-0 model in staat is om verschillende kenmerkende aspecten
van subdagelijkse neerslag voor verschillende temporele en ruimtelijke resoluties,
te simuleren. Uit de resultaten van deze validatie blijkt de meerschaligheid van
het ALARO-0 model voor de simulatie van dagelijkse zomerneerslag niet van
toepassing te zijn voor de simulatie van subdagelijkse neerslag. Ten opzichte van
de lage resolutie simulaties, duiden bovendien de modelresultaten van de simu-
latie op een hoge resolutie van 4 km op een significante toegevoegde waarde in de
beschrijving van de dagelijkse neerslagcyclus, extreme neerslaghoeveelheden, en
belangrijke schalingseigenschappen.

Deze positieve resultaten voor de validatie laten ons toe om in een volgende
stap het model te gebruiken voor de berekening van een klimaatprojectie. De
toekomstige veranderingen in extreme neerslag en meteorologische condities die
ongunstig zijn voor wintersmog episodes, als gevolg van verhoogde broeikasgas-
concentraties beschreven door het A1B scenario van het IPCC, worden in het
tweede en laatste deel van deze thesis onderzocht. De validatie van de controle
simulatie brengt significante biases aan het licht, die in hoofdzaak toegeschreven
kunnen worden aan modelfouten afkomstig van het globale model CNRM-CM3
dat gebruikt wordt voor de neerschaling met het ALARO-0 model. De toekom-
stige veranderingen worden onderzocht volgens de gevoeligheid van het model
voor veranderingen in de klimaatforcering, waarbij het verschil tussen de toekom-
stige scenario en controle simulatie gekwantificeerd wordt.

Wat betreft de veranderingen in extreme winterneerslag, kunnen we in de
context van de model biases en de modelresultaten van andere projecties, met
een zekere betrouwbaarheid een toekomstige verhoging in de uurlijkse neer-
slaghoeveelheden verwachten. Voor de zomer daarentegen zijn de negatieve
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veranderingen in extreme en uurlijkse neerslag meer onzeker. De afname is
niet significant en kleiner dan de respectievelijke biases, en bovendien niet in
overeenstemming met de gevonden resultaten in andere voorgaande studies voor
West- en Centraal-Europa. Deze tegenstrijdigheden in de resultaten voor ex-
treme zomerneerslag kunnen toegewezen worden aan de transitiezone waarin
België zicht bevindt, en de sterke afhankelijkheid van de parametrisaties, en in het
bijzonder de parametrisaties voor diepe convectie, die een belangrijke bron van
onzekerheid vormen in de projectie van extreme zomerneerslag.

Om het effect van klimaatverandering op wintersmog episodes in Brussel te
bestuderen, worden twee verschillende stabiliteitsindices geanalyseerd. Beide in-
dices, de transport index en de Pasquill klassen, zijn gebaseerd op meteorologis-
che condities die de verspreiding van luchtvervuiling bepalen. Deze methodolo-
gie, waarbij de gevoeligheid van ongunstige omstandigheden voor de dispersie
van wintersmog polluenten in een toekomstig klimaat onderzocht wordt met be-
hulp van veranderingen in de frequentie van stabiliteitsindices, is nieuw en voor
zover geweten niet eerder gebruikt in voorgaande studies. De biases aanwezig in
de transport index voor de controle simulatie worden in rekening gebracht door
rechtstreeks op de transport lengtes een bias correctie uit te voeren. Na de bias
correctie tonen de resultaten een aanvaardbare afwijking in de frequentie van de
gesimuleerde transport lengtes ten opzichte van de geobserveerde. Dezelfde bias
correctie wordt toegepast op de transport lengtes van de scenario simulatie, het-
geen toelaat de onzekerheid op de toekomstige veranderingen in de frequentie van
lage transport lengtes te kwantificeren. Zowel de resultaten voor de veranderin-
gen in de frequentie van lage transport lengtes evenals van de stabiele Pasquill
klassen suggereren een tendens naar meer stabiele meteorologische condities en
dus een mogelijke achteruitgang van de luchtkwaliteit tijdens wintersmog episodes
in Brussel.

Uit bovenstaande resultaten concluderen we dat het ALARO-0 weermodel
van het KMI gebruikt kan worden voor regionale klimaatmodellering in België,
en in het bijzonder voor de toepassing van extreme neerslag en de meteorologis-
che condities die ongunstig zijn voor de verspreiding van luchtvervuiling tijdens
wintersmog episodes. Deze algemene conclusie laat ons tenslotte toe te stellen
dat het grote potentieel van de hoge horizontale en verticale resolutie van de
neergeschaalde modelresultaten relevante klimaatinformatie levert dat gebruikt
kan worden voor verdere impactstudies van bijvoorbeeld het stedelijk hitte-
eilandeffect, extreme neerslag, en de meteorologische condities die ongunstig zijn
voor de verspreiding van luchtvervuiling.



English summary

Climate models, and in particular regional climate models (RCMs) find their ori-
gin in Numerical Weather Prediction (NWP) models. Important developments in
NWP models have in the mid 1950’s led to the first applications of Global Cli-
mate Models (GCMs). The current GCMs have a spatial resolution of around
100−200 km, and are an essential tool to determine and correctly understand the
large-scale mechanisms and phenomena in our climate system, such as the gen-
eral atmospheric circulation. However, the coarse spatial resolution of the GCMs
falls short to take into account many key regional and local aspects and underlying
subgrid scale processes, such as for example extreme precipitation. To account for
this scale difference between the large-scale information from the GCMs on the
one hand, and the small-scale and local information which is extremely relevant
for impact studies on the other, the downscaling technique has been introduced.

A frequently used downscaling technique, is the dynamical downscaling, and
more specifically the nesting approach. In this approach large-scale meteorolog-
ical fields from either a GCM or from analyses of observations are used to pro-
vide the initial and time-dependent meteorological Lateral Boundary Conditions
(LBCs) for the high-resolution Limited Area Model (LAM) or RCM. Over the last
decades, RCMs have undergone enormous improvements in their development,
characterized by important advancements in their representation of landscape and
surface features, in their description of subgrid-scale physical effects, and in their
spatial resolution (down to 10 km). Nowadays, the RCMs have become a popular
tool for regional climate modeling, in which multiyear simulations are carried out
to study important regional and local climate processes, such as extreme events.

The ultimate aim of this thesis is to study in detail to what extent the op-
erational NWP model of the Royal Meteorological Institute of Belgium (RMI)
(i.e. ALARO-0) can be used for regional climate modeling in Belgium of (i) ex-
treme precipitation, and of (ii) the unfavorable meteorological conditions for the
dispersion of air pollution. Precipitation is one of the most important climate vari-
ables. Furthermore, the underlying precipitation processes play a crucial role in
the state of the atmosphere and the regional and global climate. Hence, a correct
description of the precipitation processes in the climate models is crucial. How-
ever, deficiencies in the parameterizations for precipitation, and in particular for
deep convection, prevent the climate models to correctly simulate spatial and tem-
poral variations, as well as the frequency and intensity of precipitation. The new
physics parameterizations for deep convection and clouds in the ALARO-0 model
were specifically designed in the context of NWP, and aimed to be used for the
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mesoscale to the convection-permitting scales (i.e. so-called “gray-zone” scales).
The multiscale aspect of the physics parameterizations, called Modular Multiscale
Microphysics and Transport (3MT), has indeed been demonstrated through con-
sistent and realistic weather forecasts at spatial resolutions ranging from 10 km up
to high resolutions of 4 km.

In the research department of the RMI, the ALARO-0 model is since 2010
used for regional climate simulations. Although, a detailed regional climate mod-
eling study for Belgium is since then not carried out. The first aim of this thesis is
therefore to carry out a detailed description and validation of the model and its new
physics parameterizations in a climate context. For precipitation, and more specif-
ically extreme precipitation, the validation of the downscaling results is executed
for a wide range of spatial and temporal resolutions. As a second goal, this allows
us to explore to what extent the model adds valuable fine-scale temporal and spa-
tial details to its driving coarse-resolution global model. The downscaled model
results generally consist of multiple sources of uncertainties which are related to
(i) model formulation, (ii) uncertainties in the anthropogenic climate forcing fac-
tors, and (iii) natural variability. A multi-model ensemble which allows to quantify
these uncertainties and the spread of the model results, requires sufficient comput-
ing capacity, which is impossible for a small institute such as the RMI. Hence, the
last and third goal of this thesis is to assess the uncertainties of the regional down-
scaling results in a qualitative manner. This qualitative assessment is done through
comparison of our downscaled future climate model results w.r.t. other RCM cli-
mate projections, which ideally use the same scenario of natural and anthropogenic
forcing.

The above objectives are addressed by two main research steps. In a first step
the Belgian ALARO-0 NWP model is validated for climatological time scales,
by driving the model with “perfect boundary conditions” coming from global re-
analyses. In a following step, the model is applied for a climate projection under
the A1B scenario as described by the Intergovernmental Panel on Climate Change
(IPCC), in which a global climate change simulation is dynamically downscaled
using the ALARO-0 model. In this thesis, the ALARO-0 simulations with a ver-
tical resolution of 46 model levels, are carried out up to high spatial resolutions
of 4 km, corresponding to the finest atmospheric (micro)scales. Furthermore, this
horizontal and vertical resolution is much higher than the state-of-the-art GCM
and RCM resolutions of roughly 100−200 km and 12 km as used in international
initiatives such as the Model Intercomparison Project Phase 5 (CMIP5) and the
EURO-CORDEX project.

A comparison of the different options in the radiation and surface parame-
terizations demonstrates that the combination of the radiation scheme ACRANEB
and the surface scheme ISBA is an acceptable configuration for the simulation of
precipitation with the ALARO-0 model.

Overall, the results of the validation of extreme daily and subdaily precipita-
tion show that the ALARO-0 model is able to consistently and correctly reproduce
the relevant precipitation characteristics, and this for a wide range of atmospheric
and corresponding temporal scales varying from the micro- to the mesoscale. The
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validation of daily precipitation in Belgium demonstrates that the new 3MT pa-
rameterization, and its multiscale character, are responsible for a correct simula-
tion of extreme summer precipitation at multiple horizontal resolutions, ranging
from 40 km to 4 km resolution. Subsequently it is investigated to what extent the
ALARO-0 model is able to simulate several subdaily precipitation characteristics
at different temporal as well as spatial resolutions. The results of this validation
suggest that the multiscale character of the ALARO-0 model as apparent in the
simulation of the daily precipitation climatology, is not valid for the simulation
of subdaily precipitation. Compared to the low-resolution simulations, the high
4-km model results demonstrate a significant added value in the description of the
daily precipitation cycle, very high precipitation amounts, and important scaling
properties.

These positive results from the validation allow us to apply the model in a
next step for the calculation of a climate projection. The future changes in extreme
precipitation and the meteorological conditions which are unfavorable for winter
smog episodes, as a consequence of increased greenhouse gas (GHG) concentra-
tions described by the A1B scenario of the IPCC, are investigated in the second
and last part of this thesis. The validation of the control simulation reveal signifi-
cant biases, which can be attributed to model errors that are present in the driving
GCM CNRM-CM3. The future changes are explored through a sensitivity of the
model for changes in the climate forcing, in which the differences between the
future scenario and the control simulation are quantified.

When it comes to the extreme winter precipitation, we can expect, taking into
account the model biases and the projection results from other modeling studies,
to some level of confidence a future increase in the hourly precipitation amounts.
However, for summer precipitation the negative changes in extreme and hourly
precipitation are more uncertain. The negative changes are not significant and
smaller than their respectively biases, and the negative response is in disagreement
with the modeling results for western- and central Europe from previous studies.
These disagreements can be attributed to the transition zone in which Belgium is
located, and the strong dependency of the parameterizations, and in particular the
parameterizations for deep convection, which are an important source of uncer-
tainty in the projection of extreme summer precipitation.

To study the climate change impact on winter smog episodes in Brussels, two
different stability indices are analyzed. Both indices, the transport index and the
Pasquill stability classes, are based on the meteorological conditions determining
the dispersion of air pollution. This methodology, in which the sensitivity of unfa-
vorable conditions to the dispersion of winter smog pollutants under future climate
conditions is explored through changes in the frequency of stability indices, is new
and has to our knowledge never been used in previous studies. The biases which
are present in the transport index obtained from the control simulation are taken
into account by a bias correction directly applied on the transport lengths them-
selves. After the bias correction, the results show an acceptable deviation in the
frequency of modeled transport lengths with respect to the observed ones. The
same bias correction is applied on the transport lengths of the scenario simulation.
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This allows to quantify the uncertainty in the future changes of the frequencies of
low transport length values. Both the results of the changes in the frequency of
low transport length values as well as in the frequency of stable Pasquill classes
suggest a tendency towards more stable meteorological conditions, and hence a
possible deterioration of the air quality during winter smog events in Brussels.

Based upon these results we conclude that the ALARO-0 model of the RMI
can be used for regional climate modeling in Belgium, and in particular for the
application of extreme precipitation and the meteorological conditions which are
unfavorable for the dispersion of air pollution during winter smog episodes. This
general conclusion allows us to state that the great potential of the high horizontal
and vertical resolution of the downscaled model results provide relevant climate in-
formation that can be used as a forcing for impact studies on for example the Urban
Heat Island effect (UHI), extreme precipitation, and the meteorological conditions
which are unfavorable for the dispersion of air pollution.
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The ultimate aim of this thesis is to investigate to what extent the Belgian
ALARO-0 Numerical Weather Prediction (NWP) model can be applied for re-
gional climate modeling of (i) (extreme) precipitation and of (ii) the unfavorable
meteorological conditions for the dispersion of air pollution in Belgium. Regional
Climate Models (RCMs) in general, and the ALARO-0 model in particular, find
their origins in NWP. This research is motivated by the fact that a detailed study
of the application of the ALARO-0 NWP model for regional climate modeling,
has since its use for regional climate simulations in 2010, never been carried out.

As a general introduction to this research theme, the origins of regional cli-
mate modeling in NWP, the principle of the downscaling approach, and some
relevant conceptual issues to the downscaling approach are discussed below. This
chapter ends with formulating the key research goals that will be addressed in this
thesis.

1.1 Origins of regional climate modeling

1.1.1 Legacy of Numerical Weather Prediction (NWP)

Climate models, and more specifically regional climate models, find their origin
in NWP. The beginning of modern NWP started with John von Neumann, who
was one of the leading mathematicians of the 20th century. During the 1950’s,
von Neumann played a key role in the development of the computer industry. His
interests in thermodynamics made him realize that a means of solving numerically
the complex equations behind it, would greatly accelerate the understanding in
these topics. With a team of engineers, programmers, mathematicians and mete-
orologists, von Neumann started the “Electronic Computer Project”. He indeed
recognized weather forecasting as an ideal problem for an automatic computer. At
that time the meteorological group was led by Jule Charney. Charney’s pioneer-
ing analyses on the set of nonlinear primitive equations which describe the global
atmospheric flow, resulted in a new set of equations where the gravity wave so-
lutions were completely eliminated, i.e. the quasi-geostrophic system. By early
1950, the meteorology group had completed the necessary mathematical analy-
sis, and under supervision of von Neumann the first successful NWP using an
equivalent-barotropic quasi-geostrophic model was run on the only computer then
available, the Electronic Numerical Integrator and Computer (ENIAC). The ini-
tial results from the four 24-hour forecasts that were made, were very encourag-
ing. They clearly indicated that the large-scale features of the mid-tropospheric
flow could be forecasted barotropically with a reasonable resemblance to reality
(Lynch, 2008; Arakawa and Jung, 2011).

Around the same time, in 1955, Jacques van Isacker worked together with
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colleagues at the Royal Meteorological Institute of Belgium (RMI) on a barotropic
model, where he delivered pioneering work for NWP in Belgium. The first oper-
ational forecasts for Western Europe with their barotropic model started in 1962,
which took two hours to run a 48-h forecast (Persson, 2005).

These important advancements in NWP paved the way for the development
of the early General Circulation Models or Global Climate Models (GCMs).
The first long-range simulation of the general circulation of the atmosphere was
performed by Phillips by the mid 1950’s. He used a two-level quasi-geostrophic
model with rudimentary physics. The integrations were done on a spatial grid of
16 × 17 points and for a period of about one month. Later, several major research
groups developed more advanced GCMs as a fundamental tool for modeling the
general circulation of the atmosphere and the understanding of the climate (Lynch,
2008).

1.1.2 The downscaling approach

The state-of-the art GCMs, with a typical horizontal resolution of roughly 1 to
2 degrees (≈ 100-200 km), effectively allow for the simulation of large-scale
climate features such as the general circulation of the atmosphere and the ocean,
and sub-continental patterns of, for example, temperature and precipitation (Rum-
mukainen, 2010; Flato et al., 2013). However, given the broad range of spatial and
temporal scales at which atmospheric phenomena in the global climate system
occur (Fig. 1.1), these coarse spatial resolutions fall short of many key regional
and local aspects and underlying physical subgrid scale processes, such as extreme
precipitation, which are of particular interest for impact researchers, stakeholders,
and policy makers (Rummukainen, 2010; Prein et al., 2015). To resolve this scale
discrepancy between global climate model output and the resolutions required for
impact assessment, the downscaling technique has been introduced. It attempts to
obtain regional or local detail from sparse observations or low resolution numeri-
cal simulations (Maraun et al., 2010; Rummukainen, 2010).

The two main downscaling methods are known as statistical and dynamical
downscaling. Statistical downscaling establishes robust statistical relationships
between large(r) scale climate variables (e.g. the mean sea level pressure field)
and observed local ones (such as temperature or precipitation) (Maraun et al.,
2010; Rummukainen, 2010). There exist a great number of statistical downscaling
methods (see e.g. Maraun et al. (2010) for a review on different methods).

Dynamical downscaling is based on the idea to produce high resolution over a
region of interest by using a global or regional numerical model. Three approaches
to dynamical downscaling can be distinguished. The first one consists of running
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global integrations at very high spatial resolutions. However, the large computa-
tional costs of this technique currently limits the runtime of such simulations to a
few days or one month. The other technique uses a global model with a variable
resolution. In this case, the regional grid spacing is reduced over the region of
interest, while larger grid spacing is used elsewhere for computational efficiency
(Rummukainen, 2010; Prein et al., 2015).

Figure 1.1: Atmosperic scale definitions, where LH corresponds to the horizontal length
scale (adopted from Thunis and Bornstein, 1996).

The third and most widely used dynamical downscaling approach, is the
“nesting” technique. It originates from NWP and is based on the concept of one-
way nesting, where large-scale meteorological fields from either a GCM or from
analyses of observations are used to provide the initial and time-dependent me-
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teorological Lateral Boundary Conditions (LBC) for the high-resolution so-called
Limited Area Model (LAM) or RCM simulations (Fig. 1.2). The basic strategy un-
derlying this one-way nesting approach is that the GCM can provide the response
of the global circulation to large scale forcings, and that the LAM or RCM can
account for the local or sub-GCM grid scale forcings (e.g. complex topographical
features) in a physically-based way (Giorgi and Mearns, 1999; Denis et al., 2002).
The nesting approach or limited-area modeling was first extensively used for NWP,
where LAMs were mostly run for simulation times of a few days. Later, it has been
demonstrated that LAMs could be run continuously for longer climatological time
periods, such that multiyear nested model simulations were conducted for regional
climate modeling in order to address in detail climate processes and add detail to
large-scale data (Giorgi and Mearns, 1999; Rummukainen, 2010).

Figure 1.2: Nested modeling technique: Large-scale meteorological fields from Global
Climate Models (GCMs) serve as initial Lateral Boundary Condition (LBC) for the high-
resolution Limited Area Model (LAM) or Regional Climate Model (RCM) simulations.

First applications of the nested LAMs in NWP, aimed for modeling the
mesoscale processes, at grid resolutions higher than the synoptic and global
models. The mesoscale, corresponding to the fundamental horizontal scale often
referred as the first baroclinic Rossby radius of deformation, is thus a very im-
portant scale in NWP, at which many relevant atmospheric processes take place
(Fig. 1.1). Nowadays, also atmospheric dynamical RCMs are used in a wide
range of applications, varying from the reconstruction of regional-scale paleo-
climatology to dynamical downscaling of climate change projections (Richard
et al., 2002). Over the last decades, LAMs and RCMs have undergone enormous
improvements in their development, characterized by important advancements
in their spatial resolution (down to 10 km), in their representation of landscape
and surface features, and in their description of subgrid-scale physical effects
(Rummukainen, 2010). Because of the ability of these high-resolution LAMs and
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RCMs to reproduce meaningful small-scale features over a limited region (Denis
et al., 2002; Giorgi et al., 2004), they have become a popular tool in both the
NWP and the climate community in particular for studying extreme events at the
regional and local scales (e.g. Jones and Reid, 2001; Buonomo et al., 2007; Déqué
and Somot, 2008; Dulière et al., 2011).

Nevertheless, some studies show that RCMs do not necessarily improve their
driving GCM simulations or global reanalyses (e.g. Castro et al., 2005; Jacob
et al., 2007; Sylla et al., 2010). The use of nested LAMs or RCMs as a climate
downscaling technique indeed involves a number of technical as well as concep-
tual issues (Richard et al., 2002). The major technical issues related to the nesting
technique are: (i) problems related to the LBCs driving the RCM, (ii) the diver-
gence of the RCM fields from the large-scale atmospheric circulation provided by
the driving global model, and (iii) the choice of the domain size and the spatial
resolution of the RCM. Besides these technical issues (see the next Chapter 2 for a
further discussion), also some conceptual issues or important scientific questions
related to the nesting approach have been raised within the RCM community.

1.2 Conceptual issues

1.2.1 Parameterizations

Precipitation is one of the most important climate variables. Precipitation pro-
cesses, including amongst others cloud microphysics, cumulus convection, plane-
tary boundary layer processes, large-scale circulation, are key physical processes
that strongly influence the atmosphere and the regional and global climate. Fur-
thermore, future climate change is expected to have a great impact on society due
to changes in precipitation patterns and variability. A correct representation of the
precipitation processes in the models is thus of a crucial importance. Nevertheless,
it is still a big challenge for GCMs or RCMs to realistically simulate the spatial
and temporal variations, and both in frequency and intensity of precipitation.
These errors in simulated precipitation fields are often associated with deficiencies
in the parameterizations (Dai, 2006).

The finite model resolution of weather and climate models requires that all
physical processes that occur on finer scales than those that are resolved by the
model, need to be approximated. These approximations, known as parameteri-
zations, are thus incorporated in the model in an attempt to relate the statistical
effects of unresolved small-scale processes to the large scale processes that are
explicitly resolved in the model (Arakawa, 2004; Rummukainen, 2010).

One critical subgrid process that has almost always been at the core of the
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efforts to numerically model the atmosphere, is the representation of deep convec-
tion through convection parameterization schemes. Deep convection plays a cru-
cial role in the precipitation process in many regions of the world, and contributes
to extreme events such as flash floods and landslides through heavy precipitation
associated with mesoscale convective systems, squall lines, and tropical cyclones.
The triggering of deep convection emerges from an interplay of processes acting at
scales from the microscale to the synoptic scale (Fig. 1.1), making the parameteri-
zation of deep convection challenging. Furthermore, convection parameterization
schemes interact with many other parameterization schemes (e.g. microphysics,
radiation, and planetary boundary layer schemes), such that deficiencies in convec-
tion parameterization schemes indeed result in common errors in the precipitation
field (Prein et al., 2015).

Since the beginning of the 21st century, advancements in high-performance
computing, allowed further refinement of the spatial grids of RCMs well beyond
10 km resolution. At such small spatial scales (i.e. < 4 km), deep convection
starts to be resolved explicitly, so that the error-prone convection parameterization
schemes can be switched off in these so-called convection-permitting (CPMs) or
convection-resolving models (CRMs) (Prein et al., 2015). As shown in Fig. 1.3, at
the two ends of the climate models’ horizontal resolution range (abscissa), GCMs
and CRMs generally use a different kind of model physics in the representation of
deep convection (ordinate, is a measure for the degree of parameterization, such
as the reduction in the degree of freedom, increasing downwards) (Arakawa and
Jung, 2011; Arakawa et al., 2011).

Figure 1.3: Two families of atmospheric models with different model physics. The hori-
zontal arrows represent attempts to broaden the applicability of GCMs (CRMs) to higher
(lower) resolutions (adopted from Arakawa et al., 2011).

Both families of models have been developed from a different viewpoint w.r.t.
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the range of horizontal resolution on which they can be applied. Hence, in GCMs
deep convection is usually highly parameterized (unresolved), while in CRMs
these processes are explicitly simulated (resolved). Obviously, there have been
many studies exploring the applicability of GCMs (CRMs) to higher (lower) res-
olutions as shown by the horizontal arrows in Fig. 1.3 (Arakawa and Jung, 2011;
Arakawa et al., 2011).

The artificial separation in the spectrum of processes at different scales in a
resolved and unresolved part by which the model physics is treated, can only be
justified when the resulting error can be made arbitrarily small by using a higher
resolution. This requires that, with an increase of the horizontal resolution, both
the dynamics and physics of GCMs converge to those of the CRMs (as shown by
the dashed curve in Fig. 1.3). If the GCM and CRM share the same dynamical core,
it is expected that the convergence does take place as far as the model dynamics
is concerned. However, for the conventional formulations of model physics, and
especially when deep convection is involved, the GCM model solution does not
naturally converge to the solution of the CRM (or of the real atmosphere) as the
resolution is refined (Arakawa and Jung, 2011; Arakawa et al., 2011). This is-
sue, which has been referred by Arakawa (2004) as the so-called cumulus or deep
convection parameterization problem, is schematically depicted in Fig. 1.4.
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FIG. 3. (a) A schematic diagram showing interactions between resolved processes in a model
and (the unresolved component of ) moist convection. The formulation of the right half of the
loop represents the cumulus parameterization problem. (b) A schematic diagram showing the
logical structure of diagnostic studies of cumulus activity based on observed large-scale budgets.
(c) Same as in (b) except for studies using SCMs or CSRMs.

These terminologies are convenient, however, when we
are concentrating on the parameterization problem rep-
resented by the right half of the loop.

It should be recognized that the logical structure of
the cumulus parameterization problem illustrated in Fig.
3a is crucially different from those of other related stud-
ies illustrated in Figs. 3b and 3c. In diagnostic studies
of cumulus effects based on observed large-scale bud-
gets (see, e.g., Yanai and Johnson 1993), the size of the
observation network separates observed and nonob-
served processes. The effects of the latter processes are
then estimated as the residuals in the large-scale bud-
gets, following the lower-left segment of the loop in the
reverse direction (Fig. 3b). Some bulk features of non-
observed moist-convective processes can further be in-
ferred using a cloud model (e.g., Yanai et al. 1973). This
is again in the reverse direction and, therefore, finding
a cause-and-effect relationship should not be an issue
in such a study. In spite of this, or because of this, the
results are useful for inferring what the effects of cu-
mulus convection have been in the real atmosphere. In
a single-column prediction experiments, either a single-
column model (SCM) with cumulus parameterization or
a cloud system resolving model (CSRM; sometimes
called a cloud ensemble model, CEM, or simply a cloud-

resolving model, CRM) is applied to a single column
covering a horizontal area comparable to the usual grid
size of weather prediction and climate models (for a
review, see Randall et al. 1996; Somerville 2000; Rand-
all et al. 2003a). In these experiments, the horizontal
size of the column separates two processes: large-scale
forcing prescribed from observations and moist-con-
vective processes predicted by the SCM or CSRM. The
experiments then follow the right half of the loop with-
out closing the rest (Fig. 3c). While this approach has
the merit of separating cumulus parameterization from
the rest of the modeling problems, it is often difficult
to interpret the results of these experiments, as pointed
out by Hack and Pedretti (2000). Unfortunately, similar
difficulties exist in any offline applications of cumulus
parameterization schemes.

In the cumulus parameterization problem, we are con-
cerned with the statistical behavior of cumulus clouds
under different conditions. The problem of cumulus pa-
rameterization, therefore, is analogous to that of climate
dynamics, in which we are concerned with time and
space means, forced and free fluctuations around means,
interactions between different temporal and spatial
scales, etc. All of these have their counterparts in the
cumulus parameterization problem.

Figure 1.4: A schematic diagram showing interactions between the resolved and unresolved
processes of moist convection. The formulation of the right half of the loop represents the
cumulus parameterization problem (adopted from Arakawa, 2004).

The upper half of the loop in Fig. 1.4, represents the effects of the resolved
processes on the unresolved component of the moist convection, while the lower
half represents the opposite effects. Arakawa (2004) refers to the upper half of the
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loop as the “control” or “large-scale forcing” and the lower half as the “feedback”
or “cumulus adjustment”. The cumulus parameterization which aims for a two-
way interaction between the resolved and unresolved part and thus a closed loop,
requires closure assumptions. The choice of such closure assumptions are by no
means an obvious question (Arakawa, 2004; Arakawa and Jung, 2011).

The artificial distinction in the model physics, representing deep convection
in GCMs and CRMs, has led to several efforts to unify all physical parameteriza-
tions in the models (e.g. Arakawa, 2004; Arakawa et al., 2011; Arakawa and Jung,
2011). Such a unification would allow a continuous transition of model physics
from one kind to the other as the resolution changes and improves interactions
between different physical processes (Arakawa et al., 2011). The approach used
in the model physics of the ALARO-0 model, which is currently used for the op-
erational NWP at the RMI, is a key example of such a consistent treatment of
deep convection at various resolutions from fully subgrid to fully explicit. Ger-
ard et al. (2009) proposed and developed a new physics parameterization package
for deep convection and clouds, to be used specifically from the mesoscale to the
convection-permitting scales (so-called “gray-zone” scales). This Modular Mul-
tiscale Microphysics and Transport (3MT) physics package is based on an inte-
grated sequential treatment of resolved condensation, deep convection and micro-
physics, using prognostic variables. In the downscaling chain toward CRM simu-
lations, many modelers avoided simulations in this “gray zone”, corresponding to
grid spacings between 10 km (convection-parameterized) and 4 km (convection-
permitting), as some assumptions used in parameterizations of deep convection
are violated and deep convection is insufficiently resolved to be modeled explic-
itly (Prein et al., 2015). However, this 3MT physics parameterization package
has found to be suitable scale-aware to allow simulations at the gray-zone scales.
Model results of an operational forecast using this revised and modular structure
of the physical parameterizations, indeed demonstrated consistent and realistic re-
sults at resolutions ranging from a few tens of kilometers down to less than 4 km
(Gerard et al., 2009). The next Chapter 2 provides a further detailed description of
ALARO-0 and 3MT.

1.2.2 Added value

As already alluded, the main potential of dynamical downscaling using RCMs can
be found in their spatial resolution which is suggested to add value compared to
the lower resolution data from global reanalysis or GCMs. In this context, added
value means that higher resolution models simulate the observed local-to-regional
climate processes more realistically and therefore provide more appropriate infor-
mation compared to other lower resolution models (Mayer et al., 2015).
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The spatial resolution of RCM simulations has indeed steadily increased over
the last decades. As an illustration, the ensemble assessments over Europe carried
out in the PRUDENCE (Prediction of Regional scenarios and Uncertainties for
Defining EuropeaN Climate change risks and Effects) and ENSEMBLES projects
applied main resolutions of around 50 km and 25 km, respectively. The ongo-
ing EURO-CORDEX initiative, which is part of the global COordinated Regional
climate Downscaling EXperiment framework (CORDEX), which aims to produce
an ensemble of several dynamical and statistical downscaling RCMs for Europe,
uses spatial resolutions of 0.44◦(≈ 50 km) up to 0.11◦(≈ 12 km). It thereby com-
plements the coarser resolution datasets of the former PRUDENCE and ENSEM-
BLES activities (Maraun et al., 2010; Berg et al., 2013b; Jacob et al., 2014). Fur-
thermore, recently with the advances in high-performance computing, CPMs op-
erating at the kilometer scale (i.e. resolutions < 4 km), are becoming available on
climate time scales (e.g. Kendon et al., 2012; Prein et al., 2013b; Ban et al., 2014;
Chan et al., 2014; Fosser et al., 2015). For decades, these CPMs, where most of
the error-prone convection parameterizations are switched off, have been widely
used for NWP.

The kilometer scale at which these CPMs operate, allows to explicitly resolve
deep convection as well as an improved representation of fine-scale orography,
variations of surface fields and boundary layer processes, which are crucial for
the initiation of convection in complex terrain (Ban et al., 2014). Furthermore,
precipitation is one of the climate variables most sensitive to model formulation,
being strongly dependent on several parameterization schemes and their interplay
with the resolved model dynamics. Hence, it is not surprising that it is shown that
for this variable the high-resolution models significantly add value compared to
the global ones (Maraun et al., 2010; Rummukainen, 2010). More specifically,
CPMs are found to improve the representation of the precipitation distribution
including the extreme events, and this over regions of complex topography and
at small spatial and temporal scales (e.g. subdaily precipitation) (Maraun et al.,
2010; Prein et al., 2013a, 2015).

As the downscaling principle assures that RCMs should not alter the simu-
lated climate on scales that can be skillfully reproduced by the resolutions of the
global model, the added value of the downscaling thus appears on the finer scales,
such as for example mesoscale structures and extremes (Rummukainen, 2010).
However, if the latter is true as a principle, it does not imply that only small-scale
or mesoscale processes may be changed by the RCM. More specifically, if a RCM
improves mesoscale structures such as fronts, it can indeed lead to differences at
the larger scales (e.g. better representation of cyclone development) which, in turn,
have an impact also on the larger scales. In reanalyses-driven simulations the large
scales are well-constrained in the global model by the observations. But, in GCM-
driven simulations RCMs may have the potential to improve the large scales.
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Generally, a comprehensive and exact assessment of the added value of an
RCM can thus be done by driving the model with reanalysis data. The latter in-
deed provides quasi-observed boundary conditions, which allows to isolate the
RCM downscaling skill by excluding the systematic biases usually present when
coupling the nested model to a GCM. Furthermore, these reanalyses are able to
reproduce the actual day-to-day sequence of weather events, so that a more clear
assessment of the downscaling skill is indeed possible (Maraun et al., 2010).

1.2.3 Uncertainty

The main sources of uncertainty of the downscaled RCM model results are: (i)
model formulation, (ii) uncertainty in anthropogenic climate forcing factors, and
(iii) natural variability. Uncertainty due to model formulation includes the numer-
ical schemes, parameterizations and resolution, coupling strategy, and uncertainty
due to natural variability can be attributed to internal variability of the chaotic cli-
mate system dependent on initial conditions, and natural forced variability due to,
e.g., solar forcing (Maraun et al., 2010).

As mentioned previously, parameterizations represent a simplification of the
real world and thus lead to inherent uncertainty in the regional climate model-
ing. More specifically, the deep convection parameterization schemes are a key
source of uncertainty in the simulation of precipitation, as these schemes are
often inherited from low-resolution GCMs or originally developed for operational
short-range NWP models (Richard et al., 2002; Maraun et al., 2010).

The time scale under consideration strongly determines the relative roles of
the different sources of uncertainty. On longer time scales, the signal to noise
ratio between the climate change signal and natural variability increases, and
uncertainty due to model formulation becomes dominant. In this way, variations
in RCM formulation play a dominant role at fine-scales, and particularly for
changes in precipitation extremes in summer. Nevertheless, in the context of
future changes, natural variability is still found to be important for summertime
precipitation and precipitation extremes, such that a single 30 year climate pro-
jection is not robust. A climate projection represents indeed just one possible
realization of the future climate, conditional on a given scenario of natural and
anthropogenic forcing (Maraun et al., 2010).

The range of uncertainty due to model formulation and natural variability can
be assessed by ensemble simulations based on different GCMs and RCMs (multi-
model ensembles), perturbed parameterizations (perturbed physics ensembles) and
different initial conditions. Over the last decade, there has been considerable in-
ternational effort to quantify uncertainty in regional climate modeling through the
inter-comparison of multiple RCMs. Examples of such international initiatives are
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the European projects PRUDENCE, ENSEMBLES, and the most recent project
CORDEX, which study the uncertainty due to structural errors of different GCMs
and/or RCMs (Maraun et al., 2010).

1.3 Key research goals
Related to these three conceptual issues (parameterizations, added value, and un-
certainty), which are often raised within the RCM community, we formulate the
three key research goals of this thesis:

1. Describe in detail the Belgian operational ALARO-0 NWP model with its
revised physical parameterizations in the context of regional climate mod-
eling. A detailed study and validation of the application of the ALARO-0
NWP model for regional climate purposes in Belgium, has since its use for
regional climate simulations in 2010, never been carried out, making it a
very important novelty of this thesis.

2. Investigate at which temporal and spatial scales the downscaling results add
value. As mentioned previously, the downscaling principle aims that RCMs
should not alter the simulated climate on scales that can be skillfully repro-
duced by the resolutions of the global model, but should rather add value on
the finer scales, such as for example mesoscale structures and extremes.

3. Assess qualitatively the uncertainty of the regional downscaling climate
change results. Multi-model ensemble simulations, allowing to quantify
the spread of uncertainty due to model formulation and natural variability,
is not feasible at a small institute such as the RMI with limited computing
resources. Therefore, the uncertainty is explored in a qualitative manner
by comparing our downscaled future climate model results in its proper
context, i.e. w.r.t. other RCM climate projections, which ideally use the
same scenario of natural and anthropogenic forcing.

These goals are addressed by two main research steps, focusing on extreme
precipitation and air pollution dispersion during winter smog episodes in Belgium:

1. Validate the Belgian operational ALARO-0 NWP model for climatological
time scales, by driving the model with “perfect boundary conditions” com-
ing from global reanalyses.

2. Apply the ALARO-0 model for a dynamical downscaling of climate change
projection, by driving the model with a GCM scenario.

Both statistical and dynamical downscaling have their advantage and disad-
vantages and should ideally be used in a complimentary way. However, statistical



GENERAL INTRODUCTION 1-13

downscaling methods have important shortcomings relative to dynamical down-
scaling, where all relevant variables are modeled simultaneously and the full dy-
namical range in space and time is preserved. Hence, if physical consistency be-
tween variables is desired and non-stationarity of absolute values and biases is
present, a dynamical downscaling is preferable (Mayer et al., 2015). Therefore, in
this thesis we will limit ourselves to the dynamical downscaling method, and more
specifically the one-way nesting approach. This approach where a RCM instead
of a computational demanding high-resolution or variable-resolution GCM is used,
is a very attractive way forward in regional climate modeling and regional impact
assessments at a small institute such as the RMI where only limited computing
resources are available.

As discussed previously, CPMs in general, and the ALARO-0 model in partic-
ular, find in many aspects their origins in NWP. CPMs had been used for decades
in NWP, before they started recently to be used for climate simulations. Their
parameterizations are often originally developed for the operational short-range
NWP models, which is also the case for the 3MT physics package in the ALARO-
0 model. The physics packages might have been adjusted to optimize forecasts
for a specific region and a particular weather regime, and may need adjustments
for its generalization to other regions and altered climate (Richard et al., 2002).
Therefore, it is of crucial importance to validate the parameterization within the
ALARO-0 model before running climate change experiments.

The 3MT physics package in the ALARO-0 model has been specifically
designed for the gray-zone scales. However, the new package has been found
to behave “multiscale”, i.e. providing consistent NWP results for resolutions
ranging from ≈ 10 km down to less than 4 km (Gerard et al., 2009). Furthermore,
CPMs are found to add value over their driving global models in the simulation
of extreme precipitation events at small spatial and temporal scales. Hence, a
profound validation of the climate downscaling results from the ALARO-0 model
will allow to examine to which extent the model adds valuable fine-scale temporal
and spatial details (i.e. range of atmospheric and corresponding temporal scales
as shown in Fig. 1.1), while being consistent with the lower resolutions in the
mesoscale.

In this thesis, the dynamical downscaling of climate projections with the ALARO-
0 model is performed according to the A1B scenario as described by the Intergov-
ernmental Panel on Climate Change (IPCC). This scenario is one of the Special
Report on Emission Scenarios (SRES), that cover a wide range of the main driving
forces of future emissions, from demographic to technological and economic
development (Nakićenović et al., 2000). Although, the IPCC recently defined a
new set of scenarios, i.e. the so-called Representative Concentration Pathways
(RCPs), we will use the “old” A1B scenario as it is still the current scenario used
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at the RMI. Furthermore, the A1B scenario is one of the three SRES scenarios
(A2, A1B and B1) that was mostly used as forcing for the projections within the
ENSEMBLES project (Niehörster et al., 2008).

As mentioned previously, a climate projection with one model provides just
one realization of the future climate, given the scenario of natural and anthro-
pogenic forcing. Although, a future climate projection with one model does not
allow to quantify the uncertainty range around the projection, we aim to assess
its spread in a rather qualitative way. Furthermore, the ALARO-0 downscaling
simulations as performed for this research, reach much higher horizontal and ver-
tical resolutions, compared to the state-of-the-art GCM and RCM resolutions of
roughly 1 to 2 degrees (≈ 100-200 km) and ≈ 12 km, as used in the Coupled
Model Intercomparison Project Phase 5 (CMIP5) and EURO-CORDEX project,
respectively. In this thesis, the ALARO-0 simulations with a vertical resolution of
46 model levels, are carried out up to high spatial resolutions of 4 km, correspond-
ing to the finest atmospheric (micro)scales (Fig. 1.1). Finally, this great potential
of high horizontal and vertical resolutions provides relevant climate information
that can be used as a forcing for impact studies on for example the Urban Heat
Island effect (UHI) (e.g. Hamdi et al., 2014, 2015), extreme precipitation and the
meteorological conditions which are unfavorable for the dispersion of air pollu-
tion.

1.4 Outline

This thesis is structured in two main parts. The first part (including Chapters 2
to 4) validates the ALARO-0 model for Belgium in a climate setup, and more
specifically on the validation of extreme precipitation. The second part (including
Chapters 5 to 6) investigates the application of the model for present and future
climate impacts on extreme precipitation and the unfavorable meteorological
conditions for the dispersion of air pollution. Except for the general introduction
and conclusion, each chapter of this thesis is written as a research paper. At the
beginning of each of the chapters which are based on published work or work that
soon will be submitted, the paper and current status of the paper on which they are
based, are indicated.

Chapter 2 addresses research goal 1, by describing in detail the ALARO-0 NWP
model as used for the regional climate simulations in this thesis. Furthermore, the
chapter discusses the major technical issues related to the nesting technique both
from a general point of view as well as in the context of the ALARO-0 simulations
that are carried out for this research.

The following Chapter 3 and Chapter 4 address research goal 1 and research
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goal 2. Both chapters validate the ALARO-0 model for (extreme) precipitation in
Belgium at daily and subdaily temporal scales, respectively. For this, the model
is driven by reanalyses or so-called “perfect boundary conditions”, allowing to
assess purely the model errors coming from the nested model. This setup allows:
(i) to investigate the added value of the dynamical downscaling at multiple spatial
resolutions and temporal scales, (ii) to validate the new physics parameterization
scheme, called 3MT within the ALARO-0 model, and (iii) to study the multiscale
characteristic of 3MT in a climate context, as the multiscale performance of 3MT
has previously only been validated in a NWP context.

Chapter 5 addresses research goal 1 and research goal 3. In this chapter, po-
tential future changes in extreme precipitation for Belgium are studied from
downscaled GCM data using the ALARO-0 model at 4 km resolution. It is first
verified whether or not the climatology for the control period is correctly repre-
sented by the ALARO-0 model. Next, future changes for Belgium are assessed
for mean and extreme precipitation both at daily and subdaily timescales. Finally,
the uncertainty of the spread around our downscaling results are discussed qual-
itatively w.r.t. other results found in literature, including a recent multi-model
intercomparison study, in which the ALARO-0 projection has taken part.

Chapter 6 addresses research goal 1 and research goal 3. In this chapter, two
different stability indices which are based on meteorological conditions deter-
mining the dispersion of air pollution, are analyzed. This methodology, which is
commonly used for alerts of winter smog peaks in a context of operational weather
impact , is here for the first time applied and validated with the high-resolution
climatological data from the ALARO-0 model. In a first step the statistics from
both indices are evaluated for present climate conditions. A bias correction is then
applied to assess the uncertainty around the derived response in the meteorological
conditions for the dispersion of air pollutants under climate change.

Finally, Chapter 7 summarizes the results in a general conclusion and provides
some perspectives for further research, as well as some limitations of this work.
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“Regional Climate Models (RCMs) are not a new concept. They are at their core
limited area models that are used in Numerical Weather Prediction (NWP).”

– Rummukainen (2010)

2.1 Introduction

The ALARO-0 model [ALADIN and AROME (Application de la Recherche à
l’Opérationnel à Meso-Echelle) combined model, first baseline version released
in 1998] is developed and maintained mainly through a collaboration between
the Royal Meteorological Institute of Belgium (RMI) and the Regional Cooper-
ation for Limited Area modeling for Central Europe (RC LACE). The model finds
its origin in Numerical Weather Prediction (NWP) and it runs operationally in a
number of countries of the Aire Limitée Adaptation Dynamique développement
INternational (ALADIN) and HIgh Resolution Limited Area Model (HIRLAM)
consortia (Austria, Belgium, Czech Republic, Croatia, Hungary, Norway, Portu-
gal, Romania, Sweden, Slovenia, Slovakia, and Turkey), for the national NWP
applications, the first of them already since 2008. More recently, the model is
also used for climate runs. In the research department of the RMI, the model is
since 2010 used for regional climate simulations. This chapter discusses in detail
the ALARO-0 model, the experimental setup, and technical specifications of the
numerical simulations that are carried out in this thesis.

2.2 Model description

ALARO-0 is a new model version of the ALADIN model, which is the Limited
Area Model (LAM) version of the Action de Recherche Petite Echelle Grande
Echelle Integrated Forecast System (ARPEGE-IFS) (Bubnová et al., 1995; AL-
ADIN international team, 1997). Since the 1990s the ALADIN model has been
widely used in the NWP community and, more recently, in regional climate model-
ing (e.g. Radu et al., 2008; Skalák et al., 2008). The model uses a diagnostic-type
deep convection and microphysics parameterization which is based on Bougeault
(1985) with upgrades from Gerard and Geleyn (2005). The new physical parame-
terizations within the ALARO-0 model as proposed by Gerard et al. (2009), were
specifically designed to be used from the mesoscale to the convection-permitting
scales (so-called “gray-zone” scales) and are centered around an improved convec-
tion and cloud scheme (Fig. 2.1). ALARO-0 is based on the ALADIN hydrostatic
and spectral dynamical core.

Furthermore, the ALARO-0 model utilizes: a Semi-Lagrangian Horizontal
Diffusion scheme called SLHD (Váňa et al., 2008), some pseudo-prognostic Tur-
bulent Kinetic Energy (TKE) scheme (pTKE, i.e. a Louis-type scheme for stability
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dependencies, but with memory, advection and auto-diffusion of the overall inten-
sity of turbulence) and a statistical sedimentation scheme for precipitation within
a prognostic-type scheme for microphysics (Geleyn et al., 2008). The physics
package of the ALARO-0 model is coupled to the dynamics of the ALADIN
model (Bubnová et al., 1995) via a physic-dynamics interface based on a flux-
conservative formulation of the equations proposed by Catry et al. (2007). The
model can be run with different schemes to impose the lateral-boundary condi-
tions (Davies, 1976; Radnóti, 1995; Termonia et al., 2012). For the model simu-
lations used in this thesis, the version of Radnóti (1995) is used (De Troch et al.,
2013). For this thesis we use the version of the ALARO-0 model (cycle36) that
was adopted for the operational applications in the RMI of Belgium in 2010.

Figure 2.1: Schematical representation of the Limited Area Model (LAM) ALARO-0.

2.2.1 Deep convection parameterization

As mentioned before, the deep convection parameterization in ALADIN is based
on the classical diagnostic-type scheme from Bougeault (1985) with upgrades
from Gerard and Geleyn (2005). The scheme of Bougeault (1985) uses a mass-
flux approach, which replaces the cloud population within a grid box by a single
“equivalent updraft”, and which assumes that the convective activity implies a re-
organization of moisture, heat and momentum over a single vertical in the model
grid (Gerard and Geleyn, 2005). The basic principle behind this classical mass-flux
approach is schematically illustrated in Fig. 2.2.

For grid cell resolutions mostly below the Rossby radius of deformation for
convective phenomena, the mass-flux based parameterizations generally assume
that convective clouds cover only a small portion of the grid cell, so that σc, which
is the fractional area covered by all convective clouds in the grid cell, can be as-
sumed to be negligible with respect to “one” (i.e. σc << 1) (Fig. 2.2 (a)). With
this assumption, the temperature and water vapor to be predicted, essentially corre-
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spond to those for the cloud environment and the value over the updraft area has no
impact on the grid cell mean (Gerard and Geleyn, 2005; Arakawa and Jung, 2011).
As illustrated by the green arrows in Fig. 2.2 (a), the relevant physical processes
are the “cumulus-induced” subsidence in the environment and the detrainment of
cloud air into the environment. However, this “cumulus-induced” subsidence is
only a hypothetical subsidence. This subsidence is a component of the subgrid-
scale eddy, which has by definition its own mass budget closed within the same
grid. This does not imply that the true subsidence is confined within that cell. The
true subsidence is the sum of the green and red vertical arrows in Fig. 2.2 (a), which
normally tend to compensate each other. In such a case, the true subsidence occurs
in another grid cell, which may be far away (Arakawa and Jung, 2011). Hence, the
fact that the true subsidence from the updrafts is happening in a multitude of grid
cells, must be taken into consideration by the parameterization schemes. Therefore
each individual grid box realization of the parameterization has a statistical view
of the true subsidence or so-called “compensating subsidence” happening inside
its area. As long as the updraft computation can also be considered as statistical
with respect to its population of updrafts of various depths and sizes, it seems not
to matter much that the compensating subsidence is computed on the basis of a
purely local closure.

Figure 2.2: Schematic illustration of circulations associated with clouds for (a) coarse and
(b) fine resolutions (adopted from Arakawa and Jung, 2011).

But when the mesh size becomes smaller, the cloud may eventually occupy
the entire grid cell, so that there is no “environment” within the same cell and
only a few updraft realizations happen inside each grid cell. As can be seen from
Fig. 2.2 (b), it can in this case no longer be assumed that the convective area
fractions σc are negligible with respect to “one”, and the whole concept of the
classical convective parameterization schemes collapses (Arakawa and Jung, 2011;
De Troch et al., 2013).
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The key concept behind the physics parameterization package of ALARO-
0 lies in the precipitation and cloud scheme called Modular Multiscale Micro-
physics and Transport (3MT), developed by Gerard and Geleyn (2005); Gerard
(2007); Gerard et al. (2009). In the 3MT scheme the problem of the classical mass-
flux based convective parameterizations is addressed by combining three key fea-
tures of the scheme: (i) the separately computed deep convective condensation and
large scale condensation are merged as single input for a “prognostic-geometric”
set of microphysical computations (sedimentation, auto-conversion, collection and
melting-evaporation during fall), (ii) the convective detrainment is not diagnosed
independently but becomes the result of the combined computations of closure, en-
trainment and condensation and (iii) the closure assumption (core of the physics-
dynamics coupling) is a prognostic-type one with memory of the updraft area
fraction and of the updraft vertical velocity of previous time-steps. These three
interrelated characteristics of 3MT induce a good multiscale performance of 3MT,
in particular in the so-called “gray-zone”. The latter can be defined as the range
of horizontal mesh-sizes for which the precipitating convection is partly parame-
terized and partly simulated by the resolved motions of the model. In case that
the classical diagnostic-type schemes of e.g. ALADIN, is used at the gray-zone
scales, this ambivalence results in double-counting or double-void situations, lead-
ing to several negative “gray-zone syndromes”. More specifically, in convective
situations drizzle appears nearly everywhere, and the precipitation maxima are too
intense and too scattered: this happens especially over mountainous areas (see
Chapter 3 and De Troch et al., 2013).

The unique feature of the ALARO-0 model, and in particular the physics
parameterization package 3MT, to obtain consistent results at different spatial
model resolutions has been intensively tested in the NWP community. For exam-
ple, (Gerard et al., 2009) tested the multiscale aspect of 3MT for a case study on
2 May 2008, characterized by small-scale convective cells of medium intensity
over central Europe. Figure 2.3 shows the results from the forecasts using three
physical setups (i.e. 3MT, the classical diagnostic-type scheme, and no convection
scheme) for three different spatial resolutions (i.e. hydrostatic: 9 km and 4.5 km,
and nonhydrostatic: 2.3 km). For all three setups the same ALARO-0 schemes
were used for the microphysical calculations, either only for the “resolved” part
or for the 3MT accumulated-condenstation-input specific occurrence. The results
indeed demonstrate the good multiscale feature of 3MT.

The multiscale characteristic of the 3MT scheme in a climate context is stud-
ied in detail in the next chapter (Chapter 3) that aims to elaborate on the relative
importance of resolution versus parameterization formulation on the model skill
to simulate realistic extreme daily precipitation. This is achieved by comparing at
varying horizontal resolutions 30-yr (1961-1990) daily cumulated summer precip-



2-6 ALARO-0: FROM NWP TO CLIMATE MODELING

itation from the ALADIN model and the ALARO-0 model with respect to obser-
vations.

Figure 2.3: Accumulated precipitation over central Europe between 0600 and 1200 UTC
2 May 2008. Forecasts from initial conditions of 0000 UTC at (a),(d) 9- and (b),(e) 4.5-km
resolution (hydrostatic) and at (c),(f),(h) 2.3-km resolution (nonhydrostatic). (g) Scaled
radar composite image. (a)-(c) 3MT, (d)-(f) diagnostic, and (h) no convection scheme
(adopted from Gerard et al., 2009).

2.2.2 Surface parameterization

For the land-surface parameterization the ALARO-0 model relies historically on
the ISBA scheme (Interactions between Soil, Biosphere and Atmosphere) devel-
oped by Noilhan and Planton (1989) and Noilhan and Mahfouf (1996). The ISBA
scheme describes the exchanges of heat and water between the low-level atmo-
sphere, the vegetation, and the soil. ISBA is a relatively simple scheme, but it
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embraces the most important components of the land surface processes. The sim-
plicity of the scheme is achieved by the calibration of several important coefficients
with more sophisticated models and experimental data. The scheme includes the
treatment of soil heat content, soil water content, water interception by vegetation
and aerodynamic transfer processes in the atmospheric surface layer (Noilhan and
Mahfouf, 1996).

During the last decade, a more sophisticated land surface scheme called SUR-
FEX (SURFace EXternalisée) has been developed. SURFEX is an externalized
surface scheme that can be run either in a coupled mode, in which case the at-
mospheric forcing is provided by the host atmospheric model (ALARO-0 in our
case), or in a stand-alone mode where the atmospheric drivers are derived either
from observations or model output and fed to the surface scheme such that it is de-
coupled from the atmospheric part of the model (Hamdi et al., 2014). For Belgium,
the SURFEX land surface scheme has been mainly used for urban climate studies
(e.g. Hamdi et al., 2014, 2015) and surface data assimilation (e.g. Duerinckx et al.,
2015).

In SURFEX, each grid box consists of four adjacent surfaces: vegetation,
urban areas, sea or ocean and lake, which are each associated with a specific pa-
rameterization. Horizontal interaction does not exist between the different surface
tiles. The physiographic characteristics of each of these surfaces is provided by
the global ECOCLIMAP database (Masson et al., 2003; Champeaux et al., 2005).
Sea tiles use the Exchange Coefficients from the Unified Multicampaigns Esti-
mates (ECUME) parameterization (Belamari and Pirani, 2007). Inland waters use
the classical formula of Charnock (1955). The vegetated areas are parameterized
with the ISBA scheme and for the parameterization of urban surfaces the Town
Energy Balance (TEB) single-layer urban canopy model from Masson (2000) is
used (Hamdi et al., 2014).

2.2.3 Radiation parameterization

For radiation there are two different parameterization schemes available within
ALARO-0. The ALARO-0 physics has been developed with the Action de
Recherche Petite Echelle Grande Echelle (ARPEGE) Calcul Radiatif Avec NEB-
ulosité scheme for radiation (ACRANEB) based on Ritter and Geleyn (1992).
This is a two-stream approximation with a Net Exchange Rate (NER) formulation
for solving the thermal part. All the computations consider two spectral bands
(for the solar and thermal part) with the contribution of three gases (water vapor
H2O, carbon dioxide CO2 equivalent and ozone O3). The gaseous optical depths
are computed by means of a Padé fit of the equivalent scale width computed by
the Malkmus formula (Malkmus, 1967). To cope with the high model levels,
the scheme has been extended by using a Voigt-line profile (Geleyn et al., 2005).
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Recently, a new version of the ACRANEB scheme (i.e. ACRANEB2) has been
developed (Mašek et al., 2015).

The other radiation scheme than can be used in ALARO-0 is the European
Centre for Medium-Range Weather Forecasts (ECMWF) Fouquart-Morcrette
Radiation (FMR) scheme. The FMR scheme is a shortwave radiation scheme
(Fouquart and Bonnel, 1980; Morcrette, 1990) with 6 spectral bands, whereas
the longwave radiation with 16 spectral intervals is computed by the Rapid Ra-
diative Transfer Model (RRTM) code (Mlawer et al., 1997) using climatological
distributions of ozone and aerosols.

One main difference between the ACRANEB and FMR scheme can be found
in their computation approach to solve the problem of computational expensive-
ness of radiation schemes. FMR is called intermittently to save computing costs.
More specifically, only the shortwave flux dependency on the zenithal solar angle
is updated at every time step. The rest of the radiation computations are updated
with a lower temporal frequency of 1 hour or 15 minutes. ACRANEB, on the
other hand, is in itself designed for cost effectiveness and is called every time step
(Hamdi et al., 2014).

2.2.4 Assessment on options in the surface- and radiation pa-
rameterization schemes

Table 2.1 gives an overview of the three different setups in the surface- and radia-
tion parameterization schemes that are used for the ALARO-0 model simulations
in this thesis. The greater part of the ALARO-0 simulations carried out in this
thesis, have used the “default” settings given by setup A, namely the ISBA scheme
for the surface and the ACRANEB scheme for radiation. The current operational
version of the ALARO-0 model at the RMI is also running with this configuration,
i.e. the ACRANEB and ISBA scheme.

Radiation scheme

ACRANEB FMR

Surface scheme
ISBA Setup A - Chapter 3, 4, and 5 /

SURFEX Setup B - Chapter 6 Setup C - Chapter 6

Table 2.1: Overview of the surface- and radiation schemes used in the different chapters of
this thesis.

Setup B and C both use SURFEX, but rely on a different radiation scheme
(ACRANEB and FMR, respectively). As discussed previously in the General in-
troduction (Chapter 1), the nested model can be driven at its boundaries by global



CHAPTER 2 2-9

model data coming from either reanalyses or either a GCM. In this thesis, the GCM
driving data for the ALARO-0 model simulations is given by the GCM CNRM-
CM3, which uses the FMR radiation scheme (Salas-Mélia et al., 2005). Hence, to
account for a more consistent use of the radiation scheme within the driving GCM
CNRM-CM3 and the nested ALARO-0 model, the GCM CNRM-CM3 driven sim-
ulations with ALARO-0 in Chapter 6 are performed with the FMR scheme. The
reanalysis driven ALARO-0 simulations in this Chapter 6 are carried out with the
“default” ACRANEB radiation scheme. Furthermore, for the simulations using
SURFEX for the surface parameterization, the TEB scheme, which accounts for
the simulation of the interactions with urban areas, is always switched on.
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Figure 2.4: (top) 30-yr mean (1981-2010) spatial distribution of daily precipitation for the
different model setups (i.e. A-C) as described in the text. Colored circles show the 30-
year mean observed values for daily precipitation from 63 climatological stations. (bottom)
Differences in daily precipitation between the different setups.

The sensitivity and relative impact to the use of the more sophisticated surface
scheme SURFEX and a different radiation scheme is assessed through comparison
of daily precipitation and daily minimum 2-meter temperature from simulations
using the three setups (A to C) w.r.t. the observations (see also Giot et al., 2014).
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All three simulations are performed with the ALARO-0 model at 4 km horizon-
tal resolution, using the ERA-Interim reanalysis as Lateral Boundary Conditions
(LBC). The 30-yr mean (1981-2010) spatial distribution of precipitation and mini-
mum temperature for each of the three model setups as well as for the observations
(colored circles) are shown in Fig. 2.4 and Fig. 2.5, respectively. Differences in
the mean spatial distribution between the different setups are shown in the bottom
rows of the figures.
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Figure 2.5: As in Fig. 2.4, but for daily minimum 2-meter temperature. Colored circles
show the 30-year mean observed values for daily minimum 2-meter temperature from 33
climatological stations.

Figure 2.6 shows the observed and modeled frequencies for each of the setups
for summer (June-July-August, JJA) and winter (December-January-February,
DJF) daily precipitation and minimum 2-meter temperature. The modeled fre-
quencies are calculated for the closest model grid points to the station locations.
Overall, it can be seen from Figs. 2.4 to 2.6 that all model setups are able to repro-
duce reasonably well the observed values. For example, the observed precipitation
maximum in the south east of the country is well captured by all three model
simulations (Fig. 2.4).
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Figure 2.6: Frequencies of observations and the different model setups (i.e. A-C) as de-
scribed in the text. Frequencies are computed with the 30-yr (1981-2010) daily summer
(June-July-August, JJA) and winter (December-January-February, DJF) cumulated precip-
itation ((a) and (b)) and minimum 2-meter temperature ((c) and (d)) given for each ob-
servation station separately and are displayed on a logarithmic scale. Relative differences
((setup-obs)/obs) are also shown in the bottom of each figure.
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Only for the lowest minimum temperatures during the winter (DJF), all
models show an underestimation (Fig. 2.6 (d)). However, some specific aspects
in the sensitivity related to the surface- and radiation parameterization scheme
are visible. As can be seen from Fig. 2.6 (a) and (c) summer (JJA) precipitation
is more sensitive to the radiation scheme, while for minimum temperature the
effect of a different surface scheme is more pronounced. The use of the FMR
radiation scheme (setup C) implies systematically lower precipitation amounts
w.r.t. observations than with the ACRANEB scheme (setup A and B) which has
specifically been designed for ALARO-0 (Fig. 2.4 (e) and (f) and Fig. 2.6 (a) and
(b)). Furthermore, Fig. 2.4 (d) and (e) demonstrate that precipitation values from
the model simulations with SURFEX (setup B and C) are lower (higher) at higher
(lower) altitudes than with ISBA (setup A). The use of the more sophisticated
surface scheme SURFEX (setup B and C) shows more spatial detail for minimum
temperature compared to ISBA (setup A), which shows a smoother spatial dis-
tribution. This is also reflected by the use of TEB within SURFEX in setup B,
resulting in higher and more realistic minimum temperatures in urban areas than
it is the case with ISBA (setup A).

This assessment on the use of different land-surface schemes and radiation
schemes shows that depending on the meteorological variable or phenomena (such
as Urban Heat Island (UHI)) one aims to study, one or another setup is preferable.
Except for Chapter 6, the focus in this thesis is mainly limited to precipitation as
climatological variable. The above results demonstrate for precipitation a minor
sensitivity to the surface scheme, and smaller differences in precipitation w.r.t. the
observations with the ACRANEB scheme, which has been specifically designed
for ALARO-0, than with the FMR scheme. From this, it can be concluded that
w.r.t. the other setups, the “default” settings of setup A using the ACRANEB
and ISBA scheme, is an acceptable setup for the simulation of precipitation with
the ALARO-0 model. In the following chapters (Chapters 3 to 5) this will be
further elaborated through extensive validation of the precipitation characteristics
from the ALARO-0 model using the 3MT, ISBA and ACRANEB parameterization
schemes.

2.3 Dynamical downscaling

As mentioned in the General introduction (Chapter 1), the use of nested LAMs or
RCMs as a climate downscaling technique involves a number of technical issues.
These issues are discussed in the next sections both from a general point of view
as well as in the context of the simulations that are performed in this thesis.
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2.3.1 Lateral Boundary Condition problem

In contrast to NWP, which is an initial value problem, regional climate modeling
can be considered as a boundary value problem. There are multiple LBC issues
related to the nesting technique. First, there is the drawback that one is obliged
to impose imperfect LBCs inducing various errors at the boundaries of the LAM
(e.g. Warner et al., 1997; Termonia et al., 2009). Mathematically, the methods to
treat the LBC in nested LAMs or RCMs are “ill-posed” problems, signifying that
a unique solution does not exist and that it is thus not possible to specify exactly
the right conditions. Furthermore, differences in the spatial and time resolution, as
well as in the process description between the driving and regional model, can dis-
tort wave propagation and reflection properties and lead to numerical instabilities.
To address this ill-posedness, most RCMs developed the so-called “relaxation”
method. The idea of this method is to build in a relaxation or adjustment zone
of a particular width of number of grid points, in between the global and nested
model. In this way, boundary conditions and the solution computed in the RCM
are merged in a way as to dampen spurious numerical features (Giorgi and Mearns,
1999; Rummukainen, 2010). For the simulations in this thesis a relaxation zone
consisting of 8 grid points is used, irrespective of the spatial resolution.

Furthermore, there is the problem that possible errors in the large-scale cir-
culation produced by the driving model will be transmitted to the nested model.
This problem is often referred to as the “garbage in, garbage out” problem; mean-
ing that the quality of the simulated regional climate is conditional on the quality
of the LBCs which are provided by the underlying global data or global model
simulation. The problem is in particular relevant when one drives the regional
model with a GCM, seen their inability to accurately simulate the regional fea-
tures (Giorgi and Mearns, 1999; Rummukainen, 2010).

Despite these LBC issues, past and current applications with RCMs have
shown that the one-way nesting strategy is a workable solution (Giorgi and
Mearns, 1999). In order to minimize the effects of the LBC problems, Giorgi and
Mearns (1999) recommend to first validate the model for the current climate using
analyses of observations, i.e. the so-called “perfect boundary conditions”.

Interesting work has been carried out by de Elı́a et al. (2002) and Denis et al.
(2002) with a perfect-model approach or so-called Big-Brother Experiment (BBE).
The BBE approach is schematically represented in Fig. 2.7. The first step of the
BBE approach consists in running a global high-resolution model to produce a
high-resolution reference dataset. Then, the small scales existing in that reference
dataset are filtered to generate a low-resolution dataset needed to drive the nested
RCM. Therefore only the large and medium scales would be used to feed the Little-
Brother RCM such as to mimic the nesting of a RCM by a GCM. The reference
dataset (before filtering) however would contain small scales against which the
RCM small scales could be validated. Hence, the objective is to assess to what
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extent the Little-Brother simulation is able to reproduce the Big-Brother small
scales when it is driven with only the large and medium scales of its Big Brother.
The BBE has the main advantage that the differences can be solely attributed to the
nesting strategy (i.e. such as the specification of boundary conditions and model
domain) since the model resolutions, physics, dynamics and numerics are the same
and therefore the model errors are also the same. However, the high computational
cost of running the global high-resolution simulation is an important disadvantage
of the BBE. For this reason, both de Elı́a et al. (2002) and Denis et al. (2002)
applied a modified version of the BBE, that does not employ a global model but
the same RCM for both the Big and Little Brother. The Big Brother was run over
a much larger domain than the Little Brother but still smaller compared to a global
domain (Denis et al., 2002).

Figure 2.7: The Big-Brother Experiment flowchart. Rectangles are the models and ovals
are their corresponding datasets. The diamond represents validation of the Little-Brother
regional-scale features against those existing in the reference Big-Brother dataset. The
Initial Conditions (IC) and Lateral Boundary Conditions (LBC) for the Limited Area Model
(LAM) (right branch) are spatially filtered such that the small scales are removed (adopted
from Denis et al., 2002).

Both studies of de Elı́a et al. (2002) and Denis et al. (2002) show that, in a
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downscaling with a one-way nesting, a LAM or RCM is able to regenerate the cor-
rect amount of variability at the scales smaller than the ones of the driving model
in which the high-resolution variability had been removed by filtering. However,
de Elı́a et al. (2002) found that the LAM is not capable of reproducing the correct
details with sufficient precision required by the root mean square errors (RMSE),
i.e. that the variables locally in space and time do not fully reproduce the ones of
the perfect model run. Whereas de Elı́a et al. (2002) concentrated on the short-term
evolution of weather systems and quantified the models’ ability to simulate the data
in a deterministic day-by-day basis by means of RMSE, Denis et al. (2002) focused
on climate timescales and demonstrated the ability of high-resolution RCMs to
gain accuracy in a climatic-statistical sense.

Therefore, for studying the climate of weather extremes it is rather the statis-
tics of the extremes that are important, provided the large-scale evolution is consis-
tent with the large-scale flow of the driving model. This is an important additional
criterion in deciding to use RCMs with respect to global ones and it is further
discussed in the next section.

2.3.2 Long run versus daily reinitialization

For long-range runs, at temporal scales of multiple decades, there is indeed the
problem that the internal climate of the RCM or LAM can start to diverge from
the large-scale atmospheric circulation given by the driving global model (Nicolis,
2003; Qian et al., 2003; Nicolis, 2004). The reason for the deviations of the
large-scale atmospheric circulation of the RCMs from that of the driving field can
be attributed to (i) the errors, missing processes or the coarse representation of
surface forcings such as the topography and land-sea mask in RCMs, and (ii) the
chaotic nature of the weather simulated by the RCMs, in which different solutions
can emerge from simulations started with slightly different initial conditions but
using the same lateral boundary conditions, the latter often referred to as the
internal variability (Lucas-Picher et al., 2015). One can deal with these deviations
by either (i) interrupting the model runs of the LAM after a few days and restart
them, while taking into account a spinup period which allows that the physics can
adjust, or (ii) carrying out uninterrupted model runs over long periods, allowing
the LAM to find its own climate equilibrium (Qian et al., 2003).

In the second case, one can for instance apply a large-scale nudging (LSN)
or spectral nudging where a fraction of the time-variable large-scale atmospheric
states from the driving global fields is imposed during the integration of the RCM.
In this way, the large scales of the RCM are forced to follow both the large scales
provided by the driving global model at the lateral boundaries as well as the large-
scale conditions in the domain’s interior (Lucas-Picher et al., 2015).
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Within the RCM community there is still no consensus on the relevancy
of LSN. Several studies have demonstrated the positive effects of LSN with an
improvement of the large-scale atmospheric circulation of the RCM, especially
at the outflow lateral boundary where inconsistencies between the RCM and its
driving field can affect the simulated climate (Miguez-Macho et al., 2004; Castro
et al., 2005). In a recent study, Lucas-Picher et al. (2015) compared two RCM
simulations that are driven by the ERA-Interim reanalysis, but where one RCM
uses additional LSN. The authors investigate the ability of both RCM simulations
to reproduce weather regimes over North America. Their results showed that a
classic RCM, only driven at the lateral boundaries, simulates the mean statistics
of the weather regimes well, but on a day-to-day and seasonal scale the classic
RCM simulation, simulated many days where the weather regimes are different
from that of the driving field. To reproduce as best as possible daily weather
regimes and seasonal anomalies, LSN is recommended by the authors. Besides
these improvements by means of LSN, it has also been shown that nudging in-
duces disadvantages such as for example affecting the simulation of precipitation
extremes. Furthermore, one can argue that the use of LSN makes the simulation
less internally consistent and can downplay potential feedbacks from simulated
local processes on to the larger scale (Rummukainen, 2010). As stated by Rum-
mukainen (2010), LSN could be an option when relatively large domains are used,
since small domains as such offer less opportunity for the regional model solution
to diverge from its boundary conditions (see also further in Section 2.3.3).

In this thesis, we will study whether the internal climate variability generated
by the higher resolution of the RCM and its model physics as identified by Denis
et al. (2002) and de Elı́a et al. (2002) reproduces the correct statistics. Hence, we
use the nesting approach originating from NWP, consisting of a pure downscal-
ing with reinitializations based on the concept of one-way nesting. Lucas-Picher
et al. (2013) demonstrated that dynamical downscaling with reinitializations has
lower systematic errors than with a standard continuous model configuration. The
downscaling approach as used in this thesis is demonstrated in Fig. 2.8. Global
climate model data from reanalyses (either 40-yr European Centre for Medium-
Range Weather Forecasts Re-Analysis (ERA-40) or ERA-Interim, Uppala et al.,
2005; Dee et al., 2011) or the GCM CNRM-CM3 (Salas-Mélia et al., 2005) are
interpolated to a 40 or 20-km resolution domain that encompasses most of western
Europe. These 6-h files serve as initial and boundary conditions for 48-h ALADIN
or ALARO-0 runs at 40 or 20 km resolution. These are started at 0000 UTC every
day. The (3 h) output from these first runs serves as input for the high-resolution
10-km and 4-km runs on a domain centered on Belgium. However, to exclude
spinup problems, the first 12 h are not taken into account. So we have 36 h of data
left for the 4-km and 10-km runs (which thus start at 1200 UTC). Finally, we again
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dismiss the first 12 h of the runs, to arrive at 24 h of output for the regional climate
simulations at 4-km and 10-km resolution, and then integrate/reinitialize over each
subsequent 24-h period.

In general, the climatology of a regional atmospheric model is determined by
a dynamical equilibrium between two factors: (i) the information provided by the
LBCs, and (ii) the internal model physics and dynamics. The atmospheric spinup
time of the model thus corresponds to the time taken by the lateral boundary infor-
mation to get through the model domain and generate this dynamical equilibrium.
The atmospheric spinup time of the traditional continuous long-term climate sim-
ulations varies depending on the domain size, season, and circulation strength, but
it is typically of the order of several days (Giorgi and Mearns, 1999). Hence, our
setup with daily reinitializations justifies our relatively short spinup time of 12 h.

GLOBAL 
REANALYSIS OR GCM

DYNAMICAL
DOWNSCALING

HIGH-RESOLUTION
LAM

10 km / 4 km

DRIVING
LAM

40 km / 20 km

ONE-WAY NESTING

URBAN LAM

1 km

Figure 2.8: Schematic overview of the downscaling approach as used in this thesis.

Furthermore, in the case that SURFEX is used as land-surface scheme, the
high-resolution 4-km runs can be further downscaled to an urban scale such as e.g.
the Brussels Capital Region. In that case, SURFEX is used in offline mode where
the 4-km resolution atmospheric forcing is simply projected on a 1-km grid by
searching for the closest grid point. However, the daily reinitialization will limit
the equilibration of the surface physics (soil moisture and temperature), which is
particularly desirable in long-term regional climate modeling (Giorgi and Mearns,
1999). Therefore, for the simulations where SURFEX is employed, the soil vari-
ables evolve freely after initialization and are never corrected or nudged in the
course of the simulation (Hamdi et al., 2014, 2015). However, for the simulations
using the ISBA scheme, the surface variables are daily reinitialized. Therefore,
as a future outlook it would be beneficial to test this setup with the ISBA scheme
where the soil variables evolve freely.
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The technical aspects of our downscaling approach using a one-way nesting,
gives rise to two other important issues related to the LBC provision (as discussed
previously in Section 2.3.1): (i) the resolution difference between the driving data
and the nested model, and (ii) the temporal updating frequency of the LBCs. De-
nis et al. (2003) investigated the sensitivity of a one-way nested RCM to these
two issues by means of a BBE. With an RCM at 45 km resolution, their results
demonstrated for spatial resolution jump ratios up to 12 between the resolution of
the nesting LBC data and the RCM, a reliable regional climate for most studied
fields. For the LBC update interval, 12 h appears to be sufficient. However, an
update frequency of 6 h was showed to be significantly better, and is strongly rec-
ommended by the authors since there is little additional computational cost related
when doing so. Furthermore, the authors found no improvement by increasing the
update frequency from 6 to 3 h. Although, these results are carried out with one
RCM at a resolution of 45 km and using a specific domain size, it gives an indica-
tion to what extent the resolution jump ratios and update frequency as used for our
downscaling simulations are in line with the findings of Denis et al. (2003).

Table 2.2 summarizes for our downscaling simulations the ratios in spatial
resolution between the different global driving datasets and the nested 40-km and
20-km ALARO-0 model. Except for the 20-km simulation driven by the GCM
CNRM-CM3, the resolution jump ratios are all smaller than the maximum ratio
of 12 as has been suggested by Denis et al. (2003). The resolution jump ratios
between the coarse 40-km and 20-km nested models and the high-resolution nested
models are also not higher than 12. Finally, according to the results of Denis et al.
(2003), our update frequency of 6 h between the global driving data and the nested
models appears to be sufficiently high.

40-km nested model 20-km nested model

ERA-40 reanalysis
≈ 125 km resolution
(Uppala et al., 2005)

≈ 3 ≈ 6

ERA-Interim reanalysis
≈ 80 km resolution
(Dee et al., 2011)

2 4

GCM CNRM-CM3
≈ 2.8◦≈ 300 km resolution
(Salas-Mélia et al., 2005)

≈ 8 15

Table 2.2: Overview of the resolution jump ratios between the different global driving
datasets and the nested 40-km and 20-km ALARO-0 model as used in this thesis.
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2.3.3 Domain size and spatial resolution

The choice of domain size and resolution are two other important parameters that
can strongly affect the RCM numerical solutions. Generally, both elements are
determined by a compromise between physical and computational considerations.
On the one hand the domain should be large enough so that the small scale features
can fully develop and include relevant regional forcings, and the resolution should
be high enough to sufficiently capture the scale and effects of such forcings (e.g.
topography). However, an increase in model domain size and resolution inevitably
imply an increase in computational cost (Giorgi and Mearns, 1999; Leduc and
Laprise, 2009). On the other hand, if no LSN is applied the model domain should
not be too large too avoid departures from the driving data (Leduc and Laprise,
2009).

Small 4−km domain (80x80 grid points)
Large 4−km domain (181x181 grid points)

Figure 2.9: Small and large 4-km domain. The large 181 × 181 grid point domain corre-
sponds to the domain as used for the high-resolution 4-km ALADIN and ALARO-0 simula-
tions.
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Giorgi and Mearns (1999) formulate some guidelines for the choice of model
domains. First, the authors state that it is useful to choose a domain in which the
area of interest is as far as possible from the lateral relaxation zone. This to avoid
that the solution over the area of interest would be affected by possible LBC errors
(see previously Section 2.3.1). Secondly, the model domain should encompass all
regions that include forcings and circulations which directly affect climate over the
area of interest. Finally, it is also preferable to place the lateral boundaries over the
ocean rather than over land in order to avoid possible effects of unrealistic surface
energy budget calculations near the boundaries (Giorgi and Mearns, 1999).

Several studies have assessed the sensitivity of regional climate simulations
to domain size. Leduc and Laprise (2009) evaluated the sensitivity of an RCM to
its domain size by using a BBE allowing to identify and quantify the errors due to
the size of the spatial domain of the RCM. Their results suggest that for domain
sizes which are too small, the “spatial spinup” or characteristic distance from the
lateral boundaries will be insufficient to allow the development of the small-scale
features.

The choice of the domain size has also turned out to play a very important
role in the RCM simulations performed in this thesis. Figure 2.9 shows the 181 ×
181 grid point 4-km model domain as used for the high-resolution ALADIN and
ALARO-0 simulations, together with a small 4-km domain of 80 × 80 grid points
that mainly encompasses Belgium. Precipitation fields obtained from an ERA-40
reanalysis downscaling with ALARO-0 at both domains are compared with each
other. The spatial distribution of 30-yr (1961-1990) mean summer precipitation
(JJA) for both domains are shown in Fig. 2.10.

20
60
100
140
180
240
320
400
520
640
2040mm

Figure 2.10: Spatial distribution of 30-yr (1961-1990) mean summer precipitation (June-
July-August, JJA) from an ERA-40 downscaling with ALARO-0 at 4 km resolution at a small
80 × 80 grid point domain (left) and large 181 × 181 grid point domain (right).
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Spurious effects at the lateral boundaries are visible for both domains. How-
ever, as it is also suggested by Giorgi and Mearns (1999) the small domain is
too small so that these spurious effects enter the region of interest (i.e. Belgium)
(Fig. 2.10, left). Furthermore, the different domain sizes also affect the actual
precipitation values. For both domains the orographic precipitation effects in the
southeast are captured, nevertheless precipitation amounts for the small domain are
generally lower than for the large domain. Figure 2.11 shows histograms of the 30-
yr (1961-1990) daily summer precipitation (JJA) for both domains together with
the observed frequencies obtained from 93 climatological stations that cover all
of Belgium. The modeled frequencies are given for the closest model grid points
to the station locations. As could be expected, the precipitation amounts from
the large domain correspond clearly better to the observations than those from the
small domain. From the relative differences in the bottom figure it is visible that
precipitation values from the small domain are underestimated (overestimated) for
the low (high) precipitation amounts.
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Figure 2.11: Frequencies of observed and modeled 30-yr (1961-1990) daily summer pre-
cipitation (June-July-August, JJA), given for each observation station separately and dis-
played on a logarithmic scale. Relative differences ((setup-obs)/obs) are also shown in the
bottom figure.

Seth and Giorgi (1998) also found that the domain size and location of the lat-
eral boundaries have an effect on the simulation of summer precipitation in North
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America as well as on its sensitivity to initial soil moisture. The authors demon-
strated that the small domain captures better the observed precipitation amounts
due to the fact that the boundaries constrain the interior solution more to the driv-
ing field. However, the sensitivity of precipitation to the initial soil moisture ap-
pears to be more realistic in the larger domain than in the small domain. The latter
yields an unrealistic response to internal forcings which are not consistent with the
applied large-scale forcing (Seth and Giorgi, 1998).

Overall, it is clear that the domain size and location of the lateral boundaries
play a very important role in the RCM numerical solutions, where the choice of
the domain size may simply rely on a trial-and-error approach and an assessment
of how sensitive the solution is on the placement of the lateral boundaries (Giorgi
and Mearns, 1999).

The spatial resolution of the RCM should be high enough so that scales of
forcings that one wants to study as well as relevant scales of motions are captured.
It is also important that the models’ resolution provides useful information in case
that the model output is used for specific applications (Giorgi and Mearns, 1999).

Name LBC ∆x (km) ∆t (s)

(ERA40-)ALR04
ERAINT-ALR04
CTL
SCN

(ERA40-)ALR40
ERAINT-ALR20
Chapter 5: CTL-ALR40, Chapter 6: CTL-ALR20
Chapter 5: SCN-ALR40, Chapter 6: SCN-ALR20

4 180

(ERA40-)ALR10
ALD10

(ERA40-)ALR40
ALD40

10 450

ERAINT-ALR20
CTL-ALR20
SCN-ALR20

ERA-Interim reanalysis
GCM CNRM-CM3 (control climate)
GCM CNRM-CM3 (future climate, A1B scenario)

20 900

(ERA40-)ALR40
ALD40
CTL-ALR40
SCN-ALR40

ERA-40 reanalysis
ERA-40 reanalysis
GCM CNRM-CM3 (control climate)
GCM CNRM-CM3 (future climate, A1B scenario)

40 300

Table 2.3: Overview and specifications of the numerical simulations in this thesis. The
LBCs used to drive the ALARO-0 model, and the applied horizontal grid spacings (km) and
time steps (s) are listed.

As extreme precipitation and climate impacts for Belgium are the main sub-
jects of this thesis, the spatial resolution of the simulations goes up to high res-
olutions of 4 km. This spatial resolution of 4 km is a compromise between (i)
the minimum resolution to capture the convection processes, which are mostly
relevant for extreme precipitation events, and (ii) the computation time of 30-yr
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simulations on the 181 × 181 grid point domain. At the RMI computing infras-
tructure, one day of a 36-h run takes ≈ 9 hours. An overview of the different
numerical simulations with the ALARO-0 and ALADIN model in this thesis are
presented in Table 2.3. The LBCs, horizontal resolution and corresponding time
steps of the different simulations are also given.

Furthermore, as discussed in the General introduction (Chapter 1), the spatial
resolution is closely related to the physical parameterization. For example, when
the resolution of the model is refined far beyond 10 km, the model physics starts
to solve the deep convection and cloud microphysical processes explicitly (Giorgi
and Mearns, 1999). As described previously, the ALARO-0 model uses the physi-
cal parameterization package 3MT that counts for the cloud and precipitation pro-
cesses. This package is specifically developed in such a way that regardless of
the spatial resolution it determines which cloud fraction is stratiform or convective
(subgrid) and should be resolved or parameterized respectively. This multiscale
characteristic of 3MT thus allows that the model can be applied at different spatial
resolutions without the need of different schemes for different spatial resolutions,
or without the need of any particular tuning. Since the multiscale performance of
3MT had previously only been validated in a NWP context up to a spatial resolu-
tion of 4 km (see Gerard et al., 2009), the multiscale characteristic of 3MT is in
detail evaluated in a climate context in the next Chapter 3.

2.4 Conclusion

This chapter discussed in detail the ALARO-0 model, the experimental setup, and
the technical specifications of the numerical simulations that are carried out in this
thesis. The Belgian operational ALARO-0 NWP model, which is a new version
of the ALADIN model, and its parameterization schemes for deep convection,
surface and radiation were described in detail. The unique characteristic of the
ALARO-0 model is centred around an improved physical parameterization pack-
age for precipitation and clouds, called 3MT. The basic concepts of 3MT and its
unique multiscale feature in the context of NWP were given. This yet highlighted
the importance of the new physics parameterization scheme for the simulation of
convective and extreme precipitation.

Furthermore, the different options in the surface and radiation parame-
terization schemes of the model were discussed in this chapter. Historically,
the ALARO-0 model relies for the land-surface parameterization on the ISBA
scheme. However, during the last decade, the more sophisticated land surface
scheme called SURFEX has been developed. For radiation there are two different
parameterization schemes available within ALARO-0: the ACRANEB scheme
and the ECMWF FMR scheme. The greater part of the ALARO-0 simulations
carried out in this thesis have used the “default” settings using the ISBA and



2-24 ALARO-0: FROM NWP TO CLIMATE MODELING

ACRANEB scheme, which is also the configuration as used for the current opera-
tional NWP applications of the model. However, for the analysis of Chapter 6, the
simulations are performed with the SURFEX and FMR scheme. Therefore, the
sensitivity and relative impact to the use of the more sophisticated surface scheme
SURFEX and a different radiation scheme was assessed. This was done through
comparison of 30-yr daily precipitation and daily 2-meter minimum temperature
from ERA-Interim driven ALARO-0 simulations at 4 km resolution, using the
different options in the surface and radiation scheme. The results from this assess-
ment demonstrated for precipitation a minor sensitivity to the surface scheme, and
smaller differences in precipitation w.r.t. the observations with the ACRANEB
scheme, which has been specifically designed for ALARO-0, than with the FMR
scheme. From this, we could conclude that w.r.t. the other setups, the “default”
settings using the ACRANEB and ISBA scheme, is an acceptable setup for the
simulation of precipitation with the ALARO-0 model. In particular, because,
except for Chapter 6, the focus in this thesis is mainly limited to precipitation as
climatological variable.

The experimental setup used for the regional climate simulations in this the-
sis are based on the widely used “nesting technique”. This technique, which origi-
nates from NWP, consists of a pure downscaling with reinitializations based on the
concept of one-way nesting. The technical issues related to this nesting technique
have been discussed. One of these issues is related to the LBC problem, where
possible errors in the large-scale circulation produced by the driving model will be
transmitted to the nested model. In order to minimize the effects of this problem,
it is recommended to first validate the model for the current climate using analy-
ses of observations, i.e. the so-called “perfect boundary conditions”. Therefore,
in the next chapters (Chapter 3 and 4), LBCs from reanalyses of ERA-40 as well
as ERA-Interim will be used to drive the ALARO-0 model for the validation of
(extreme) precipitation in Belgium at daily and subdaily temporal scales as well as
at multiple spatial resolutions. This setup will indeed allow us to validate in a cli-
mate context the main feature of the ALARO-0 model, i.e. the new 3MT physics
parameterization package, and its multiscale characteristic.
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“[...] to minimize the effects of model resolution, [...] the most general but also
most challenging approach is to design a scheme that would give internally

consistent results on a wide range of resolutions.”
– Giorgi and Marinucci (1996)

3.1 Introduction

Extreme precipitation events have a large impact on societies through damage
caused by floodings, landslides and snow events. Precipitation is thus an impor-
tant meteorological variable in weather prediction and climate studies. Herrera
et al. (2010) studied the ability of regional climate models (RCMs) to reproduce
the mean and extreme precipitation regimes over Spain using a state-of-the-art
ensemble of RCM simulations. The RCMs show a good agreement with the ob-
served mean precipitation regime, but for the extreme regimes the models reveal
important limitations.

As described in the Fourth Assessment Report of the Intergovernmental Panel
on Climate Change (AR4 IPCC), the model skill to simulate realistic extreme daily
precipitation strongly depends on the spatial resolution and convective parameter-
ization of the model (Randall et al., 2007). However, it is not straightforward
to quantify the relative contribution of an increase in spatial resolution versus an
improvement in physical parameterization of deep convection on the overall per-
formance of the model.

On the other hand, precipitation is one of the most sensitive quantities to the
different parameterization schemes of the climate models and to their interplay
with the dynamics of the atmosphere represented in the models. For this variable
it has been shown that RCMs are able to add significant information to the driv-
ing global simulations, both in space and time (e.g. Jones et al., 1995; Durman
et al., 2001; Jones et al., 2004). In general terms, the RCMs produce an intensifi-
cation of precipitation with respect to the driving Global Climate Model (GCM),
related to the intensification of the hydrological cycle (Jones et al., 1995; Dur-
man et al., 2001; Buonomo et al., 2007). Giorgi and Marinucci (1996) assessed
several numerical experiments using a RCM driven by analyses to investigate the
model sensitivity of different precipitation parameterizations to model resolution
and to the resolution of topographic forcing. The authors performed two months of
simulations over Europe for January and July 1991 at three different spatial reso-
lutions of 200, 100 and 50 km and with various topography configurations. For all
simulations the continental-scale average precipitation as well as the precipitation
frequencies and intensity distributions showed a greater sensitivity to resolution
than to topographic forcing. However, precipitation was also found to be sensi-
tive to the parameterizations used, in particular during summer. As stated by the
authors, these findings indicate that on the continental scale, when increasing the
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resolution, the effects of physical forcing (e.g. better representation of topography
and coastlines) may be masked by the direct sensitivity of the model parameteri-
zation to resolution itself. Hence, without specific tuning of the parameterization,
an increase in model resolution does not necessary result in an improvement in the
simulation of precipitation (Giorgi and Marinucci, 1996). In a more recent study
of Lynn et al. (2010), a RCM with different physics components at two different
spatial resolutions was tested. Their results demonstrated a sensitivity of the RCM
to the choice of the convective parameterization, leading to significantly differ-
ent summer precipitation outcomes. The authors conclude that these differences
are due to differences in the convective parameterizations and not because of the
change in spatial resolution of the model.

The aim of this chapter is to elaborate on the relative importance of resolu-
tion versus parameterization formulation on the model skill to simulate realistic
extreme daily precipitation. This is achieved by comparing at varying horizon-
tal resolutions the ALADIN model with an improved version of the model that
has been updated with physical parameterizations, the so-called ALARO-0 model
(see Chapter 2 for a detailed model description). The version of the ALARO-0
model used here was adopted in 2010 for the operational applications in the Royal
Meteorological Institute of Belgium (RMI). Since then the model has undergone
systematic verification with respect to observations at 7 km resolution. Gerard
et al. (2009) tested the new parameterizations within the ALARO-0 model in a
1-day case-study over Belgium, which was characterized by heavy convective pre-
cipitation. From this study an improvement of ALARO-0 at varying horizontal
scales has been demonstrated.

The 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF)
Re-Analysis (ERA-40) (Uppala et al., 2005) is used as large-scale coupling data
to drive the coupled models, ALARO-0 and ALADIN. As suggested by Giorgi
and Mearns (1999), atmospheric reanalyses, such as the ERA-40 reanalysis, can
be used in climate studies to provide the so-called “perfect boundary conditions”
for RCMs (e.g. Csima and Horányi, 2008; Déqué and Somot, 2008; Skalák et al.,
2008; Heikkilä et al., 2011; Hamdi et al., 2012). These reanalyses are produced
by means of data assimilation methods in order to find optimal estimates for past
atmospheric states that are consistent with meteorological observations and the
model dynamics.

In a recent study of Hamdi et al. (2012) the use of high-resolution dynami-
cal downscaling of ALARO-0 at 4 km horizontal resolution is explored by means
of summer maximum surface air temperature over Belgium. The analyses in this
chapter extend the work of Hamdi et al. (2012) in the sense that, instead of tem-
perature, precipitation is now analyzed. Daily summer precipitation from different
model runs are compared with respect to station observations, with an emphasis on
extreme precipitation. This approach by which model output is directly compared



3-4 CHAPTER 3

against station observations can be motivated by the fact that the station-level-
observations provide the closest representation of extreme events (Dulière et al.,
2011). Furthermore, the motivation for only considering summer precipitation is
threefold: (i) other regional climate studies (e.g. Caldwell et al., 2009; Soares
et al., 2012a,b) show difficulties of RCMs to simulate summer precipitation, (ii)
the new parameterization scheme within ALARO-0 mostly modifies convection,
which are the processes that are mostly relevant for (extreme) precipitation events
in summer (Kyselý and Beranová, 2009; Soares et al., 2012a) and (iii) the relatively
small scale on which these convective processes often occur better corresponds to
the high-resolution ALARO-0 simulation (Kyselý and Beranová, 2009).

We add to our evaluation the ALADIN-Climate model developed by the
Centre National de Recherches Météorologiques (CNRM), which took part in the
European ENSEMBLES project (http://www.ensembles-eu.org/). The ALADIN-
Climate model is an ALADIN model version which is specifically used for
regional climate modeling. The ENSEMBLES project was finished in the end
of 2009 and aimed to develop an ensemble climate forecast system to produce
probabilistic scenarios of future climate in order to provide detailed, quanti-
tative and policy-relevant information to the European society and economy
(http://www.ensembles-eu.org/). Several experiments were performed with some
ten state-of-the-art European and Canadian high resolution, global, and regional
climate models. The ENSEMBLES ALADIN-Climate/CNRM simulations use
a long uninterrupted model run, which is a different set-up than our ALADIN-
and ALARO-0 simulations. Hence, a direct comparison with the ALADIN-
Climate/CNRM simulation is not possible, and these uninterrupted climate runs
are merely added as a reference for regional climate modeling in order to make
the present chapter complete.

The model simulations, experimental design and observational data used in
this chapter are described in the next section. Section 3.3 gives a description of
the applied methods and the results are discussed in the following section (Sec-
tion 3.4). The results are summarized in the conclusions given in Section 3.5.

3.2 Experimental design and data

3.2.1 Experimental design

The experimental design is summarized in Table 3.1. The ERA-40 reanalysis data
(Uppala et al., 2005), produced by ECMWF is dynamically downscaled using the
limited area models ALADIN and ALARO-0. Both models are described in detail
in the previous chapter (Chapter 2). The same land surface model ISBA (Inter-
actions between Soil, Biosphere and Atmosphere; Noilhan and Planton, 1989) is
used in both the ALARO-0 model as well as in the ALADIN model.
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Reference
Daily cumulated
precipitation
[day]

Model
Daily cumulated
precipitation
[day]

a. Effect of
downscaling

Station
observations

8 LT [day]→
8 LT [day+1]

ERA-40
ALR40
ALD40

6 UTC [day]→
6 UTC [day+1]

b. Multiscale
performance of
ALARO-0

Station
observations

8 LT [day]→
8 LT [day+1]

ALR40
ALD40
ALR10
ALD10
ALR04

6 UTC [day]→
6 UTC [day+1]

c. Reference for
regional climate
modeling

Station
observations

8 LT [day]→
8 LT [day+1] CNRM mean [0-24 UTC]

Table 3.1: Overview of the experimental design.

In a first part of this chapter the improvement of the downscaling by means
of the ALADIN- and ALARO-0 model is examined. This is done by comparing
recent past (1961-90) summer precipitation data from an ALARO-0 and ALADIN
simulation performed at 40 km spatial resolution (ALR40 and ALD40, Fig. 3.1)
with summer precipitation from the driving ERA-40 reanalysis data (Uppala et al.,
2005).

Despite the fact that reanalysis data products are more continuous in space
and time than station data, they inevitably contain biases. A number of evalua-
tions for ERA-40 reanalysis precipitation have been performed (e.g. Zolina et al.,
2004; Ma et al., 2009). The ERA-40 precipitation has distinct regional limita-
tions, most of them are generally related to the coarse horizontal resolution of the
ERA-40 model, on one hand, and to its strong model dependency, on the other
(Ma et al., 2009). All physical parameterizations within ERA-40, including those
of precipitation, were run on a spatial resolution of about 125 km (Zolina et al.,
2004; Ma et al., 2009). The model diagnostics precipitation in ERA-40 is pro-
duced by parameterized microphysical processes in clouds, which are formed at
supersaturation by convective or large-scale processes (Ma et al., 2009). Total pre-
cipitation is then simply the sum of the convective precipitation generated by con-
vective clouds, and large-scale stratiform precipitation, associated with the frontal
or dynamical systems (Zolina et al., 2004). Hence, ERA-40 precipitation is a pure
model product and due to the poor skill of operational Numerical Weather Predic-
tion (NWP) models to account for all important physical mechanisms that affect
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 40 km domain 25 km and 4 km domain 10 km domain

Figure 3.1: Domains corresponding to the different simulations at 40-, 25-, 10-, and 4-km
horizontal resolution.

the atmospheric water cycle, it appears to be one of the most uncertain forecasted
parameters in the reanalysis (Zolina et al., 2004; Ma et al., 2009; Heikkilä et al.,
2011). The 6-hourly forecasts from the ERA-40 reanalysis are used to calculate
daily cumulated summer precipitation between 6 UTC and 6 UTC of the next day.
For the coupling to the regional model we use a linear interpolation in time. This
may produce errors at the lateral-boundaries on our small domains (Fig. 3.1), but
as shown by Termonia et al. (2009), such errors only occur very rarely, and the
impact on the statistics of extreme precipitation should be very minor.

To explore further the multiscale performance of ALARO-0, as found by Ger-
ard et al. (2009), but now for climate timescales, we evaluate in a second step re-
cent past simulations (1961-90) of the ALADIN- and ALARO-0 model at varying
horizontal resolutions against different station datasets.

(i) and (ii) The ALADIN- and ALARO-0 model driven by ERA-40 and run
at a horizontal resolution of 40-km spatial resolution with 69 × 69 grid points
on a domain that encompasses most of Western Europe (respectively ALD40 and
ALR40, Fig. 3.1).
These 40 km output are then used to perform a one-way nesting on a domain cen-
tered on Belgium (Fig. 3.1) on the following spatial resolutions:

(iii) and (iv) 10 km spatial resolution on a 67× 67 grid (ALD10 and ALR10);
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(v) and 4 km spatial resolution on a 181 × 181 grid (ALR04).
The fact that we did not run any ALD04 configuration is obviously linked to the
corresponding gray-zone-type resolution, where the diagnostic parameterization
of convection would have become completely irrelevant (see Section 3.4: Results
and discussion for the first syndromes already noticeable in ALD10).

Finally, we also include ALADIN-Climate/CNRM simulations within our
analysis in order to provide a reference for regional climate modeling. One part
of the performed experiments within the ENSEMBLES project aimed to validate
the models for the recent past climate. The results from this experiment, includ-
ing 40 years of 25-km resolution ALADIN-Climate/CNRM simulations driven by
the ERA-40 reanalysis (hereafter denoted as CNRM), are used in our analysis for
the period 1961-90 (http://www.ensembles-eu.org/). From the ENSEMBLES data
archive we have only selected the CNRM precipitation data for the grid points that
coincide with the ALR04 domain (Fig. 3.1). The precipitation data corresponds to
daily means calculated for the interval 0-24 UTC. As mentioned in the introduc-
tion (Section 3.1) the model set-up of CNRM and our simulations are different.
The number of vertical levels that is used in our runs with the ALADIN- and
ALARO-0 model is 46 with a model top that extends up to 72 km. The CNRM
simulations from ENSEMBLES have used 31 vertical levels. Furthermore, the
CNRM simulations use a long-term and free run set-up, while our procedure fol-
lows a dynamical downscaling with daily reinitializations over each subsequent
24-h period during the summer period of June, July, and August, 1961-90. More
details on our approach for daily reinitializations are given in the previous chapter
(Chapter 2, Section 2.3.2).

3.2.2 Observations

The observation dataset comprises 93 climatological stations with daily accumu-
lated precipitation, selected from the climatological network of the RMI of Bel-
gium. The data has undergone a manual quality control by operators, and the
stations were chosen so that continuous data for the 30-yr study period (1961-90)
are available. The stations cover whole Belgium, hence representing conditions of
coastal, inland, and higher orographic locations (Fig. 5.2, right).

3.3 Methods

3.3.1 Data processing and analysis

Model validation against observations can either be done with station data or grid-
ded station data. Both validation methods have their disadvantages (Hofstra et al.,
2010). Model evaluation against observations at station level often raise issues
related to the scale difference between the model- and observation field (Tustison
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et al., 2001; Dulière et al., 2011). The model grid cell values correspond to spa-
tially averaged values representing the area of the whole grid cell. Furthermore,
the spatial variability of these averaged model fields will always be lower than the
one of the observation field. These differences in spatial variability depend on the
area of the grid cell as well as on the inherent variability of the field variable. Pre-
cipitation, for example, is known to have a relatively high spatial variability. To
illustrate the differences in spatial variability, Fig. 3.2 shows the different grid cell
areas of the models together with the 93 climatological stations (i.e. observation
points). The grid cell areas range here from 1600 km2 for the 40 km horizontal
resolution to 16 km2 for the 4 km horizontal resolution (Fig. 3.2). Hence, reducing
those spatially averaged model values with an originally greater heterogeneity to a
single station point value, leads to an inconsistent comparison. However, for long
time periods such as 30 years, we can assume that the spatial variability within a
grid cell would be reduced, in such a way that the spatial variability of both model
and observation field tend to converge (Dulière et al., 2011).
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Figure 3.2: Model grid points over Belgium for each of the horizontal resolutions for which
the simulations are performed. The black dots represent the 93 climatological stations.

Another common way to overcome this scale inconsistency is the use of grid-
ded data. The Climate Research Unit (CRU) and the European ENSEMBLES
project provide daily gridded observation datasets (Mitchell and Jones, 2005; Hay-
lock et al., 2008). However, these gridded datasets are in some regions constructed
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by interpolation or area-averaging of station observations from a small number of
stations, which smooths and possibly affects the extreme values within the dataset
(Hofstra et al., 2010). Since we aim to examine extreme precipitation events, the
models are evaluated against station observations. This is done by comparison
of daily observed station-level precipitation with modeled daily precipitation of
the nearest grid box over land. The 93 resulting precipitation time series selected
from the model simulations are not corrected for topography with respect to the
altitude of the nearest station. It is difficult to apply such correction for precip-
itation, because of its dependency on topography, humidity, buoyancy, and other
local variables (Soares et al., 2012a).

Time discrepancies between computations of daily cumulated precipitation
from station observations on the one hand and model output on the other hand
is an important, but rarely highlighted, problem within precipitation evaluation
studies. In order to deal with this problem, the error analysis can be performed on
longer than daily time scales, such as monthly, seasonal, or annual time scales (Ma
et al., 2009; Soares et al., 2012b). However, in this chapter the model evaluation is
done on a daily basis, requiring a consistent calculation of the daily precipitation
values. Daily observed precipitation corresponds to the total accumulated precip-
itation between 8 and 8 Local Time (LT) of the day after. Hence, the daily model
values for all simulations (ALR40, ALD40, ALR10, ALD10 and ALR04) have
been calculated based upon the definition of observed daily accumulation which
corresponds to 6 and 6 UTC of the day after (Table 3.1).

3.3.2 Extreme value analysis and Peak-Over-Threshold meth-
ods

The methods used for the modeling of extreme events are similar to those used in
Hamdi et al. (2012). Threshold models and Peak-Over-Threshold (POT) methods
are useful tools for the modeling of extreme events. A well known distribution
which may describe the behaviour of the excesses or POT events is the Generalized
Pareto Distribution (GPD) (Coles, 2001). Recently, several authors have modeled
extreme precipitation with the GPD (e.g. Ribatet et al., 2009; Roth et al., 2012;
Mailhot et al., 2013).

Consider a sequence of independent and identically distributed random vari-
ables X1,X2, ..., Xi from an unknown distribution F . We are interested in the
extreme events that exceed a certain high threshold u. The distribution function of
such an extreme event X from the Xi sequence can then be defined as:

Fu(y) = P{X > u+ y|X > u} =
1− F (u+ y)

1− F (u)
, (3.1)

with y > 0. Eq. (3.1) is the conditional probability that the threshold u is exceeded
by no more than an amount y, given that the threshold u is exceeded. Given that
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X > u, the GPD of the excesses (X − u), is then given by:

H(y) = 1−
(

1 +
ξy

σ

)−1/ξ
, (3.2)

where ξ is the shape parameter and σ is the scale parameter. The GPD with pa-
rameters ξ and σ describes the limiting distribution for the distribution of excesses
[Eq. (3.1)], and can be used to model the exceedances of a threshold u by a variable
X . Thus, for x > u,

P{X > x|X > u} =

[
1 + ξ

(
x− u
σ

)]−1/ξ
. (3.3)

It follows that

F (x) = P{X > x} = ζu

[
1 + ξ

(
x− u
σ

)]−1/ξ
, (3.4)

where ζu = P{X > u}. The parameters of the GPD are estimated by the
maximum-likelihood method, following the definitions of Stephenson (2002). The
level xm that is on average exceeded once every m observations is the solution of

ζu

[
1 + ξ

(
xm − u
σ

)]−1/ξ
=

1

m
. (3.5)

The xm return level, which gives the amount of extreme precipitation correspond-
ing to a given number of observations m, is then given by

xm = u+
σ

ξ

[
(mζu)

ξ − 1
]
. (3.6)

3.4 Results and discussion

3.4.1 Effect of downscaling

As a first step we validate the effect of the downscaling of the ERA-40 reanalysis
with the ALADIN- and ALARO-0 model. Figure 3.3 shows the relative frequen-
cies calculated for daily precipitation amounts of ERA-40, ALR40 and ALD40
which are binned into bins of 1 mm day−1. As a reference the relative frequen-
cies of the observations are also shown. A logarithmic scale has been used for
better representation of the extreme values. From both the ERA-40 data as well
as the ALR40 and ALD40 data 93 grid points, corresponding to the closest grid
points to the observation stations, have been selected. It should be noted that the
ERA-40 reanalysis only have 2 grid points over Belgium. For low precipitation
amounts (i.e. < 0.95th quantile of the observations) the ERA-40 reanalysis as
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well as ALR40 and ALD40 coincide well with the observations. However, for the
higher rainfall rates ERA-40 starts to diverge from the observations, while ALR40
and ALD40 still approach the observations. Both 40-km models are able to repro-
duce rainfall rates up to 108 mm day−1, while the reanalysis do not capture the
higher precipitation amounts, which is related to the low spatial resolution of the
ERA-40 data. In order to provide a measure of similarity between observed and
modeled frequencies the “Perkins Skill Score” (PSS) has been calculated (Perkins
et al., 2007):

PSS =

n∑
1

minimum(Z1, Z2), (3.7)

where n is the number of bins and Z1,2 is the frequency of values in a given bin
from the observation and model data, respectively. This metric measures how well
the observations and modeled frequencies coincide, with a PSS ranging from zero
for no overlap to a skill score of one for a perfect overlap. Similar to Boberg
et al. (2010) and Domı́nguez et al. (2011), the PSS has been calculated for daily
precipitation amounts going from 0 mm day−1 up to the 0.95th quantile of the
observations (PSS < q0.95) and for precipitation amounts above the 0.95th quan-
tile of the observations (PSS > q0.95). In this way the skill score is to a larger
extent influenced by the more extreme precipitation values (Boberg et al., 2010).
The skill scores are calculated for each station separately. The final PSS is then
simply the mean value of the average of PSS< q0.95 and PSS> q0.95 over the 93
stations. The 0.95th quantile of the observations, which is used as a threshold for
the calculation of the modified PSS, is also shown on Fig. 3.3. The Perkins Skill
Scores for ERA-40 are relatively low, and for the higher precipitation amounts
ERA-40 has a much lower PSS (PSS > q0.95: 0.62) than ALR40 and ALD40
(PSS > q0.95: 0.75). ALR40 and ALD40 perform very similar with respect to the
observations and have relatively high PSS, which are close to one. To summarize,
the downscaling with the ALARO-0- and ALADIN model is significantly different
from the driving ERA-40 reanalysis and closer to the observations. In particular,
ALR40 and ALD40 produce more extreme precipitation than their driving ERA-
40 reanalysis.

3.4.2 Multiscale performance of ALARO-0

To investigate the multiscale performance of ALARO-0, 40-km, 10-km, and 4-km
horizontal resolution simulations of ALARO-0 together with 40-km and 10-km
horizontal resolution simulations of ALADIN are compared with respect to station
observations.
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Figure 3.3: Relative frequencies of observations, ERA-40, ALR40 and ALD40. Frequencies
are computed with the 30-yr (1961-90) daily cumulated summer precipitation given for each
station separately and are displayed on a logarithmic scale. Numbers for PSS correspond
to the average of the Perkins Skill Score [Eq. (3.7)] calculated for precipitation amounts
below and above the 0.95th quantile of the observations (PSS < q0.95 and PSS > q0.95).
The black line indicates the 0.95th quantile of the observations.

3.4.2.1 Spatial and temporal distribution

Figure 3.4 shows the observed and simulated spatial distribution of the 30-yr aver-
aged summer precipitation. On top of each sub-figure average values over the 93
stations for the cumulated summer precipitation are given. On average all models
except for CNRM overpredict the observed cumulated summer precipitation. Both
the observation- and the simulation fields show a clear topographical dependency,
with a gradual increase in precipitation going from the northwest (low altitudes) to
the southeast (high altitudes) of the country. The ALARO-0 and ALADIN simula-
tion at 40 km show a very similar distribution. Obviously, the precipitation fields
for the simulations with low spatial resolution are less heterogeneous than the ones
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with high spatial resolution. However, the 25-km spatial resolution CNRM plot il-
lustrates less variability than the 40-km simulations: also, the local maximum in
the southeast cannot been seen on the CNRM plot. For the higher resolution sim-
ulations ALARO-0 approaches much better the observations than ALADIN. For
instance, ALD10 overpredicts cumulated summer precipitation with values that
are, on average, over all stations almost 100 mm higher than observed. On the
contrary, the average values for ALR10 and ALR04 differ only slightly from the
observations, and the observed local maximum at the higher altitudes is very well
simulated by both models.

Figure 3.4: Spatial distribution of 30-yr (1961-90) mean cumulated summer precipita-
tion from observations and model simulations: (left) ALR40, ALR10, and ALR04; (middle)
ALD40 and ALD10; (right) CNRM. The mean summer precipitation over the 93 climato-
logical stations is given above each subfigure.

The scatterplots presented in Fig. 3.5 are consistent with the spatial distri-
butions shown in Fig. 3.4. Each point in the scatterplots represents the summer
cumulated precipitation for each year in the 30-yr period averaged for the 93 sta-
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tions. Linear regression lines (solid line) and its determination coefficients (R2)
is also presented for each of the five models. Except for ALD10, summer pre-
cipitation is relatively well simulated by all models. The ALD10 model shows
again a clear overestimation of observed summer precipitation. This is an indirect
confirmation that, with 10-km mesh sizes, the syndromes linked to the gray-zone
performance are already present.
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Figure 3.5: Each point in the scatterplots represents summer cumulated precipitation for
each year in the 30-yr period (1961-90) averaged for the 93 stations. The dotted (solid)
black line is the diagonal (linear regression) line. The number in each scatterplot corre-
sponds to the determination coefficient (R2) of the linear regression.

3.4.2.2 Error statistics

The previous analysis showed the ability of the models to represent the spatial and
temporal pattern of mean annual summer precipitation. To quantify this ability
we have computed some important error statistics. Figure 3.6 shows the spatial
distribution of the 30-yr average summer biases of the daily cumulated precipita-
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tion, as well as the mean bias over the 93 climatological stations. Average values
over the 93 stations of other 30-yr mean summer statistics are also given: the Root
Mean Square Error (RMSE) and the Mean Absolute Error (MAE). The statistics
are calculated with daily values for each station separately. Both 40-km simula-
tions ALR40 and ALD40 again perform similar. Overall, the biases are remarkably
lower for ALARO-0 than for ALADIN. The bias over the 93 climatological sta-
tions between model simulations and observations is 0.25 mm day−1 for ALR40,
0.43 mm day−1 for ALD40, -0.06 mm day−1 for CNRM, 0.33 mm day−1 for
ALR10, 1.06 mm day−1 for ALD10, and 0.06 mm day−1 for ALR04. The error
statistics for all three ALARO-0 simulations show a similar improvement, sug-
gesting a multiscale performance of ALARO-0. However, one should also keep in
mind that error statistics are not entirely fair when validating models with differ-
ent spatial resolution. Small displacements of precipitation maxima and minima
in higher resolution models are highly penalized by error statistics, because of the
so-called double penalty effect (Soares et al., 2012a).

The aforementioned underestimation by CNRM is confirmed by the spatial
distribution of its bias. Furthermore, the coastal precipitation is by all other mod-
els generally better simulated than the inland precipitation at the higher elevations
(Fig. 3.6). The larger and positive differences at the higher elevations can partly
be assigned to higher uncertainties in the measurements of the observations due
to rain gauge undercatchment (Buonomo et al., 2007). However, this overestima-
tion can also be attributed to the driving ERA-40 data or to the model formulation.
The positive biases are indeed more strongly pronounced for ALD10 which uses
the old diagnostic parameterization scheme (Fig. 3.6). All three ALARO-0 sim-
ulations (40-, 10-, and 4-km horizontal resolution) produce the lowest deviations
from the observations, with a tendency to slightly overestimate (underestimate) in
the southern (northern) part of the country. ALARO-0 values for RMSE and MAE
lie in the same range as those for ALADIN, indicating that the low mean biases of
ALARO-0 are possible due to cancellation effects arising from the bias computa-
tion. Nevertheless, the overall errors of the ALARO-0 simulations are still smaller
than those of ALD10.

In order to get an understanding of the trend of frequency and intensity of
extreme precipitation, density curves and frequency and quantile distributions of
all six simulations have been created (Figs. 3.7 to 3.9). The densities in Fig. 3.7
have been calculated with the square root of the daily precipitation since the ma-
jority of the precipitation rates are less than 10 mm day−1. All models tend to
overestimate the amount of “drizzle” and low precipitation (i.e. < 1 mm day−1).
In the 1-2 mm day−1 range, both ALADIN simulations as well as CNRM overes-
timate the observed density almost by 2 times, while ALARO-0 starts to approach
closely the observed density (Fig. 3.7, middle). The latter continues to do this up
to the right end tail of the observed density curve (Fig. 3.7, right). Perkins et al.



3-16 CHAPTER 3

MEAN BIAS = 0.25 mm/day
MEAN RMSE = 5.56 mm/day
MEAN MAE = 2.59 mm/day

MEAN BIAS = 0.43 mm/day
MEAN RMSE = 5.3 mm/day
MEAN MAE = 2.6 mm/day

MEAN BIAS = −0.06 mm/day
MEAN RMSE = 5.92 mm/day
MEAN MAE = 3.35 mm/day

MEAN BIAS = 0.33 mm/day
MEAN RMSE = 5.59 mm/day
MEAN MAE = 2.65 mm/day

MEAN BIAS = 1.06 mm/day
MEAN RMSE = 6.51 mm/day
MEAN MAE = 3.04 mm/day

MEAN BIAS = 0.06 mm/day
MEAN RMSE = 5.5 mm/day
MEAN MAE = 2.58 mm/day

Figure 3.6: Spatial distribution of the 30-yr (1961-90) average summer biases (model mi-
nus observed) of the daily cumulated precipitation. The numbers correspond to the spatial
mean of the bias, the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE).

(2007) use Probability Density Functions (PDFs) for the evaluation of simulated
daily precipitation over Australia from 14 different climate models. Similarly to
the density curves of ALADIN and CNRM, the PDFs in Perkins et al. (2007) show
for all models an overestimation of “drizzle”, with most models overestimating the
observed density of rainfall in the 1-2 mm day−1 range by 2-3 times.

The relative frequencies, shown in Fig. 3.8, are again calculated for daily pre-
cipitation amounts of the observations and model data, which are binned into bins
of 1 mm day−1. For the low precipitation rates all models manage to reproduce the
observed frequencies relatively well. Once the 0.95th quantile of the observations
(indicated by the vertical black line) is exceeded, CNRM shows an increasing de-
parture from the observations with frequencies left shifted from the observations.
ALARO-0 and ALADIN at 40-km horizontal resolution reveal again a similar re-
sult, while for the higher 10-km resolution a clear difference between both models
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Figure 3.7: Density curves of (top) observations, ALR40, ALD40, and CNRM and (bottom)
observations, ALR10, ALD10, and ALR04. Densities are computed with the 30-yr (1961-
90) daily cumulated summer precipitation given for each station separately. The x axes
represent the square root of the daily precipitation since the majority of the precipitation
rates are less than 10 mm day−1.

is apparent. The small overestimation of ALD10 for the low precipitation rates
persists and becomes larger for the higher rates. The model clearly rains too often,
both with very small and very high quantities of rainfall. On the other hand, the
frequencies of ALR04 and ALR10 nicely follow the observations, showing their
ability to capture the occurrence of extreme and rare precipitation events, with val-
ues around 100 mm, quite well. As a measure for similarity between the observed
and modeled frequencies the PSS [Eq. (3.7)] are also given in Fig. 3.8. The overall
PSS, as well as PSS for precipitation amounts below and above the 0.95th quantile
of the observations, is higher for ALARO-0 than for ALADIN and CNRM.

The quantile distributions confirm the ability of ALR04, ALR10, and even
ALR40, to reproduce extreme rainfall rates (Fig. 3.9). Only the highest 99.9 quan-
tile (i.e. strongest events) is slightly overestimated by ALARO-0. It is evident that
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Figure 3.8: As in Fig. 3.3, but for observations and model simulations: (left) ALR40,
ALR10, and ALR04; (center) ALD40 and ALD10; (right) CNRM.

such events, which are situated in the very end of the distribution, might corre-
spond to outliers. Consistently with the frequency plots, the higher quantiles are
over- and underestimated by ALD10 and CNRM, respectively.

Previous results can be qualified in the context of other regional downscaling
studies; however, a direct comparison is difficult because of differences in study
area and model design. Soares et al. (2012a) performed a dynamical downscaling
of 20 years of ERA-Interim reanalysis (1989-2008) for Portugal using the Weather
Research and Forecast model (WRF). Two WRF high-resolution simulations (9
and 27 km) and ERA-Interim reanalysis are compared with station observations.
For summer precipitation, their results show a different frequency distribution for
the 9-km and 27-km simulation. The 9-km frequencies of summer precipitation
follow well the observed frequencies and show a clear improvement compared
to the driving reanalysis. In a more recent study, Chan et al. (2013) evaluated
for southern United Kingdom 17 years (1991-2007) of ERA-Interim driven RCM
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Figure 3.9: Quantiles (2.5, 10, 20, 25, 30, 40, 50, 60, 70, 75, 80, 90, 95, 97.5, 99, 99.9)
of observations vs. (left) the ALR40, ALD40, and CNRM models and (right) the ALR10,
ALD10, and ALR04 models. Quantiles are computed with the 30-yr (1961-90) daily cumu-
lated summer precipitation given for each station separately.

runs at 50 km, 12 km and 1.5 km resolution. For the 50-km and 12-km simula-
tions the non-hydrostatic Hadley Centre Global Environmental Model version 3
(HadGEM3-RA) was used. The highest resolution runs at 1.5 km were one-way
nested into the 12 km simulation, and used another model version, with no convec-
tion parameterization, nor a prognostic cloud scheme. Comparison of moderate
and extreme daily precipitation values from the three model runs with observa-
tions, showed a clear improvement in both the winter and summer bias going from
50 km to 12 km or 1.5 km. However, at the daily level their results showed no
clear evidence that the 1.5-km simulation performs better than the 12-km simu-
lation, or vice versa. For instance, at 1.5 km the model simulates too many days
with extreme JJA precipitation. The authors attribute these biases to the fact that
the 1.5-km simulation is “convection permitting”, so that even at 1.5 km, con-
vection is still under-resolved, and the explicitly-resolved convective motion and
vertical mass flux become too intense.

Our results show a coherent performance of the ALARO-0 model across all
resolutions and the good model performances as displayed in Figs. 3.7 to 3.9 can
be practically attributed to the quality of the physics parameterizations unrelated
to the increase of the resolution. Finally, the persistent positive biases of the AL-
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ADIN model ALD10 are in accordance with other studies where recent past (1961-
90) ALADIN simulations at 10-km horizontal resolution, driven by ERA-40 data,
are validated against gridded observations (see Csima and Horányi, 2008; Skalák
et al., 2008). According to Skalák et al. (2008), these positive (summer) precip-
itation biases can be linked with the tendency of the model “to precipitate” more
often than in the station observations.

3.4.2.3 Extreme Value Analysis

The Extreme Value Analysis (EVA) has been performed for each station separately,
using the 30-yr daily summer data. The use of a GPD as a model for threshold ex-
cesses assumes independent excesses (Coles, 2001). In practice this is rarely the
case. Exceedances over a certain threshold often occur in clusters. In order to ac-
count for these clusters of POT events, the data have been declustered by selecting
the maximum value within each cluster. The independence of two clusters of POT
events is determined by a combination of the threshold and the separation time
between both clusters. However, the choice of a suitable threshold and separation
time is relatively arbitrary. The threshold has to be high enough in order to ensure
extreme events and to avoid dependency between the events, but a threshold which
is too high prevents statistical significance due to a loss of information (Kyselý
and Beranová, 2009; Heikkilä et al., 2011). Similar to the study of Heikkilä et al.
(2011), the threshold has been defined for each station separately as the 0.95th

quantile of daily summer precipitation, so that spatial differences in the precipita-
tion amount (see Fig. 3.4) are taken into account.

The results obtained by using cluster maxima defined with different separa-
tion times (e.g. 1, 2, or 4 days) do not differ much from the results when the
original non-declustered data have been used (not shown). Hence, in accordance
with another study on extreme precipitation of Kyselý and Beranová (2009), two
POT events are considered to be independent when the minimum separation time
between both events is one day.

To investigate if the underlying probability distribution of the (declustered)
POT events of the observations and models significantly differs, a Kolmogorov-
Smirnov (K-S) test has been applied. The K-S test statistic is defined as the maxi-
mum absolute difference between to distribution functions:

Dn1,n2 = Max|Fn1(x)− Fn2(x)|, (3.8)

where Fn1(x) and Fn2(x) are the empirical distribution functions of the observa-
tions and the model, respectively, and ni refers to the number of samples. The
null hypothesis (H0) that the distribution of the observed POT events equals the
distribution of the modeled POT events, is rejected at significance level α = 0.05
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if

K =

√
n1 · n2
n1 + n2

Dn1,n2 > Kα, (3.9)

where Kα is the critical α-level of the Kolmogorov distribution:

Pr(K ≤ Kα) = 1− α. (3.10)
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Figure 3.10: K statistic from a Kolmogorov-Smirnov test [Eq. (3.9)]. The 93 stations (ab-
scissa) are shown by ascending altitude (from left to right). The test is performed on the
POT events of the observations vs. the (top) ALR40, ALD40, and CNRM and (bottom)
ALR10, ALD10, and ALR04 model simulations. The horizontal dotted line represents the
critical K level with significance α = 0.05.

Figure 3.10 shows for each station the K statistic of the observations and
models. In general, the K values for the ALARO-0 model at all three spatial
resolutions are much smaller than for ALADIN and CNRM. H0 is accepted at
the 95%-level at 35 and 16 stations for ALD40 and ALD10, respectively. For
ALARO-0 at 40, 10, and 4 km, H0 is accepted at 46, 47, and 38 locations, re-
spectively. Compared to ALD10, there are for ALARO-0 more stations at the high
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altitudes for which the distribution of the POT events equals the observed distri-
bution of the POT events. This indicates that an increase in resolution does not
necessarily contribute to a better representation of orographic precipitations. In
the case of CNRM, H0 is rejected for all stations. Thus, consistent with the re-
sults from the frequency and quantile distributions, the K-S test confirms that the
ALARO-0 simulations yield more reliable statistics of the extreme events.
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Figure 3.11: The 5-yr return levels of the POT models for the observations and model
simulations: (top) ALR40, ALD40, and CNRM and (bottom) ALR10, ALD10, and ALR04.
The 93 stations (abscissa) are shown by ascending altitude (from left to right), and the
shaded area represents the 95% confidence interval of observed return levels.

The GPD equation [Eq. (3.2)] is then fitted through the selected cluster max-
ima of the observations and the six model simulations ALR40, ALD40, CNRM,
ALR10, ALD10, and ALR04. The 5- and 20-yr return levels of the POT models
for the observations and six simulations are shown in Figs. 3.11 to 3.12. The re-
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Figure 3.12: As in Fig. 3.11, but for 20-yr return levels.

turn levels xm are calculated by Eq. (3.6) using the declustered data with 1 day
separation time and a threshold u, defined as the 0.95th quantile. Since the return
levels xm are calculated on an annual basis, the value for m equals 92 observa-
tions, corresponding to the number of summer days within one year of the study
period. The return levels are for both return periods generally larger at the higher
elevations. The 95% confidence levels of the observed return levels are also indi-
cated. It appears that for most stations the return levels of ALARO-0 lie within
the 95% confidence range of the observed return levels. In contrast to ALARO-
0, ALD10 and CNRM are not able to produce the observed 5- and 20-yr return
events. Their estimated return levels lie for a great number of stations outside the
observed confidence interval.

In line with what Hamdi et al. (2012) found for summer maximum tempera-
ture, previous results from the EVA show for ALARO-0 at the high resolutions of
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4 km and 10 km, as well as at 40-km horizontal resolution, a clear improvement
in simulating extreme summer precipitation. Extreme events are also often inves-
tigated by means of climate indices (e.g. Herrera et al., 2010; Domı́nguez et al.,
2011; Dulière et al., 2011; Soares et al., 2012b). In order to complete the EVA, two
main precipitation indices have been calculated: the number of wet days and the
number of very heavy precipitation days. Both indices are explained below and
are calculated for each year (i.e. summer season) and each climatological station.

3.4.2.4 Number of wet days (WD)
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Figure 3.13: (top) Spatial mean of ratio of number of days above 1 mm day−1 (i.e. WD)
in models to observations. (bottom) Temporal mean of ratio of number of days above 1 mm
day−1 (i.e. WD) in models to observations. Station sequence as in Fig. 3.11.

The number of wet days (WD) for the observations and models are defined
as the annual count of days when precipitation is >1 mm. Figure 3.13 shows the
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ratio of WD in models to observations. As the model values represent a whole
grid box, we could assume that the models, and especially the lower resolution
models, will poorly reproduce the indices at the station points. However, the low
resolution ALR40 model (left) reproduces relatively well the observed WD. On
the other hand, ALADIN and CNRM show an overestimation for WD. This can
be explained by the fact that precipitation may occur more systematically at the
model grid box level, which gives rise to a WD even when no precipitation has
been observed at the station location. Compared to ALADIN and CNRM, the
ALARO-0 model (at 4-, 10-, and 40-km horizontal resolution) is able to better
reproduce the number of wet days.

3.4.2.5 Number of very heavy precipitation days

The number of very heavy precipitation days is derived by annual counting of days
with precipitation rates >20 mm. The temporal as well as the spatial mean of the
number of very heavy precipitation days are consistent with the results from fore-
going EVA. Overall, ALR04, ALR10, and ALR40 can reproduce the number of
days with precipitation >20 mm day−1 very well (Fig. 3.14). ALR04 and ALR10
have the highest correlations, and for three out of the 93 stations ALR10 predicts
exactly the same number of days with heavy precipitation rates as have been ob-
served.

3.5 Conclusion

Extreme value analysis, using the Peak-Over-Threshold method and the GPD,
was performed in order to explore the relative importance of resolution versus
parameterization formulation on the simulation of extreme daily summer precip-
itation. The results show that dynamical downscaling of the ERA-40 reanalysis
using the ALARO-0 model adds value to the prediction of extreme daily sum-
mer precipitation when compared to the ERA-40 results. Hence, running a LAM
with the adapted parameterization, which was originally motivated to perform in
the convection-permitting resolutions, statistically outperforms the global data in
the output of extreme precipitation events of the ERA-40 reanalysis. The main
strength of these tests is that, by the choice of the setup, we are considering the
pure effect of the downscaling, without being obliterated by issues such as spec-
tral nudging. Moreover, the model regenerates the precipitation instead of letting
it evolve from its initial state. The regional nature keeps the computing cost within
reach of a typical small center, like the RMI, while reproducing the correct statis-
tics of the extreme precipitation events consistently with the large-scale forcing
imposed by the initial conditions and the lateral boundaries. Furthermore, it should
be stressed that the present model version has been developed and tuned in a con-
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Figure 3.14: (top) Spatial mean of number of days above 20 mm day−1. (bottom) Temporal
mean of number of days above 20 mm day−1. The numbers correspond to Pearson correla-
tion coefficients. Significant correlation coefficients at significance level of 0.05 based on t
statistics are indicated with an asterisk. Station sequence as in Fig. 3.11.

text of NWP, is used as a 12-member component of the Grand Limited Area Model
Ensemble Prediction System (GLAMEPS), and has been taken as such to down-
scale ERA-40 data. This can be seen as an extra indirect validation of the NWP
applications running ALARO-0, in the sense that the model has a more correct cli-
matology of convective rain. It is clear that there are several components, such as
the physics-dynamics interaction, the interaction between model physics, and the
numerics, that may influence the climatology of the precipitation. However, it is
difficult to isolate the importance of these components, and it is beyond the scope
of this thesis to address the relative impact of the different parameterization up-
dates within ALARO-0, it should be kept in mind, though, that all of these factors
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play a crucial role in the model performance at gray-zone resolutions.
ALARO-0 simulations at 40-, 10-, and 4-km horizontal resolution with a new

parameterization scheme of deep convection and microphysics, as well as 40- and
10-km horizontal resolution output from the ALADIN model, with an old parame-
terization scheme were compared with respect to station observation data. We find
for ALARO-0 at high spatial resolutions of 10 and 4 km an improvement in the
spatial distribution of summer precipitation, such that the distinct local maximum
at the highest elevations is well resolved by the model, a feature which is strongly
overestimated by the ALADIN model at 10-km resolution. Furthermore, the re-
sults from the EVA suggest that the new parameterization scheme of ALARO-0
contributes to the improvement in the modeling of extreme precipitation events at
varying horizontal resolutions, rather than the increase in spatial resolution. Thus,
the nature of the parameterization is more important than the resolution, which
confirms previous findings of Lynn et al. (2010) and Hamdi et al. (2012).

In the next chapter (Chapter 4), the ability of the ALARO-0 model to re-
produce characteristics of subdaily precipitation at multiple resolutions, will be
assessed.
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“Current Regional Climate Models (RCMs) show skill in capturing the statistics
of the daily precipitation distribution but do not well represent subdaily

precipitation and the diurnal cycle of convection.”
– Maraun et al. (2010)

4.1 Introduction

In the previous chapter (Chapter 3) it was investigated how the ALARO-0 model
performed in simulating daily extreme summer precipitation for Belgium. How-
ever, for impact studies of extreme precipitation events, decision makers often
require current and projected future climate information at the local scale and at
higher temporal resolutions than the daily scale (Maraun et al., 2010; Mahoney
et al., 2013). Over the last decade considerable efforts were made to further de-
velop and improve Regional Climate Models (RCMs) by increasing their com-
plexity and resolution. The state-of-the art RCMs typically have horizontal grid
spacings ranging from 50 to approximately 10 km (Prein et al., 2013a, 2015).
Nevertheless, there still remains a discrepancy between the spatial scale of RCM
precipitation and the site-specific data needed for many impact studies (Maraun
et al., 2010). In addition to this scale gap, numerous processes at these resolutions
still cannot be resolved on the model grid and therefore must be parameterized.
These parameterizations, and in particular the deep convective parameterizations,
are a key source of model errors in the simulation of precipitation (Prein et al.,
2015) . The parameterization of deep convection is a challenging task for climate
modelers because the triggering emerges from an interplay of processes acting at
scales from the microscale to the synoptic scale (Prein et al., 2015). Furthermore,
the simulation of precipitation in RCMs is also highly sensitive to other aspects of
the model formulation, such as the horizontal resolution, the numerical scheme,
and other physical parameterizations (Maraun et al., 2010).

Several studies have demonstrated that the deep convection parameteriza-
tions are responsible for common errors in the models. At the daily scale, RCMs
underestimate the number of dry days (e.g. Fowler et al., 2007), overestimate
the low-precipitation event frequency (i.e. so-called “drizzle effect”), and at the
subdaily scale the models show a poor representation of convective processes
such as the diurnal cycle (e.g. Dai et al., 1999; Bechtold et al., 2004; Brockhaus
et al., 2008; Hohenegger et al., 2008) and an underestimation of hourly precipita-
tion intensities and high intensity events (Maraun et al., 2010; Kendon et al., 2012).

For decades, convection-permitting models (CPMs), where most of the error-
prone convection parameterizations are switched off, have been widely used for
Numerical Weather Prediction (NWP) and idealized case studies (e.g. Mass et al.,
2002; Guichard et al., 2004; Hohenegger et al., 2008; Gerard et al., 2009). The
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kilometer scale at which these CPMs operate allows to explicitly resolve deep con-
vection as well as an improved representation of fine-scale orography, variations
of surface fields and boundary layer processes, which are crucial for the initiation
of convection in complex terrain (Ban et al., 2014). This has indeed led to sig-
nificant improvements of quantitative precipitation forecasts. Recently, with the
advances in high-performance computing, CPMs are also used in a climate con-
text (e.g. Kendon et al., 2012; Prein et al., 2013b; Ban et al., 2014; Chan et al.,
2014; Fosser et al., 2015). However, the use of such convection-permitting reso-
lutions in long-term climate studies is currently still limited (Kendon et al., 2014).
In particular because increased resolution implies additional computational costs
and storage (Schwartz et al., 2009; Prein et al., 2015). Most studies are generally
limited to small domains, and often run for a single season or shorter multiyear
simulations (Kendon et al., 2014). This raises the question which horizontal grid
spacing is sufficient for such CPM climate simulations.

In a NWP context, several studies made an attempt to address this issue, i.e.
to find the optimal grid spacing of CPM forecasts that maximizes the forecast qual-
ity, value and realism (Schwartz et al., 2009). Weisman et al. (1997) investigated
the upper limit on the horizontal grid spacing of convection-permitting simulations
using idealized squall line simulations. Their findings suggest that a resolution of
4 km is sufficient to reproduce most system-scale aspects of squall-line-type con-
vective systems over a 6-h period (Weisman et al., 1997). Furthermore, Schwartz
et al. (2009) assessed the impact of horizontal resolution by comparing output from
a single deterministic 2-km model with forecasts from a 4-km resolution ensemble
control member. Except for the difference in horizontal resolution, the configura-
tions of both sets of forecasts were identical and no parameterization for deep con-
vection was used. In order to provide a reference for the high-resolution output,
forecasts from a 12-km NWP run that uses a convection parameterization, were
also considered. The authors found for the convection-permitting, high-resolution
models significant added value for next-day forecasts compared to the 12-km fore-
casts. It is suggested that the improved model behavior from the 4-km resolution
is nearly as advantageous as the 2-km grid spacing. Hence, as concluded by the
authors, the added value of further increasing the spatial resolution is much smaller
compared to the benefits obtained when NWP models with convective parameteri-
zation and at≈ 10-km grid spacing are reconfigured to≈ 4 km resolution using an
explicit formulation of convection. However, some operational centers still apply
parameterization schemes at 4 km, though in modified forms, because of a concern
that unrealistic forecasts will be produced if no convective parameterization is used
(Schwartz et al., 2009). A study of Roberts and Lean (2008), for example, assessed
the performance of 12-, 4-, and 1-km versions of a Met Office’s NWP model with
the aim to examine the improvement to forecast skill from increased resolution
alone. Only at the 1 km resolution the model was run without any convective pa-
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rameterization scheme. Their results showed that the 1-km model is more skillful
than the lower resolution models, specifically giving a more accurate distribution
of the rain and a better prediction of high accumulations. As pointed out by the
authors, the 4-km model does not achieve the same level of performance because
of inherent difficulties in representing convection at that resolution (Roberts and
Lean, 2008). Given this issue of 4-km suitability for convection permitting fore-
casts, Prein et al. (2015) hence suggest that it seems prudent to use horizontal grid
spacings of less than 4 km for CPM climate simulations.

Although there is only a small number of CPM climate studies using different
models, they have demonstrated clear improvements in the issues related to the
deep convective parameterizations of RCMs. Kendon et al. (2012) and Chan et al.
(2014) compared 20-yr ERA-Interim driven simulations over southern United
Kingdom from a RCM at 12 km resolution with a parameterized convection and
a CPM at 1.5 km resolution where convection is explicitly solved. Results from
both studies showed that rainfall is much more realistic in the 1.5 km simulation,
with a much better representation of subdaily extreme events during summer
and a clear improvement in its spatial and temporal structures and the diurnal
cycle. Similarly, Fosser et al. (2015) conducted two high-resolution simulations
at 7 and 2.8 km resolution over southwest Germany for 30 years. The authors
examined with respect to observations the differences between both resolutions in
the representation of precipitation at subdaily timescales and found for the highest
resolution a significant improvement in the representation of hourly intensities and
diurnal cycle of precipitation. Furthermore, several studies revealed no general
improvement in daily mean precipitation between CPMs and RCMs (e.g. Li et al.,
2012; Chan et al., 2013; Prein et al., 2013a; Chan et al., 2014; Ban et al., 2014).
Hence, the added value of CPMs can mostly be found: (i) where/when deep
convection is a dominant process (e.g. midlatitude summer), (ii) on small spatial
and temporal scales (e.g. subdaily precipitation), (iii) in regions with strong spatial
heterogeneities (e.g. coastal and urban areas), (iv) in the timing of the onset and
peak of convective precipitation (i.e. diurnal cycle) and (v) for high precipitation
intensities (Prein et al., 2013a, 2015).

To extend the investigations of previous work, this chapter examines the
added value of the limited area model ALARO-0 through analyses of subdaily pre-
cipitation characteristics at multiple spatial resolutions. Furthermore, the central
question in this assessment is whether the multiscale performance of ALARO-0 in
the simulation of daily summer precipitation, as was found in the previous chapter
(Chapter 3), is also retained in the simulation of subdaily precipitation. Most stud-
ies assessing the benefits of CPMs in the representation of convective and subdaily
precipitation generally compare simulations with horizontal grid spacings where
deep convection is parameterized with those with resolutions where the convective
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parameterizations are turned off. However, to ensure a fair and consistent compar-
ison between both resolutions, fundamental differences in the model physics and
in the approach of the treatment of deep convection should be avoided. Although,
it is suggested to use spatial resolutions of less than 4 km for the CPM climate
simulations, the highest spatial resolution considered in this chapter is limited to
4 km. This can be justified by the fact that (i) studies with models running at grid
spacings below 4 km report a weak grid sensitivity to the simulation of precip-
itation, and (ii) the use of physical parameterizations result in a similar or even
larger spread. Hence, Prein et al. (2015) states that it appears more urgent to ad-
dress aspects of physical parameterizations before further refining the horizontal
resolution, with prioritizing the design of scale-aware physical parameterizations
(Prein et al., 2015). The ALARO-0 model uses the Modular Multiscale Micro-
physics and Transport (3MT) physics package for clouds and deep convection. As
described previously (see Chapter 2), the so-called “multiscale” characteristic of
3MT indeed allows a consistent use of the same model physics at different spa-
tial resolutions without the need of different schemes or schemes that need to be
switched off or on when changing the models’ spatial resolution. Therefore, prior-
ity has indeed been given to the scale-awareness of the physical parameterization,
which is a fundamental characteristic present in ALARO-0, rather than increasing
the spatial resolution to resolutions below 4 km.

Subdaily precipitation values from reanalyses driven ALARO-0 simulations
at 40-, 10-, and 4-km resolution are analyzed through assessment of the diurnal cy-
cle, intensity and frequency characteristics and scaling properties such as the linear
behavior of the Generalized Extreme Value (GEV) parameters and the Clausius-
Clapeyron (CC) relation. The next sections (Sections 4.2 to 4.3) provide a descrip-
tion of the data and methods, and in Section 4.4 the results on the representation
of subdaily precipitation are discussed. We end this chapter with the conclusions
in Section 4.5.

4.2 Data

4.2.1 Model data

This chapter uses the same 30-yr (1961-90) ERA-40 driven 40-km, 10-km, and
4-km ALARO-0 simulations as in Chapter 3 (abbreviated as respectively ERA40
- ALR40, ERA40 - ALR10, ERA40 - ALR04 in the figures). Compared to the
ERA-40 reanalysis (Uppala et al., 2005), the more recent ERA-Interim reanalysis
has significant improvements in the global hydrological cycle in terms of water
vapor, clouds and precipitation (Betts et al., 2009). Therefore, in addition to the
ERA-40 driven runs, a dynamically downscaling of the ERA-Interim reanalysis
(Dee et al., 2011) was performed. The experimental design is similar to the ERA-
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40 driven runs, i.e. the ERA-Interim reanalysis is dynamically downscaled using
the ALARO-0 model at a spatial grid of low spatial resolution of 20-km resolution
corresponding to a 149× 149 grid point domain that encompasses most of Western
Europe. This 20 km output are then used to perform a one-way nesting on a 181
× 181 4-km resolution domain centered on Belgium (see Chapter 2, Section 2.3.2
and Chapter 3, Section 3.2.1 for more details on the experimental setup). The 30-
yr (1981-2010) 4-km resolution ERA-Interim driven ALARO-0 model results are
also used here for the analysis (abbreviated as ERAINT - ALR04 in the figures).

4.2.2 Observations

Sufficiently long time series of observed precipitation at high-temporal resolutions
are crucial for model validation of extreme precipitation events at subdaily time
scales. However, a dense network of such point observations from gauge mea-
surements are generally difficult to find (Ban et al., 2014). Gridded hourly radar
data could provide a good alternative to gauge measurements, as they have excel-
lent resolutions both in time and space. Rainfall estimates from a 10-yr (2005-
2015) dataset of volumetric weather radar measurements from a radar located in
the southeast of Belgium (Wideumont), have recently been processed by Gouden-
hoofdt and Delobbe (2015). As consistent long-term gridded radar datasets are not
yet available for our study period, and attenuation of the radar signal can lead to
underestimation of the higher precipitation intensities (Chan et al., 2014), the ob-
servation data is here limited to available gauge data at high temporal resolutions.

The observation network of the Royal Meteorological Institute of Belgium
(RMI) consists of several automatic weather stations (AWSs) which measure
amongst other meteorological variables, 10-min precipitation. Nevertheless, the
measurement period of these AWSs covers only approximately the last 10 years
and thus does not correspond to our study period and is too short for studying
heavy precipitation characteristics. An exception is the station of Uccle in Bel-
gium (longitude: 4.358◦E, latitude: 50.798◦N), where an unique and long-term
time series of 10-min precipitation is available and is collected with high accuracy
by the RMI. The measuring accuracy is homogeneous; until 2008 the rainfall
is recorded by the same measuring instrument (a Helmann-Fuess pluviograph)
at the same location since the start of the measurements in 1898. Furthermore,
the precipitation data are recalibrated by the institute to the daily precipitation
amounts from a non-recording pluviometer (or rain gauge). This recalibration
ensures that the sum of the 10-min measurements of the pluviograph equals the
daily observed totals as measured by the pluviometer, and it partly corrects the
10-min data for measurement biases by wind effects and wetting losses (Willems,
2000; Ntegeka and Willems, 2008). Because of several difficulties in operating
mechanical pluviographs, the pluviograph records are since July 2008 replaced by
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data from modern automatic pluviometers (i.e. AWS). In order to limit the lack of
homogeneity in the 10-min time series, the 10-min controlled AWS precipitation
data are still recalibrated against the daily pluviometer observations. However, the
recalibration process is since then done with a new tool, so that the precision of
the final recalibrated 10-min data has become 0.01 mm instead of 0.1 mm as it was
before. Nevertheless, the new recalibration procedure ensures that the difference
between the recalibrated 10-min values and the daily pluviometer measurements
is smaller than 0.1 mm (M. Journée, personal communication, 2015).

Finally, in order to analyze the dependence of extreme hourly precipitation
on temperature, daily mean temperatures from the climatological station in Uccle
are also used.

4.3 Methods

4.3.1 Data processing and analysis

For the evaluation of the modeled subdaily precipitation, the 10-min Uccle rainfall
records as well as the hourly model series are aggregated to durations of 1-hour
up to 24-hour precipitation amounts for the study periods 1961-90 and 1981-2010.
For the data aggregation, a moving time window of a width equal to the respective
duration was conducted over the 1-hourly datasets. Precipitation intensities are
then calculated by dividing the total rainfall amount falling during 1-, 2-, 3-, 6-,
12-, or 24 hour by the respectively duration.

Daily mean temperature values used for the assessment of the CC relation
(see Section 4.3.4), are simply derived by averaging observed and modeled daily
maximum- and minimum 2-meter temperature values. Observations of daily max-
imum (minimum) temperatures are measured between 8 and 8 Local Time (LT) of
the day after (before). The modeled daily maximum- and minimum temperatures
are calculated accordingly the definition of the observations.

Since the improvements in the simulation of subdaily precipitation are mostly
found during summer, when the highest precipitation intensities are usually related
to convective showers, we mostly focus our analyses on the summer season (i.e.
June-July-August, JJA). For some analyses, results for winter (December-January-
February, DJF) are also given. Since the ERA-40 driven simulations were only
done for the summer period 1961-90, the results for winter are based upon the
ERA-Interim driven 4-km ALARO-0 model results for the period 1982-2010.

4.3.2 Extreme Value Analysis

Generally, the characteristics of extreme (sub)daily precipitation events are inves-
tigated by means of a theoretical extreme value distribution. One candidate distri-
bution is the Generalized Pareto Distribution (GPD), that describes the maximum
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(sub)daily values by the exceedances of a large enough threshold u (see previ-
ous Chapter 3). As an alternative to describe extremes within a certain period,
one can also consider the GEV distribution. Hence, to assess the added value of
ALARO-0 for hourly precipitation extremes, we assume that the (sub)daily an-
nual precipitation extremes follow a GEV distribution. According to the extremal
types theorem (Coles, 2001), this distribution has often been used to model block
(annual or seasonal) maxima of observed and modeled precipitation (Hanel and
Buishand, 2010). The GEV cumulative distribution function F (x, µ, σ, γ) is given
by:

F (x, µ, σ, γ) = exp

{
−
[
1 + γ

(
x− µ
σ

)]−1/γ}
for γ 6= 0, 1 + γ

(
x− µ
σ

)
> 0;

(4.1)

F (x, µ, σ, γ) = exp

{
− exp

[
−
(
x− µ
σ

)]}
for γ = 0. (4.2)

with x the sampled maxima, and µ, σ and γ the location, scale and shape pa-
rameter, respectively. The parameters satisfy −∞ < µ < +∞, σ > 0, and
−∞ < γ < +∞. The GEV distribution combines three asymptotic extreme value
distributions into one single distribution, determined by the shape parameter γ:
type I, light-tailed Gumbel distribution (γ = 0); type II, heavy-tailed Fréchet dis-
tribution (γ > 0); and type III, bounded Weibull distribution (γ < 0) (Nikulin
et al., 2011; Russo and Sterl, 2012).

As an illustration, Fig. 4.1 shows the GEV probability density distribution
of the hourly observed summer annual maxima intensities in Uccle for the period
1961-90. The values in the legend correspond to the GEV parameter estimates.
The red dotted line indicates the location parameter (µ) which specifies the center
(≈ mean) of the distribution, but does not influence the standard deviation and
higher order central moments. The scale parameter (σ) determines the width of
the distribution or the size of deviations around the location parameter, and the
shape parameter (γ) controls the rate of tail decay, with positive values implying a
heavy upper tail (Hanel and Buishand, 2010).

There are two common methods for fitting the GEV distribution to the an-
nual extremes: L-moments and maximum likelihood. The L-moments method is
much more computationally efficient and also for small samples the shape param-
eter generally has better sampling properties than the maximum likelihood method
(Nikulin et al., 2011). Because of this and the fact that our study period is rela-
tively short (i.e. 30 years), the L-moments method is used here for fitting of the
GEV distribution to summer annual maxima precipitation intensities for different
durations d.

A goodness-of-fit test is carried out to check whether the GEV distribution
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Figure 4.1: Generalized Extreme Value (GEV) probability density distribution of the hourly
observed summer annual maxima intensities in Uccle for the period 1961-90. The values
in the legend correspond to the GEV parameter estimates. The red dotted line indicates the
location parameter (µ) which specifies the center (≈ mean) of the distribution.

fits the sampled annual/seasonal extremes satisfactorily. The same approach is fol-
lowed as in Kharin and Zwiers (2000). A Kolmogorov-Smirnov (K-S) goodness-
of-fit is applied, which measures the overall difference between two (cumulative)
distribution functions. The K-S statistic D is defined as the maximum absolute
difference between two cumulative distribution functions (see also previous Chap-
ter 3):

D = max
−∞<x<∞

| Sn(x)− F (x) |, (4.3)

where F (x) is the fitted cumulative distribution function and Sn(x) is an em-
pirical cumulative distribution function estimated from a sample of size n as the
proportion of data values less than or equal to x. The null hypothesis (H0) that
the seasonal extremes are realizations from the GEV distribution F (x) is rejected
when D exceeds a certain critical value. Since the GEV distribution parameters
are estimated from the data, these critical values taken from statistical tables would
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result in a too conservative test, i.e. H0 is rejected less frequently than indicated
by the significance level (Nikulin et al., 2011). Therefore, the critical value is
determined by a parametric bootstrap procedure. In a first step, 1000 samples of
size 30 (i.e. number of years in the study period) are randomly generated from
the fitted GEV, and for each of the 1000 samples, values of D are derived. The
95th percentile of the resulting collection of Ds is then used as the critical value
for the rejection of H0 that the annual/seasonal maxima are drawn from the GEV
distribution at the 5% significance level (Kharin and Zwiers, 2000).

The return period T associated with return level xT is the average time (ex-
pressed in years) between two successive exceedances of xT :

T =
1

1− F (xT )
. (4.4)

After fitting the GEV distribution to the sampled extremes the T -year return
level, xT can be estimated by inverting the GEV cumulative distribution function
[Eqs. (4.1) to (4.2)]:

xT = F (−1)
(

1− 1

T

)
= µ− σ

γ

{
1−

[
− log

(
1− 1

T

)]−γ}
, for γ 6= 0;

(4.5)

xT = F (−1)
(

1− 1

T

)
= µ− σ log

[
− log

(
1− 1

T

)]
, for γ = 0.

(4.6)

The estimated GEV parameters are then used to calculate return levels xT for
each rainfall duration d:

X ∼ GEV[µ(d), σ(d), γ] (4.7)

↔ xT (d) = µ(d)− σ(d)

γ

{
1−

[
− log

(
1− 1

T

)]−γ}
(4.8)

As the estimated shape parameters (γ) are for all durations and datasets different
from 0, only the case for γ 6= 0 is considered in what follows. For a fixed duration
d and return period T , the return level iT (d) is given by the Intensity-Duration-
Frequency (IDF) relationship:

iT (d) =
µ− σ

γ

{
1−

[
− log

(
1− 1

T

)]−γ}
dη

. (4.9)
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Furthermore, an important rainfall feature of particular interest for extremes
is that, to a first approximation, the IDF curves display a power law dependence on
averaging duration d and return period T . This scaling property of rainfall can be
related to the fact that the estimated GEV parameters such as the location parame-
ter µ and scale parameter σ, have a power law of the aggregation times (Willems,
2000). This means that if the parameter values are known for one particular aggre-
gation time, they are also known for all other aggregation times only by applying
a scaling factor. This can be demonstrated by equalizing Eq. (4.8) and Eq. (4.9):

µ(d) = µd−η, (4.10)

σ(d) = σd−η, (4.11)

with η the scaling factor. From this scaling property, Intensity-Duration-Frequency
(IDF) relations can directly be derived. The above methodology is used to inves-
tigate whether the observed scaling properties are reproduced by ALARO-0 for
different durations and at multiple spatial resolutions (De Troch et al., 2014a).

4.3.3 Upscaling and areal reduction factors

To compare the model data with the station point of Uccle, the nearest model grid
box is selected. It is well known that the comparison of point observations and
grid box mean values is not a perfect way of validation (Ban et al., 2014). To
account for these issues in scale inconsistency, the high-resolution 4-km and 10-
km data are upscaled through bilinear interpolation to a common 40-km analysis
subdomain covering Belgium (Fig. 4.2).

In addition, to relate the maximum grid box rainfall estimates to the observed
maximum rainfall rate the concept of areal reduction factor (ARF) can be used.
It is generally accepted that the grid box rainfall of RCMs have the spatial char-
acteristics of areal averages. Therefore, we may assume that the summer annual
maxima intensities from the ALARO-0 model simulations represent a 40-, 10-,
and 4-km climate, respectively. However, it can be expected that these maximum
areal average rainfall rate will be less than the maximum rate estimated at the sta-
tion point. This difference is usually referred to as the ARF (Fowler et al., 2005).
To account for these differences in scale between observed and modeled summer
annual maxima intensities, an ARF value can be applied to the observation point
rainfall estimates of a specified duration and return period to give the areal rainfall
of the same duration and return period. These ARF values are found to be site
dependent, and also vary in time and with duration, size of the averaging area, and
return period (Fowler et al., 2005; Willems, 2013).

Empirical ARFs for rainfall extremes have been reported for Belgium for 1-
day durations and longer, and were found to vary between 0.8 and 0.9 for grid sizes
ranging between 25-50 km (Willems, 2013). However, to our knowledge, no ARF
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Figure 4.2: High resolution 4-km (green plus signs) and 10-km (red crosses) data points are
upscaled towards a low-resolution 8×7, 40-km resolution subdomain (blue dots) covering
Belgium. The location of the 4-km grid point closest to the station of Uccle is also shown,
and indicated by the black dot.

values for durations lower than 24 hour for our study region have previously been
estimated. Therefore, ARF values are calculated similar to Mailhot et al. (2007):

ARF (T, d) =
x(g)(T, d)

x(s)(T, d)
(4.12)

where x(s)(T, d) and x(g)(T, d) are the return level estimates associated to events
of duration d and return period T , respectively at the station scale (i.e. Uccle)
and the grid box scale (i.e. ALARO-0 at 40, 10, and 4 km resolution). This ARF
value is usually estimated over a certain region, corresponding to the average areal
reduction factor between sites and grid box values, and obtained with regional-
ized values (Mailhot et al., 2007). Such regional averaged ARF values are then
commonly applied to the return level estimates from the observations, to allow a
fair comparison with those estimates from the RCM data (Fowler et al., 2005).
However, in our case the ARF values are only calculated for the station location
of Uccle and its surrounding grid box areas. As can be seen from Eq. (4.12),
applying our ARF values to the observed return level estimates, would again result
in the simulated rainfall return levels. Therefore, we do not aim to calculate the
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ARFs to upscale the observed point rainfall estimates in Uccle, but rather to give
an indication for the order of magnitude of the differences expected between point
and grid averaged intensities and how they vary with duration, area size, and return
period.

Furthermore, in the hydrological community, so-called growth rates and
curves are used as a common standard to characterize the difference between
uncommon and extreme events. The growth rate, or curve GT , defined as the
multiple increase of the T th-year return level over an index extreme value, is
calculated as:

GT =
xT
xi
, (4.13)

with xi some standard return level. This is usually chosen to be x2, i.e. the return
level corresponding to a 2-year return period (Chan et al., 2014). These growth
curves allow direct comparisons between station and gridded data, because they
are independent of areal reduction factors and mean biases (Chan et al., 2014).

4.3.4 Clausius-Clapeyron (CC) assessment

The CC relation expresses the capacity of the atmosphere to hold water, and is
given by the rate of increase of the saturation pressure of water vapor es as a
function of absolute atmospheric air temperature Ta (in Kelvin):

∂es
∂Ta

=
Lves
RvT 2

a

, (4.14)

where Lv is the latent heat of water vapor (2.5 x 106 J kg−1 at 0◦C - this is a very
weak function of temperature), and Rv is the gas constant of water vapor (461.5 J
kg−1 K−1) (Westra et al., 2014). The temperature as given in the denominator of
Eq. (4.14) can be linearized around 0◦C as follows:

T−2a = (273.15 + T ∗a )−2, (4.15)

↔ T−2a = 273.15−2
(

1 +
T ∗a

273.15

)−2
, (4.16)

↔ T−2a
∼= 273.15−2

(
1− 2

T ∗a
273.15

)
, (4.17)

where T ∗a is the temperature in degrees Celsius. Introducing Eq. (4.17) in
Eq. (4.14) and filling in the above values gives:

∂ ln es
∂Ta

∼= 2.5× 106

461.5
273.15−2(1− 0.007T ∗a ), (4.18)

∂ ln es
∂Ta

∼= 0.073(1− 0.007T ∗a ). (4.19)
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Furthermore, the actual saturation specific humidity qsat, which is the mass of
water vapor per kg of air, is given by:

qsat =
εes

p− (1− ε)es
∼= ε

es
p
, (4.20)

where ε is the ratio of the gas constant for dry air to that of water vapor (i.e.
0.622) and p is the atmospheric pressure (in Pa). Considering surface conditions,
the pressure corresponds roughly to 105 Pa, and the vapor pressure es is only in
the order of 1% of the actual pressure, so that the second term in the denominator
in Eq. (4.20) can be omitted. From Eq. (4.20) it can be seen that the pressure
of water vapor at saturation (i.e. relative humidity of 1) is direct proportional
to the saturation specific humidity, and given Eq. (4.19) qsat is thus by a good
approximation exponential and increases by ≈ 7% per degree at 0◦C and ≈ 6%
per degree at 24◦C (Westra et al., 2014).

Assuming constant relative humidity, the amount of water vapor in the atmo-
sphere will thus increase at the CC rate. During extreme precipitation events it is
commonly assumed that all water vapor in the air (or a constant fraction thereof)
is converted to rain (Lenderink and van Meijgaard, 2010). Therefore, based on
these thermodynamic principles it is expected that extreme precipitation increases
relatively proportionally to surface temperature at the CC rate (Trenberth et al.,
2003; Westra et al., 2014).

Recent studies using hourly precipitation observations from different loca-
tions in western Europe demonstrated that for temperatures above ≈ 10◦C, one-
hour precipitation extremes increase approximately twice as fast as the CC relation
(i.e. super-CC scaling of≈ 14%/◦C). For temperatures below 10◦C the increase in
precipitation extremes with temperature are according to the expected CC scaling
of 7%/◦C (Lenderink and van Meijgaard, 2008, 2010; Loriaux et al., 2013). Other
observational studies for the United States and Australia also revealed this super-
CC dependency for most of the assessed stations (Hardwick Jones et al., 2010;
Mishra et al., 2012).

The cause and physical explanation for the super-CC scaling in the observa-
tions has been a point of discussion in several studies. According to Lenderink
and van Meijgaard (2008, 2010), the observed super-CC dependency is a robust
property of convective extremes, while the CC scaling, as found for the daily and
lower-temperature hourly analyses, describes the scaling of extremes of a strati-
form origin. On the other hand, Haerter and Berg (2009) believe that the observed
super-CC scaling might be a statistical artifact induced by the transition between
the stratiform and convective regimes that both scale with CC. Both hypotheses
agree in the sense that the super-CC scaling is somehow caused by a shift from
stratiform to convective dominated extremes, but differ on the interpretation of
the super-CC scaling (Loriaux et al., 2013). In an idealized modeling study, Lo-
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riaux et al. (2013) verified whether the super-CC dependency of hourly extreme
precipitation is indeed robust for convective events. Therefore, the authors ana-
lyzed subhourly observed precipitation over the Netherlands, to select convective
events from the dataset, and demonstrated a super-CC scaling over the entire range
of dewpoint temperatures. From this, the authors conclude that the super-CC de-
pendency is not a statistical artifact as suggested by Haerter and Berg (2009), but a
robust relation for convective extreme precipitation which is likely due to enhanced
convergence of moisture (Loriaux et al., 2013).

Several modeling studies also assessed the CC relation in Global Climate
Models (GCMs) and RCMs (e.g. Allen and Ingram, 2002; Lenderink and van
Meijgaard, 2008; O’Gorman and Schneider, 2009; Lenderink and van Meijgaard,
2010; Berg et al., 2009; Ban et al., 2014, 2015). O’Gorman and Schneider (2009)
demonstrated that the rate of change in extreme precipitation with temperature
vary widely among GCMs, ranging between 1.3% K−1 and 30% K−1. At the re-
gional scale, Lenderink and van Meijgaard (2008, 2010) for instance, found for the
Netherlands that present-day modeled 99.9th percentiles of hourly precipitation in-
tensity, from 25-km output of the RCM RACMO2 and CLM, scale in accordance
with the observations, i.e. a CC scaling for temperatures below ≈ 10◦C and a two
times CC relation for temperatures above ≈ 10◦C. However, for the lower per-
centiles and for temperatures above 22◦C both models are not able to reproduce
the observed CC dependency. Ban et al. (2014) derived the relationship between
modeled daily mean temperature and hourly precipitation for the Alpine region us-
ing output from a 2.2-km CPM as well as a 12-km integration where convection is
parameterized. Similar to the observations, the 2.2-km simulation exhibits for the
90th precipitation percentile a temperature dependence close to the CC scaling and
a super-CC scaling for the most extreme hourly events (i.e. 99th and 99.9th per-
centile). The 12-km model is able to represent the CC scaling relatively well, but
it shows difficulties in reproducing the observed scaling for higher temperatures
in regions of complex topography. Furthermore, Berg et al. (2009) investigated
for different regions in Europe the CC relation in three ERA-40 driven RCMs
with a horizontal resolution of about 50 km for the period 1961-90. In contrast
to the aforementioned studies, the authors explored the scaling relationship be-
tween daily precipitation and daily temperature, and considered different seasons
and months separately, to allow a more detailed investigation of the mechanisms
responsible for the precipitation scaling. Their results show a seasonality in the
temperature dependency of precipitation intensity, with a general increase roughly
following the CC scaling in winter and a decrease in summer. From analyses of
modeled atmospheric water vapor, cloud water and precipitation intensity, the au-
thors demonstrated that during winter the CC relationship controls the increase in
the large-scale precipitation with increasing temperature. While in summer, rather
the availability of moisture than the atmosphere’s capacity to hold this moisture,
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determines the negative scaling of daily precipitation with increasing temperature.
It is clear that a consistent CC scaling of extreme precipitation is not generally

found in the climate models. After all, besides the conceptual understanding of the
potential thermodynamic relation between temperature and extreme precipitation,
other factors such as microphysical contributions or dynamical processes, can also
influence precipitation extremes leading to deviations from the CC scaling. The
dynamic response arises because precipitation extremes are proportional to the as-
sociated pressure vertical velocity which is dependent on convective fluxes of heat
and moisture, and these in turn depend on the large-scale circulation (O’Gorman
and Schneider, 2009; Muller et al., 2011; Shepherd, 2014). Furthermore, since
the super-CC relation is found to be a result of convective precipitation, which is
often differently represented or parameterized by the models, it is not surprising
that the rate of increase of extreme precipitation with temperature could widely
vary among models (Ban et al., 2014). Therefore, it is interesting to assess how
extreme precipitation values from the ALARO-0 model scale with temperature,
and this for different timescales and seasons.

To derive the dependence of extreme hourly precipitation on temperature, we
use the method of Lenderink and van Meijgaard (2008, 2010). Hence, the hourly
precipitation is stratified based on the daily mean temperature in bins of 2◦C width,
with overlapping bins of 1◦C in order to get good statistics in each bin. As we are
interested in a proxy representing the temperature of the air mass, daily mean tem-
peratures instead of hourly temperatures are used. Hourly temperatures are to a
large extent influenced by variations and mixing processes in the planetary bound-
ary layer and by radiation, and therefore may not be representative of the air mass
considered (Lenderink and van Meijgaard, 2010). From the binned 1-hour precip-
itation data, extreme precipitation is then calculated as the 90th, 95th, 99th, and
99.9th percentiles of the wet events (i.e. hours with precipitation more than 0.1
mm hour−1). Similar to Ban et al. (2014), we assure the robustness of the es-
timated percentiles by setting a threshold of the number of precipitation cases in
each temperature bin to n = 50 for the 90th and 95th percentile, and to n = 100 and
n = 500 for the 99th and 99.9th percentile, respectively. In case that the number
of datapoints in a respective bin is lower than n, the percentile is not calculated.
Since percentiles are calculated for different periods (e.g. seasons) or timescales
(e.g. hourly, daily, monthly), the threshold value for n that sets the minimum num-
ber of datapoints to calculate the percentiles, will increase or decrease depending
on whether the total number of cases in the whole dataset has increased or de-
creased. For percentiles calculated for hourly precipitation separately for winter
and summer, the amount of data is lowered by a factor 4. Accordingly, the mini-
mum number of hourly precipitation cases that should be in each bin, is roughly
lowered by a factor of 4, corresponding to a threshold of n of 13, 25, and 125,
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for the 90th and 95th, 99th, and 99.9th percentiles, respectively. Similarly, for
percentiles obtained with daily precipitation, the threshold of n is lowered by a
factor of 10, which thus sets the value of n to 5, 10 and 50 for the 90th and 95th,
99th, and 99.9th percentiles, respectively. It is clear that the factor to which the
threshold values for n are lowered, does not fully scale with the decrease in the
number of cases in the dataset. However, the use of this threshold value rather
assures robustness in the visualization of the results, and does not influence the
results itselves.

The percentiles are calculated for the observed data of Uccle, as well as for the
modeled data using the closest grid box values from the ERA-Interim downscaling
with ALARO-0 at 4 km resolution for the period 1981-2010. The ERA-Interim
driven simulation is used for the CC assessment, because analyses are done for
both the summer and winter season, and the ERA-40 driven simulations were only
done for the summer period 1961-90.

4.4 Results and discussion

4.4.1 Diurnal cycle

Generally, the diurnal cycle of convection over land involves many processes be-
tween the surface, the boundary layer and the free troposphere such as surface
exchange, turbulence, convection, and cloud-radiation interactions. Since all these
processes are parameterized, the ability of a RCM or GCM to simulate correctly
the diurnal cycle is an important test of the physical parameterization schemes
within the models (Bechtold et al., 2004).

As mentioned previously in the introduction (Section 4.1), one of the major
added value of CPMs can be found in the improvement of the diurnal cycle of
summer precipitation. The mean diurnal cycle of JJA hourly precipitation obtained
from observations in Uccle and from the closest model grid box values of the ERA-
40 driven ALARO-0 runs at 4-km, 10-km, and 40-km resolution (ERA40-ALR04,
ERA40-ALR10, ERA40-ALR40) is shown in Fig. 4.3(f). The mean diurnal cycle
for the ERA-Interim driven ALARO-0 run at 4-km is also shown, together with
the corresponding observed diurnal cycle for the JJA period 1981-2010. To put
our result in perspective of other studies, we have added our result to an overview
figure from Prein et al. (2015).

Both the high-resolution ERA40 and ERAINT results for ALARO-0, show a
similar improvement in the simulation of the onset and peak of convective precipi-
tation as all other CPMs shown in Fig. 4.3. The observed diurnal cycle of summer
precipitation in Uccle is characterized by a minimum in the morning around 10
UTC and a convective maximum in the afternoon.
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Figure 4.3: Subfigures (a) to (e) are adopted from Prein et al. (2015). Mean diurnal cy-
cles of (a) precipitation averaged across June-July-August (JJA) in Switzerland (Ban et al.,
2014); (b) annually in Southern UK (Kendon et al., 2012); (c) July 2006 in Switzerland
(Langhans et al., 2013); (d) June-July-August (JJA) in eastern part of the Alps (Prein et al.,
2013a); (e) June-July-August (JJA) in Baden-Württemberg, Germany (Fosser et al., 2015);
and (f) June-July-August (JJA) for all days in Uccle, Belgium.

Compared to the low-resolution 40-km diurnal cycle (i.e. ERA40-ALR40 in
blue), the timing and peak of precipitation are much better simulated by the high-
resolution 4-km and 10-km runs (i.e. ERA40-ALR04, ERAINT-ALR04, ERA40-
ALR10). Low resolution RCMs or GCMs are indeed known to have a too early
onset and peak of convective precipitation and a too early decay of convective
activity (Bechtold et al., 2004). However, compared to the observations, the high-
resolution runs still show a too early onset and peak of convective precipitation.
Observed precipitation starts to increase at 11 UTC and peaks around 16 UTC,
while the build-up of convective rain in ALR04 and ALR10 already starts at 8
UTC, and it reaches its peak around 13 UTC.
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Figure 4.4: 30-yr mean diurnal cycles of summer rainfall for (a) wet hours (i.e. precipita-
tion > 0.1 mm hour−1), and (b) extreme hours (i.e. precipitation > 0.95th quantile), and
of winter rainfall for (c) all hours, and (d) wet hours. Diurnal cycles are calculated for
the observations (black) in Uccle and the closest model grid box values to Uccle (green for
ERA40-ALR04 and ERAINT-ALR04, red for ERA40-ALR10, and blue for ERA40-ALR40).

To examine the reason for this shift in ALR04 and ALR10, we have con-
structed the 30-yr mean diurnal cycles for the wet hours (i.e. precipitation >

0.1 mm hour−1) and for extreme precipitation hours defined as the hours with
precipitation values higher than the 0.95th quantile of the total dataset (Figs. 4.4(a)
to 4.4(b)). It is notable that the too early onset as was seen before, has disappeared.
The onset of convective rain occurs in both high-resolution simulations now at the
same time as in the observations. Furthermore, in contrast to the diurnal cycle
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for all hours (Fig. 4.3 f)), the magnitude of the diurnal cycle is now consistently
underestimated by ALR04 and ALR10, and in particular when only considering
the wet hours. This suggests that the model overestimates the number of light
rain events, and underestimates the number of dry cases with respect to the obser-
vations. The “drizzle effect” is a well known problem of RCMs (Kendon et al.,
2012), and it has also been identified in previous chapter by the density curves
obtained from the daily precipitation amounts (see Fig. 3.7 in Chapter 3).

Generally, most studies point the reason for the poor representation of the
diurnal cycle of precipitation in the low-resolution models to the use of the deep
convection parameterization scheme, which is for the high-resolution CPMs turned
off (Langhans et al., 2013; Prein et al., 2013a; Ban et al., 2014). However, recent
developments in the ALARO-0 model demonstrated that a correct description of
the moist deep convection diurnal cycle does not only depend on the parameter-
ization of convection, but also on the feedback coming from the interaction of
radiation and cloud schemes (Brožková, 2015). The time shift in the diurnal cycle
of ALARO-0 with respect to observations, characterized by a too early start of
convection in the morning by a couple of hours and consequently too early decay
of convective activity in the evening, has been a recognized problem of the model.
Hence, in 2012, improvements in the 3MT physics scheme for moist deep convec-
tion were introduced, and these consisted of three major changes: (i) enhancement
of the entrainment scheme by introducing a modification of the parameter of the
buoyancy term, which takes into account relative humidity representing the grid-
cell; (ii) introduction of more memory, via the evaporation of precipitation in the
previous time step of the model. More evaporation leads to higher and less en-
training clouds in the next time step, which in turn allows for maintaining the
convective activity longer; and (iii) adjustment in the computation of the updraft
area fraction, resulting from the closure of the scheme, with respect to the mesh
size of the model. These modifications indeed reduced the time shift in the onset
and decay of convection. Nevertheless, the too early decay in the evening was
still present. In 2014, a new model version ALARO-1, including - amongst other
changes - the new radiation scheme (ACRANEB2), resulted eventually in combi-
nation with the previous improvements of 3MT in a significant improvement of
this last deficiency related to the timing of the diurnal cycle (Brožková, 2015).
Since the version of ALARO-0 (cycle36), which is used for the simulations in this
thesis, date from 2010, these improvements are not included, and a too early onset
in the diurnal cycle is still present.
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Figure 4.5: 30-yr mean diurnal cycles of summer rainfall for (a) all hours, (b) extreme
hours (i.e. precipitation > 0.95th quantile), (c) all hours and grid points with low topogra-
phy (i.e. < 200 m), and (d) all hours and grid points with high topography (i.e. [400-630]
m). Diurnal cycles are calculated for the upscaled 4-km and 10-km simulations, and 40-km
simulation, across all 40-km grid boxes (8 × 7).

The mean diurnal cycle of winter precipitation (December-January-February)
is also analyzed and shown in Figs. 4.4(c) to 4.4(d). The observed hourly precip-
itation intensity is quite uniform throughout the day, while the model (ERAINT-
ALR04) shows a weak peak of precipitation in the early afternoon which is not
visible in the observations. This peak in rainfall may again be attributed to the sim-
ulation of too much persistent light rain, since the model strongly underestimates
the hourly, wet precipitation amounts throughout the whole day (Fig. 4.4(d)).
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Overall, the high-resolution ALARO-0 simulations show a better representa-
tion of the observed summer diurnal cycle than the low-resolution 40-km simu-
lation (ERA40-ALR40 in blue), which clearly shows difficulties in capturing the
observed convective peak, both in terms of magnitude and phase. The poor rep-
resentation of the diurnal cycle by ERA40-ALR40, may be due to the fact that
the amount of precipitation measured at a single point is not comparable with the
amount averaged over a whole grid box, which is particularly true for small scale
convection precipitation and coarse grids (Brockhaus et al., 2008). To exclude the
effect of this important disadvantage of direct comparison of the diurnal cycle in a
model grid box against one single station of the same period, the diurnal cycle of
the upscaled 4-km and 10-km resolution ALARO-0 data towards a common low-
resolution 40-km grid (8 × 7 grid points), has been calculated. Figure 4.5 shows
the 30-yr mean diurnal cycles of summer rainfall for the upscaled 4-km and 10-km
simulations, and 40-km simulation, across all 40-km grid points of the common 8
× 7 subdomain

First of all, it is important to note that the mean diurnal cycle for the regridded
data is much smoother and similar to the diurnal cycles shown in Fig. 4.3(a)-(e).
Using a gridded dataset to construct the diurnal cycle indeed smooths out all vari-
ability, with the latter clearly being present in the diurnal cycle based upon only
one grid point (Uccle) as shown in Fig. 4.3(f). The mean diurnal cycles of rain-
fall for all hours as well as for extreme precipitation values, and averaged over the
common 8 × 7 40-km subdomain, are shown in Fig. 4.5(a) and Fig. 4.5(b). The
rainfall amounts throughout the day are given for the model only, since no gridded
observation dataset for Belgium is currently available (see Section 4.2.2). To facil-
itate the comparison with the diurnal cycles for Uccle, the same y axis is used to
plot the modeled rainfall amounts. Except for the absence of the interhourly vari-
ability, the diurnal cycles for the upscaled and gridded model data are very similar
to those for Uccle, and reveal the same characteristics in timing and magnitude for
the high-resolution (4 and 10 km) versus the low-resolution (40 km) simulations.
This suggests a consistent improvement in the onset and peak of deep convection
for ALR04 and ALR10, which is lacking in ALR40.

Finally, to assess the orographic effects on convective activity in Belgium,
the mean diurnal cycles of summer rainfall are obtained for the grid points cor-
responding to low topography (i.e. 39 grid points with topography < 200 m)
and high topography (i.e. 4 grid points with topography between [400-630] m)
(Fig. 4.5(c) and Fig. 4.5(d), respectively). Similar to results for the Alpine region
from Hohenegger et al. (2008), the ALARO-0 model reveals for all resolutions
a strong dependency of the simulated daily convective development on the oro-
graphic forcing. The diurnal cycle for the grid points with low topography indi-
cates that a weak orographic forcing hampers a clear simulation of the convective
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peak in the afternoon. However, simply a local effect reflected in the diurnal cycle
can neither be excluded, as the 4 grid points with high topography are located next
to each other.

4.4.2 Frequency and intensity characteristics

In this section we address the question whether ALARO-0 is able to reproduce the
hourly precipitation statistics in terms of frequency and intensity. Figure 4.6 shows
the 30-yr frequencies of hourly summer precipitation for the observations in Uccle,
together with the closest model grid box values for the different simulations and
resolutions (ERA-40-ALR04, ERA40-ALR10, ERA40-ALR40). The frequencies
are obtained by binning the (low values of) hourly precipitation values into bins of
(0.1) 1 mm hour−1
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Figure 4.6: Frequencies of (a) hourly summer precipitation, and (b) low values of hourly
summer precipitation (i.e. [0-2] mm hour−1) of observations, ERA40-ALR04, ERA40-
ALR10, ERA40-ALR40. Frequencies are computed with the 30-yr (1961-90) hourly summer
precipitation given for the station of Uccle and its nearest model grid box. Frequencies are
displayed on a logarithmic scale.

The high-resolution ALARO-0 runs reproduce the observed hourly precipita-
tion frequencies relatively well, while the 40-km simulation clearly underestimates
the frequency of hourly precipitation amounts. Both high-resolution simulations,
and in particular ALR04, are able to capture the highest values of observed hourly
rainfall. However, a slight underestimation of the observed values is still visible.
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The same findings are valid for the ERAINT-ALR04 simulation w.r.t. the obser-
vations for the 30-yr summer period 1981-2010 (see Appendix B, Fig. B.1).

As has been suggested in the previous section (Section 4.4.1), all models
simulate consistently too much persistent light rain values (Fig. 4.6(b)). The
slight underestimation of high-precipitation amounts and overestimation of low-
precipitation values, are both long-standing issues of RCMs in the simulation of
subdaily precipitation. To check on the sensitivity of this result with respect to the
comparison of station point values with grid box mean values, frequencies have
again been calculated for the upscaled 4-km and 10-km data to the 40-km grid.
The frequency distributions are presented in Fig. 4.7, showing that the differences
between the high-resolution runs (ALR04 and ALR10) and ALR40, as seen in
Fig. 4.6, remain, and even are larger.
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Figure 4.7: As in Fig. 4.6, but frequencies are computed for the upscaled 4-km and 10-
km simulations, and 40-km simulation, across all 40-km grid boxes of the common 8 × 7
subdomain.

Hourly rainfall amounts corresponding to a range of percentile thresholds in
observations and (upscaled) models are shown in Figs. 4.8(a) to 4.8(b). The 80th

percentile of the hourly precipitation distribution corresponds to dry cases of 0
mm hour−1 in both observation datasets for the period 1961-90 and 1981-2010
(Fig. 4.8(a), black lines). The observation distribution for 1981-2010 even has a
rainfall intensity of 0 mm hour−1 up to the 90th percentile. This is a consequence
of the large number of hours with no rain such that the very high percentile thresh-
olds (> 99) are needed to capture heavy rain (Kendon et al., 2012). In contrast, the
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80th percentile of the hourly distribution of the models corresponds to light rain
of less than 0.1 mm hour−1, but it is still larger than 0 mm hour−1. Although the
simulations overestimate the light rainfall amounts, which are usually considered
as numerical noise, they consistently underestimate the number of dry cases with
respect to the observations. However, these differences between the observed and
modeled precipitation can also be explained by the difference in the precision be-
tween the observation measurements and the modeled precipitation values, which
is naturally lower for the observations (i.e. 0.1 mm until July 2008, and 0.01 there-
after) than for the model simulations. Nevertheless, the rainfall rate of the 80th

percentile is lower in ALR04 and ALR10 than in ALR40. This indicates that the
high-resolution models have considerably more dry spells than ALR40, which is
in much better agreement with the observations. It can be seen that this result is
robust for the upscaled rainfall distributions corresponding to the percentile thresh-
olds (Fig. 4.8(b)).
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Figure 4.8: Hourly summer rainfall intensities (mm hour−1) corresponding to a given
percentile threshold in (a) the observations and closest model grid box values for Uc-
cle (ERA40-ALR04, ERA40-ALR10, ERA40-ALR40, and ERAINT-ALR04), and (b) the up-
scaled 4-km and 10-km simulations, and 40-km simulation. A percentile threshold corre-
sponds to the pth percentile (80, 90, 95, 99, 99.5, 99.9, 99.95, 99.99) of the distribution
of hourly rainfall for (a) Uccle, and (b) across all 40-km grid boxes of the common 8 × 7
subdomain and all 30 years in the respective datasets. Rainfall intensities are displayed on
a logarithmic scale.

For higher percentile thresholds (> 99), all models show an underestimation
of the corresponding rainfall amounts. However, the tendency for underestimating
the highest percentiles is significantly decreased for the highest resolutions, which
is also in line with the frequency plots.



4-26 CHAPTER 4

Previous results suggest that the multiscale performance of ALARO-0 in the
simulation of daily summer precipitation, as was found in the previous chapter
(Chapter 3), does not hold for the simulation of subdaily precipitation. Further-
more, these results reflect that the added value in the simulation of precipita-
tion at the subdaily timescale indeed can be found in the highest 4-km resolution
ALARO-0 simulation. This finding is further investigated in the next sections, by
means of two important scaling relations related to extreme precipitation at the
subdaily scale.

4.4.3 Scaling properties

In general, the assessment of scaling properties of extreme (subdaily) precipita-
tion is very important as it could provide insights in whether (and how) the scal-
ing relations derived for present-day climate will manifest in a changing climate
(Lenderink and van Meijgaard, 2010). In the next sections, two scaling properties
related to extreme rainfall; i.e. the linear behavior of the GEV parameters and the
CC relation, are examined.

4.4.3.1 Power law of the Generalized Extreme Value parameters

The GEV distribution [Eq. (4.1)] is fitted to the observed and modeled summer
annual maxima precipitation intensities. A goodness-of-fit K-S test is applied to
check whether the GEV distribution fits the summer annual maxima. As an il-
lustration, Fig. 4.9 shows the observed summer annual maxima precipitation in-
tensities for the different durations (gray vertical bars), together with the fitted
cumulative GEV distribution function (F (x), black solid line) and the empirical
cumulative distribution function estimated from a sample size of 30 (S30(x), red
dots). In addition the 1000 bootstrap samples of size 30, which are randomly
generated from the fitted GEV are also presented (F30(x), darkgreen solid lines).
As can be seen, the empirical cumulative distribution closely approaches the fit-
ted cumulative distribution, and both distributions lie in the center of the 1000
bootstrapped distributions. This is also confirmed by the results from the K-S
tests. The D statistic obtained from the maximum absolute difference between the
empirical distribution and the fitted GEV distribution, is for all durations smaller
than the critical value given by the 95th percentile from the 1000 D statistics,
so that the null hypothesis that the seasonal extremes are realizations from the
GEV distribution can be accepted at the 5% significance level. The same results
are found for the modeled summer annual maxima precipitation intensities from
ERA40-ALR04, ERA40-ALR10, and ERA40-ALR40 (not shown), indicating that
the GEV distribution is a good choice for a distribution function of the observed
as well as modeled summer annual maxima.

The GEV parameter estimates (location parameter µ, scale parameter σ, and
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shape parameter γ) are shown in Figs. 4.10(a) to 4.10(c) respectively, and pre-
sented by the colored dots for each duration. It can be seen that the location and
scale parameter decrease with increasing duration. The decrease of the scale pa-
rameter with increasing duration reflects that the relative variability of the summer
annual maxima intensities is large at short durations (Hanel and Buishand, 2010).
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Figure 4.9: Observed summer annual maxima precipitation intensities for the different
durations (gray vertical bars), together with the fitted GEV distribution function (F (x),
black solid line) and the empirical distribution function estimated from a sample size of 30
(S30(x), red dots). The 1000 bootstrap samples of size 30, which are randomly generated
from the fitted GEV (F30(x)) correspond to the darkgreen solid lines.

Furthermore, it is shown that for the observed and both high-resolution ex-
treme rainfall amounts, the logarithm of the location parameter µ and scale pa-
rameter σ have a linear relationship with the logarithm of the duration d ranging
between 1-24 hour (Figs. 4.10(a) to 4.10(b)). This linear behavior of the high-
resolution extreme rainfall amounts, and in particular the 4-km values, corresponds
very closely to the observed ones. The linear regression line between the logarithm
of the parameter estimates and the logarithm of the durations is indicated by the
solid lines, with the slopes of the regression given by the numbers in the legend
between parentheses.
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Figure 4.10: Estimates of (a) GEV location parameter (µ), (b) GEV scale parameter (σ),
and (c) GEV shape parameter (γ). GEV estimates (colored dots) are obtained by the
L-moments method for different durations d of observed (black) and modeled (green for
ERA40-ALR04, red for ERA40-ALR10, and blue for ERA40-ALR40) summer annual max-
ima precipitation intensities for Uccle. The error bars show the 95% confidence interval
around the location and scale parameter estimates based on 1000 parametric bootstrap it-
erations and solid lines correspond to the linear regression lines between the logarithm of
GEV parameter estimates and the logarithm of the different durations d, with the values of
the slope given between parentheses in the legend. GEV parameter estimates and durations
are displayed on a logarithmic scale.

Table 4.1 shows for the observations and modeled data the estimated regres-
sion coefficients (i.e. slope and intercept) of the GEV parameter estimates. The
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significance of the linear regression is tested by the F-test. For both the observed
and modeled location and scale parameters, the p-values from the F-statistic are
much smaller than the 5% significance level (0.05), indicating that the null hy-
pothesis that the regression coefficients from the linear fit are zero, can be re-
jected. Hence, it can be said that the linear relationship between the logarithm of
both GEV parameters and the logarithm of the duration is statistically significant
at the 5% significance level.

GEV parameter a b p-value

µ

OBS -0.723 2.352 0.000∗

ERA40-ALR04 -0.681 2.297 0.000∗

ERA40-ALR10 -0.624 2.251 0.000∗

ERA40-ALR40 -0.459 1.748 0.002∗

σ

OBS -0.779 1.444 0.000∗

ERA40-ALR04 -0.786 1.515 0.000∗

ERA40-ALR10 -0.687 1.259 0.000∗

ERA40-ALR40 -0.385 0.447 0.001∗

γ

OBS -0.035 -1.686 0.773

ERA40-ALR04 0.044 -1.557 0.526

ERA40-ALR10 -1.032 -1.536 0.153

ERA40-ALR40 -0.166 -2.307 0.315

Table 4.1: Estimated linear regression coefficients of the GEV location (µ), scale (σ), and
shape (γ) parameter estimates (i.e. a = slope, b = intercept). p-values of the F-statistic
from the F-test, testing the significance of the linear regression, are also given. Linear
regressions between the logarithm of the parameter estimates and the logarithm of the du-
ration which are statistically significant at the 5% significance level, are indicated by an
asterisk (i.e. p-value much smaller than 0.05).

a SD(a) b SD(b)
Although, the linear regression for the low-resolution 40-km location and

scale parameter estimates is found to be statistically significant, the linear re-
gression is not shown, as no clear linear dependency is visible (Fig. 4.10(a) and
Fig. 4.10(b)). This is also reflected in the p-values of the F-statistic. The p-
values of the low-resolution 40-km parameter estimates (i.e. respectively 0.002
and 0.001) are indeed larger than those of the 4-, and 10-km parameter estimates
(i.e. all ≈ 0). Furthermore, it can be seen from Fig. 4.10(a) and Fig. 4.10(b) that
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the 40-km GEV estimates deviate strongly from the observed estimations. How-
ever, from aggregation times of 6 hour, the 40-km location and scale estimates also
start to approach the observed estimates. Based upon a 27-yr 10-min precipitation
observation time series from Uccle, Willems (2000) also found this linear-log de-
crease of the GEV model parameters with the aggregation-level.

For the shape parameter (Fig. 4.10(c)), only the linear regressions for the
observations and high-resolution 4-km model are displayed. This is rather illustra-
tive, as overall there appears to be no systematic variation of γ with duration. This
is also confirmed by the p-values which are all much larger than the 0.05 signif-
icance level, so that the H0 that the regression coefficients from the linear fit are
zero, cannot be rejected. However, for ERA40-ALR10 the result may be affected
by the strong deviating estimate for the 24-h duration (Fig. 4.10(c)), the p-value
is still found to be larger than the significance level. Hence, this suggests that γ
may be considered to be constant, and that a linear regression is not an adequate
fit between the logarithm of the shape parameter and the logarithm of the duration.
These results, showing a linear dependency of the location and scale parameter,
but no systematic change of the shape parameter with duration, are similar to the
findings of Overeem et al. (2008) and Hanel and Buishand (2010).

The linear behavior of the estimated GEV location and scale parameter cor-
responds to the earlier described power law of the aggregation times [Eqs. (4.10)
to (4.11)]. However, as it can be seen from the slope estimates in Fig. 4.10 and
Table 4.1, a power law formulation with different estimates for the scaling factor
η for the location and scale parameter, would be more correct:

µ(d) = µd−η1 , (4.21)

σ(d) = σd−η2 , (4.22)

with η1 6= η2. Thus, from [Eq. (4.9)] a better IDF-relationship is then given by:

iT (d) =
µ

dη1
− σ

dη2γ

{
1−

[
− log

(
1− 1

T

)]−γ}
. (4.23)

The relations of GEV parameters as a function of duration d are then used
to construct rainfall IDF curves. Figure 4.11 shows the JJA IDF-relationships
from the model (green for ERA40-ALR04, red for ERA40-ALR10, and blue for
ERA40-ALR40) and observational (black) data for Uccle. Intensities in the IDF-
relation plots are calculated with (i) Eq. (4.8) using the parameters estimated from
the GEV fit (circles), and with (ii) Eq. (4.23) using the location- and scale param-
eter derived from the power law given by Eqs. (4.21) to (4.22) (solid lines). The
values for µ (σ) and η1 (η2) in Eqs. (4.21) to (4.22) correspond to the values of the
intercept and slope from the linear regression of the location parameters (µ) and
scale parameters (σ), respectively. As it has been demonstrated previously, the
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Figure 4.11: JJA IDF-relationships with the intensities (return levels) calculated with (i)
[Eq. (4.8)] using the GEV-estimated parameters (circles), and with (ii) [Eq. (4.23)] us-
ing the location- and scale parameter derived from the power law given by [Eqs. (4.21)
to (4.22)] (solid lines). For both intensity calculations (i) and (ii) one and the same mean
value over all durations for the shape parameter (γ) has been used. Intensities are given
as a function of return period (T ) for observations (black) and models (green for ERA4O-
ALR04, red for ERA40-ALR10, and blue for ERA40-ALR40), plotted on log-log graphs,
and computed for the station of Uccle and its nearest model grid box values. The different
panels represent different durations (1, 2, 3, 6, 12, and 24 h).

dependence of the shape parameter on duration is not significant. Therefore, for
both intensity calculations (i) and (ii), one and the same mean value over all dura-
tions has been used for the shape parameter (γ). Intensities are plotted on log-log
graphs, with the different panels representing different durations (1, 2, 3, 6, 12, and
24 h). First of all, it can be seen from Fig. 4.11 that the use of the power law values
for the location- and scale parameter, is a valid method for the derivation of IDF-
relationships. Furthermore, the estimated extreme precipitation intensities are for
the highest-resolution simulation (ERA40-ALR04) and for all durations in close
agreement to the observed estimated intensities. For the highest return periods (i.e.
T = 50 years or T = 100 years) the modeled intensities deviate slightly from the
observations. Since the intensity estimates are based upon summer annual max-
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ima precipitation intensities for a period of only 30 years (1961-90), one should
keep in mind that estimates for such large return periods are relatively uncertain.
Similar to previous results, the 40-km low-resolution intensities strongly deviate
from the observations, and consistently underestimate the observed intensities for
all return periods. Again, from 6-hour durations onwards, ERA40-ALR40 also
starts to approach very closely the observations.

The strong underestimation of the 40-km GEV location parameter and scale
parameter for the lowest durations can be explained by the fact that the summer
annual maxima of area-average precipitation, and consequently also the corre-
sponding intensities, for a given duration tend to decrease if the area (or spatial
resolution) becomes larger (Hanel and Buishand, 2010). To check the sensitivity
of this reduction of the GEV parameters and consequently precipitation intensities
with increasing area size on the results, the analysis has been repeated using the
upscaled data for the 8×7, 40-km resolution subdomain. The results are shown in
Appendix B, Fig. B.2 and Fig. B.3, and reveal similar conclusions: the estimated
GEV scale and location parameters for the upscaled high-resolution 4-km and 10-
km simulation show a linear dependency with duration, and the 4-km and 10-km
IDF-curves show higher intensities than for the 40-km simulation, particularly for
the shortest durations.

The increasing underestimation of precipitation amounts by low resolution
RCM simulations with decreasing duration has also been found in other studies
(e.g. Mailhot et al., 2007; Hanel and Buishand, 2010). It can be related to the
average sizes of meteorological processes involved. We can assume that strong
convective processes such as summer thunderstorms are responsible for the 1-h
extremes. Such localized thunderstorms have spatial scales in the order of 10
km, which indeed are much smaller than the size of the average grid box of the
low-resolution 40-km model. On the other hand, meteorological processes respon-
sible for 24-h summer extremes are generally larger in scale, and can therefore
possibly cover one or more 40-km model grid box (Mailhot et al., 2007). This is in
agreement with our finding that from 6-hour durations onwards, ERA40-ALR40
starts to approach the observations, indeed suggesting that this “smoothing effect”
increases as the duration of the summer extremes becomes longer.

To further investigate the relationship between return levels from the obser-
vation station point in Uccle and from the closest grid box estimates, ARF values
have been calculated [Eq. (4.12)]. The return levels used for the ARF calculation
are those obtained with the location- and scale parameter values derived from the
power law [Eq. (4.23)]. Figure 4.12 shows how ARF values for Uccle evolve as a
function of duration d (i.e. 1, 2, 3, 6, 12, and 24 hour) for different return periods
T (i.e. 2, 5, 10, 20, 50, and 100 year). It can be seen that the ARFs vary with
duration and size of the averaging area, showing for a fixed (grid box) area, lower
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ARF values for shorter durations (Mailhot et al., 2007). As mentioned previously,
this is related to the fact that events involved in shorter duration extreme rainfalls
are spatially smaller than those involved in longer duration extreme precipitation
events. As this scale difference between duration and the respective size of the me-
teorological system involved, becomes larger when the area (resolution) becomes
larger (lower), this variation is largest for the lower resolution ERA40-ALR10 and
ERA40-ALR40 simulations.
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Figure 4.12: Areal reduction factor (ARF) between return levels for Uccle at the grid box
and station scale as a function of duration d (i.e. 1, 2, 3, 6, 12, and 24 hour) for different
return periods T (i.e. 2, 5, 10, 20, 50, and 100 year). The ARF is calculated with the return
levels obtained with the location- and scale parameter values derived from the power law
[Eq. (4.23)].

Furthermore, in agreement with the ARF values obtained by Mailhot et al.
(2007) for a region in southern Quebec, our ARF values of the high-resolution
ERA40-ALR04 simulation suggest for all durations an increase as function of
return period. In contrast, the lower resolution simulations ERA40-ALR10 and
ERA40-ALR40 show an opposite response, i.e. ARFs are decreasing with increas-
ing return period. This contrasting variation could be explained in a similar way
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as the variation of the ARF values with duration d. More specifically, longer re-
turn periods can generally be associated with high precipitation quantiles or more
extreme precipitation amounts. As a consequence, it can be expected that the
scale difference between extreme precipitation events associated with long return
periods and the low resolution simulations will be large. Hence, for such long
return periods (e.g. 100-yr return period), and in particular for the shortest du-
rations, the ARF values of the lower resolution simulations (ERA40-ALR10 and
ERA40-ALR40) deviate more from one than it is the case for ERA40-ALR04.
Overall, since this variation with return period is dependent on the nature of the
meteorological systems involved in the respective region during extreme events,
differences in the variation of ARF values with return period are possible when
other regions are considered (Mailhot et al., 2007).
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Figure 4.13: JJA GEV-estimated growth curves [y axis GT = xT /x2] as a function of
return period (T ). xT and x2 are the estimated intensities (return levels) for the T th- and
2nd-return period, respectively. The intensities are again calculated in two ways (circles
and solid lines), similar to the intensities given in Fig. 4.11. Colored lines correspond to
the different datasets: green for ERA4O-ALR04, red for ERA40-ALR10, blue for ERA40-
ALR40, and black for observations. Different durations (1, 2, 3, 6, 12, and 24 h) are shown
in different panels and the axes are shown on a logarithmic scale.
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Finally, to compare in a consistent manner previous results from modeled grid
box mean values with station point values, we have calculated so-called growth
curves (see Section 4.3.3). The growth curves (Fig. 4.13) are in agreement with
the findings from previous IDF-relation plots and ARF values. The differences be-
tween the low-resolution 40-km and 10-km growth curves and the observations are
gradually reduced as the accumulation periods become longer, and the differences
disappear for the 24-hour durations. Hence, changing the duration has little im-
pact on the growth curves for the highest-resolution ERA40-ALR04 run, which is
not valid for the lower-resolution ERA40-ALR40 and ERA40-ALR10 runs. Sim-
ilar results were found by Chan et al. (2014), who used extreme value theory to
compare subdaily extreme summer precipitation from two model simulations at
12-km and 1.5-km resolution over southern UK. The authors also found a gradu-
ally decrease in the difference between the 12-km RCM and the other datasets as
the duration becomes longer.

4.4.3.2 Clausius-Clapeyron (CC): Scaling of precipitation extremes with
temperature

As described previously (Section 4.3.4), the CC relation gives the increase in the
moisture-holding capacity of the atmosphere with temperature, approximately
corresponding to a rate of 7% per degree temperature rise. Furthermore, it has
been argued that the CC relation sets a scale for the increase in extreme precipi-
tation extremes with global warming (Ban et al., 2014). We test this hypothesis,
by deriving the relationships between local daily mean surface temperature and
hourly precipitation from observational data for Uccle. However, RCMs do not
necessarily reproduce the observed CC scaling, and the relationship between
extreme precipitation and temperature can vary widely among models. Therefore,
it is very relevant to assess how this relationship is represented in the ALARO-0
model w.r.t. other RCMs or CPMs, and to investigate whether the ALARO-0
model can reproduce the observed scaling. For this we use the closest grid box
mean model output to the observation station of Uccle from the ERA-Interim
downscaling at 4-km resolution (ERAINT-ALR04).

Figure 4.14 shows for the observations and ERAINT-ALR04 the aforemen-
tioned relation for the 90th, 95th, 99th, and 99.9th percentiles of the 1-hour pre-
cipitation intensities (Fig. 4.14(a) and Fig. 4.14(b)) and daily maximum of hourly
precipitation intensities (Fig. 4.14(c) and Fig. 4.14(d)) as function of daily mean
temperature for Uccle. To assess more in detail the observed and modeled scal-
ing behavior, we have calculated the scaling exponents for different percentiles
of hourly precipitation by fitting a linear regression between the logarithmic of
the hourly precipitation amounts and the daily mean temperatures (Fig. 4.15(a)).
Similarly, the scaling exponents are also obtained for the 99th percentile of differ-
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ent precipitation durations (Fig. 4.15(b)). It can be seen that the 90th, 95th, and
99th model percentiles of both the hourly precipitation as well as the daily max-
imum of hourly precipitation level off around temperatures of 22◦C (Fig. 4.14(b)
and Fig. 4.14(d)). To exclude the effect of this leveling off, the scaling exponents
are calculated for daily mean temperatures to 22◦C. To quantify whether the ob-
servations and model reproduce the super-CC scaling, as discussed previously in
Section 4.3.4, the scaling exponents are also calculated separately for temperatures
below and equal to 12◦C, as well as for temperatures above 12◦C.

Consistent with the CC hypothesis, observed extreme precipitation (Fig. 4.14(a)
and Fig. 4.14(c)) indeed increases at a rate of about 7% per degree (adiabatic scal-
ing). As can be seen from Fig. 4.15(a), the less extreme observed precipitation
amounts given by the percentiles below the 90th percentile, show a scaling below
the CC scaling. The 1-hour and daily maximum hourly precipitation intensities
generally exhibit a similar scaling behavior. However, for temperatures above ≈
12◦C, the 99th percentiles, and nearly all percentiles of daily maximum hourly
precipitation, clearly show a larger increase, close to the super-CC rate.
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Figure 4.14: Dependencies of different extreme percentiles (90th-99.9th) of the distribution
of (a, c) observed, and (b, d) modeled (ERAINT-ALR04) (a, b) hourly and (c, d) daily
maximum of hourly precipitation on temperature in Uccle and its closest model grid box
values. Exponential relations given by a 7% and a 14% increase per degree are given by
the black and red dotted lines, respectively. Percentiles are displayed on a logarithmic y
axis.

The observed scaling exponents for temperatures above 12◦C are for almost
all percentiles indeed larger than the CC scaling, and they show a maximum scal-
ing of ≈ 12% per ◦C for the 99th percentile (Fig. 4.15(a)). This is in agreement
with results from previous studies (e.g. Lenderink and van Meijgaard, 2008, 2010;
Loriaux et al., 2013; Ban et al., 2014). Nevertheless, the super-CC rate is not
visible for the highest percentile of hourly precipitation, since no percentiles are
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calculated because of the high threshold for the minimum number of data points
that we have set to calculate the highest percentiles (i.e. 500).

The observed temperature dependency of hourly precipitation percentiles is
relatively well reproduced by the model (Fig. 4.14(b)). Although, the model ex-
hibit a similar behavior as the observations, it systematically underestimates the
scaling exponents (Fig. 4.15(a)). As shown by Fig. 4.15(a), for temperatures
≤ 12◦C as well as for the whole temperature range, all percentiles of hourly
ERAINT-ALR04 precipitation increase with a rate lower than the CC relation.
Only for temperatures above 12◦C, the 90th, 95th and 97th percentiles follow the
CC scaling, and the highest percentiles show a dependency slightly below and ac-
cording to the super-CC relation (Fig. 4.14(b) and Fig. 4.15(a)). However, as can
be seen in Fig. 4.14(d) this super-CC behavior is not visible in the 99th percentiles
calculated with the daily maximum of hourly precipitation.
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Figure 4.15: (a) Variation of the observed (black) and modeled (ERAINT-ALR04, green)
scaling exponent with percentile of hourly precipitation, and (b) variation of the observed
(black) and modeled (ERAINT-ALR04, green) 99th percentile scaling exponent with pre-
cipitation duration. The scaling exponents are calculated for the whole temperature range
up to 22◦C, as well as for temperatures below and equal to 12◦C and for temperatures
above 12◦C. The horizontal black dotted line corresponds to the theoretical 7% Clausius-
Clapeyron (CC) increase per degree.

Generally, the observations and model demonstrate an increasing scaling with
increasing percentile, and a reduction in the 99th percentile scaling for longer pre-
cipitation durations (Fig. 4.15). This is in agreement with the results from Hard-
wick Jones et al. (2010), based upon station observations in Australia. Further-
more, the model only shows for the highest 99th and 99.9th percentiles a scaling
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exponent close to or slightly larger than the 7%/◦C CC scaling, while the obser-
vations approach the CC scaling already from the 95th percentile. As can also
be seen from Fig. 4.15(b), ERAINT-ALR04 exhibits systematically lower scaling
values than the CC scaling for all durations of the 99th percentile. Except for the
longest (shortest) durations and for temperatures below (above) 12◦C, the model
shows a dependency close to or slightly above the CC scaling. The observations
on the other hand, reproduce well the CC scaling for the 1-, and 2-hour durations,
with scalings far above the 7%/◦C scaling for temperatures above 12◦C.

Overall, the modeled percentiles are in agreement with results from Lenderink
and van Meijgaard (2008), who analyzed the CC relation for a simulation of the
present-day climate (1971-2000) from the RCM RACMO2. The authors found
for the highest percentiles (99th and 99.9th) that the model reproduces well the
observed CC (super-CC) relation for temperatures below (above) 12◦C, but for
temperatures above 20◦C and for the lower percentiles, the model is not able to
reproduce the two times CC relation.
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Figure 4.16: (a) Relationship of observations (black) and model (ERAINT-ALR04, green)
between wet-time fraction (WTF) and (b) fractional contribution of extreme precipitation
to total precipitation (PFRACT) of precipitation above the 95th percentile and mean daily
temperature in each bin. The thick solid lines are smoothed loess curves (local polynomial
regression fitting).

To understand the relationship between frequency of extreme precipitation
events and temperature, and the variations in intensity of precipitation, we esti-
mated similar to Mishra et al. (2012), respectively the wet-time fraction (WTF)
and fractional contribution of extreme precipitation events (above the 95th per-
centile) to total precipitation (PFRACT) in each temperature bin. The wet-time
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fraction is defined as the ratio of the total number of extreme precipitation events
above the 95th percentile to the total number of wet hours (i.e. precipitation > 0.1
mm day−1) in each bin. Figures 4.16(a) to 4.16(b) show the relationships between
WTF and PFRACT and temperature for the observations and ERAINT-ALR04 in
Uccle. The observed WTF and PFRACT are relatively well captured by the model.
However, the model appears to slightly overestimate the observed PFRACT. This
is in line with previous result shown in Fig. 4.8(a), indeed showing an overestima-
tion in hourly (summer) precipitation intensity for the 95th percentile. For both
the observations and the model, WTF stays practically constant for the whole tem-
perature range. On the other hand, PFRACT clearly increases more rapidly with
temperature than WTF, suggesting that the regression slopes (i.e. scaling expo-
nents) between extreme precipitation events and temperature are more influenced
by changes in PFRACT (intensity) than in WTF (frequency) (Mishra et al., 2012).

As discussed previously (Section 4.3.4), Loriaux et al. (2013) found that the
super-CC scaling results from convective precipitation. Since convective precip-
itation is the dominant process during summer, the CC relation is also assessed
for the summer (JJA) and winter (DJF) season separately (Fig. 4.17). In winter,
our regions are typically affected by stratiform type precipitation associated with
low intensity precipitation over a large area for several hours up to a day, while
in summer short, intense convective precipitation events with a showery character,
occurring on small spatial scales are more common (Berg et al., 2009). Hence,
a distinction in the response between both seasons will possibly give us an in-
dication of the different mechanisms contributing in summer and winter to the
precipitation-temperature relationships.

Results for the winter period (DJF) show for the observations a dependency
of the hourly precipitation extremes along the CC line for the whole temperature
range (Fig. 4.17(b)). In contrast, no CC relationship is found in the hourly DJF
precipitation extremes for ERAINT-ALR04 (Fig. 4.17(d)). Figure 4.17(a) shows
that the observations during the summer season (JJA) are characterized by a pro-
nounced super-CC scaling for temperatures above ≈ 18◦C for the 90th and 95th

percentiles, and for almost the whole temperature range between 10 and 22◦C for
the highest percentiles (99th and 99.9th). Except for the 99th and 99.9th per-
centiles, this super-CC scaling is not captured by the model, and even shows in
the tail of the 90th-99th percentiles a dependency of hourly precipitation extremes
below the CC relation. This decrease in slope above ≈ 22◦C is also visible in
the modeled percentiles for all seasons (Fig. 4.14(b) and Fig. 4.14(d)), but appears
even more pronounced for the summer percentiles.
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Figure 4.17: Dependency of hourly precipitation extremes on temperature computed from
observed data in Uccle of (a) the summer season JJA, and (b) the winter season DJF, and
from model grid box data closest to Uccle of (c) the summer season JJA, and (d) the winter
season DJF. Lines and axes are similar to Fig. 4.14.

Berg et al. (2013a) studied the CC relation for observations in Germany, and
separated stratiform and convective precipitation events by cloud observations. For
temperatures above 22◦C, their distributions for convective and total precipitation
also display a decreasing slope, and suggests it to be a stable high-temperature
feature of convection (Berg et al., 2013a). Similarly, Lenderink and van Meijgaard
(2010) found a strong reduction in modeled precipitation intensity for tempera-
tures above 22◦C. The authors attribute this fall off in intensity to model errors,
but also note that for temperatures above ≈ 22◦C rather anomalous atmospheric
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conditions (e.g. with severe soil drying and/or strong high pressure systems) could
also suppress the occurrence and intensity of precipitation extremes (Lenderink
and van Meijgaard, 2010).
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Figure 4.18: Modeled daily mean relative humidity versus modeled daily mean temper-
ature on wet days for the closest model grid box value to the observation station of Uc-
cle. The values are plotted separately for winter/spring (December-January-February
(DJF) + March-April-May (MAM), blue) and summer/autumn (June-July-August (JJA) +
September-October-November (SON), red). The thick solid lines are smoothed loess curves
(local polynomial regression fitting).

To explore more in detail the reason for this negative scaling in ERAINT-
ALR04 that occurs at temperatures above approximately 20◦C, we have plotted
similar to Hardwick Jones et al. (2010), the daily mean relative humidity against
daily mean temperature for the closest model grid point to Uccle. The relative
humidity is plotted for each wet day (i.e. daily precipitation > 0.1 mm day−1),
and separately for winter/spring and summer/autumn. Although there is a large
variability in relative humidity values, in accordance to the results of Hardwick
Jones et al. (2010), there seems to be an overall decrease in relative humidity with
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increasing temperature (Fig. 4.18). It also appears that the temperature at which
the relative humidity values start to decline, coincides with the temperature value
where the scaling of the hourly precipitation amounts become negative (i.e. ≈
20◦C for June-July-August (JJA) + September-October-November (SON) and ≈
10◦C for December-January-February (DJF) + March-April-May (MAM). Hence,
as suggested by Hardwick Jones et al. (2010), this decrease in relative humidity
can explain the negative scaling of extreme precipitation at high temperatures, and
highlights the importance of both the atmosphere’s capacity to hold moisture as
well as the availability of moisture in the atmosphere. Furthermore, this result
indicates that dew point temperature instead of temperature could be used as an
alternative measure to assess the dependency of extreme rainfall to temperature
changes. This can be physically justified as follows. Dew point temperature is
a direct measure of absolute specific humidity of the atmosphere. The difference
between temperature and dew point temperature (i.e. the dew point depression),
is equivalent to the relative humidity. Thus assuming a constant relative humidity,
an increase in temperature implies an equal increase in dew point temperature.
This is reasonable for many areas and seasons, except for large continental areas
in summer (Attema et al., 2014; Westra et al., 2014). Our finding showing that
the relative humidity is a limiting factor for the highest temperature range, indeed
suggests that the actual moisture (i.e. dew point temperature) in the atmosphere
would be a better predictor of rainfall intensity than temperature itself. Lenderink
and van Meijgaard (2010) for example, obtained from observations a more robust
scaling, and a wider range where the CC scaling is valid when using local dew
point temperature instead of temperature.

The lack of any clear relationship between the modeled hourly DJF precip-
itation and daily mean temperature is in contrast with the findings from Mishra
et al. (2012). Based upon observational data for the period 1950-2009 across Con-
tiguous United States, the authors found for both the summer and winter season a
positive relationship between extreme precipitation intensity and temperature. On
the other hand, Berg et al. (2009) studied for different regions in Europe the CC
relationship between daily precipitation and daily temperature in three ERA-40
driven RCMs. The authors considered different seasons and months separately,
and found different relationships between extreme precipitation and temperature
during the summer and winter seasons, with a general increase in winter and a de-
crease in summer. Similar to Berg et al. (2009), we have calculated precipitation
percentiles for observed and modeled daily precipitation. For both the observations
and ERAINT-ALR04, the CC relation between extreme daily precipitation and
temperature is less clear compared to the relationships obtained with the hourly
intensities (Figs. 4.19(a) to 4.19(b)).
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Figure 4.19: Dependency of daily precipitation extremes on temperature computed from
observed data in Uccle of (a) all months, (c) December, and (e) June, and from model grid
box data closest to Uccle of (b) all months, (d) December, and (f) June. Lines and axes are
similar to Fig. 4.14.
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In agreement with results from Lenderink and van Meijgaard (2008), the CC
relation is approximately found for temperatures below 8-10◦C, but a sub-CC scal-
ing is visible for the higher temperatures. However, if the relationships between
extreme daily precipitation and temperature are calculated for the months sepa-
rately, we find a similar behavior than Berg et al. (2009): an increase in precipi-
tation that nearly follows the CC scaling during the winter months (Figs. 4.19(c)
to 4.19(d)), and a decrease during the summer months (Figs. 4.19(e) to 4.19(f)).
This seasonal variability in the relationships may be attributable to the type and
scale of precipitation, that is often influenced by the synoptic scale circulation pat-
tern (Mishra et al., 2012).

Previous results are all obtained for the model grid box values closest to the
observation station of Uccle. Finally, to check the sensitivity of the results when
comparing point measurements and model grid averages from only one grid point,
the CC scaling is also assessed for a region of 5 × 5 (25) model grid points sur-
rounding the closest model grid point to Uccle. Based upon model data from this
subregion of 25 grid points, all results remain the same and reveal similar findings
as found for the closest grid box values to the observation station of Uccle (see
Appendix B, Figs. B.4 to B.6).

4.5 Conclusion: the added value

This chapter assessed the added value of the ALARO-0 model in the simulation of
subdaily precipitation at different spatial resolutions. Hence, we have addressed
different aspects of the characteristics of (extreme) precipitation at the subdaily
timescale, ranging between 1-hour aggregation levels up to the daily timescale
(24-hour aggregation level).

The results for the diurnal cycle of both high-resolution simulations (ALR04
and ALR10) showed w.r.t. the observations an improvement in the onset and peak
of convective activity. The 40-km run on the other hand, is not able to reproduce
the observed diurnal cycle both in magnitude and phase. Nevertheless, the im-
provements for ALR04 and ALR10, there is still a time shift towards a too early
onset of the convective build-up notable. Results from NWP demonstrated that re-
cent changes in 3MT in ALARO-0, as well as in the new model version ALARO-1,
significantly reduced (or even canceled) this time shift. These most recent changes
are not implemented in the ALARO-0 version that is used for the simulations in
this thesis. Hence, in the future with the use of the new ALARO-1 model version
for climate applications, we could expect that this time shift in the diurnal cycle
will be reduced or disappeared.

Furthermore, frequencies and intensities were calculated for observed and
modeled hourly precipitation amounts. The results demonstrated that although
the ALR04 and ALR10 models still suffer from common issues in climate mod-



4-46 CHAPTER 4

els, we could conclude that with respect to the low-resolution ALR40 model, the
simulation of high hourly precipitation amounts is consistently improved by the
high-resolution ALARO-0 runs.

The rainfall features, where to a first approximation, the IDF curves dis-
play a power law dependence on averaging duration d and return period T , has
been generally studied with observation data (e.g. Burlando and Rosso, 1996;
Willems, 2000; Bougadis and Adamowski, 2006). We have demonstrated in this
chapter, that the ALARO-0 model is also able to reproduce this rainfall feature,
which is of particular interest for extremes. More specifically, the high-resolution
ERA40-ALR04 simulation shows for all durations a power law dependency that
approaches very closely the observed power law. In contrast, the low-resolution
40-km run does not reproduce the observed scaling properties for the lowest dura-
tions (1 to 3 hour aggregation times). Only for the 24-h durations both the high-
resolution as well as the low, 40-km resolution runs display an IDF relationship
based upon this power law which is in agreement with the observations.

Finally, another scaling property of extreme precipitation that expresses the
dependency of hourly precipitation extremes on temperature by the CC relation,
is also relatively well reproduced by the model at a spatial resolution of 4 km. In
particular for the most extreme events (i.e. highest percentiles) and for a rather
large temperature range, the model is able to reproduce the (super-) CC relation.
However, the model seems to have difficulties in the representation of less extreme
events (i.e. lower percentiles) and events in the highest temperature range as sug-
gested by the fall off in precipitation intensity. In the light of a changing climate,
often characterized by an increase in mean surface temperature, our results for the
CC relation motivate further investigations to assess how the relation between pre-
cipitation intensity and temperature will change in a future climate (see Chapter 6).

All this suggest that the multiscale performance of ALARO-0 in the simu-
lation of daily summer precipitation, as was found in previous chapter, does not
hold for the simulation of subdaily precipitation. Luca et al. (2012) determined
by means of Potential Added Value (PAV) whether RCMs add value in the rep-
resentation of climate statistics compared to the driving GCM data. Their results
for precipitation indeed show that the PAV of RCMs is much higher for short tem-
poral scales than for long temporal scales, due to the filtering resulting from the
time averaging process. Our results have demonstrated that the highest-resolution
simulations of ALARO-0 at 4 km indeed benefit from added value in the descrip-
tion of several characteristics of subdaily precipitation, such as the diurnal cycle,
heavy precipitation amounts, and important scaling properties. This finding is in
line with previous studies that explored w.r.t. observations the added value of low-
resolution RCMs where deep convection is parameterized versus high-resolution
CPMs where the convection parameterizations are (partly) switched off. Further-
more, the multiscale character of the physics package 3MT for clouds and deep
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convection allowed us to use consistently the same model physics at a range of dif-
ferent spatial resolutions, which is an important strength in our assessment w.r.t.
to other studies where one is often obliged to use a different model physics or
treatment of deep convection once the horizontal resolution is changed.

Hence, the results of the evaluation of extreme precipitation at the daily and
subdaily timescale, as extensively discussed in the previous chapter (Chapter 3)
and this chapter, demonstrate that the ALARO-0 model is able to consistently
capture the relevant precipitation characteristics at a wide range of atmospheric
and corresponding temporal scales, varying from the micro- to the mesoscales
(Fig. 1.1). These highly promising and encouraging findings thus increase our
confidence to use the ALARO-0 model at a spatial resolution of 4 km to compute
Intergovernmental Panel on Climate Change (IPCC) scenarios for climate change
studies. This will be the subject of the next chapters (Chapter 5 and Chapter 6).
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“Even though European summers are anticipated to become drier on average,
severe precipitation events are predicted by many models to occur more

frequently and with higher intensities.”
– Brockhaus et al. (2008)

5.1 Introduction

In the previous chapters (Chapter 3 and Chapter 4), extreme precipitation from
the ALARO-0 model at several spatial and temporal scales has been extensively
validated. In the context of climate change assessment, potential future changes in
extreme precipitation are of great importance. In particular because such precipi-
tation extremes are related to e.g. floods and landslides, which have a great impact
on many aspects of human society: health, natural and urban environments, build-
ings and infrastructure, and economy (Beniston et al., 2007; Kyselý and Beranová,
2009; Nikulin et al., 2011). Hence, the future response of extreme precipitation
over Belgium to increased greenhouse gas (GHG) concentrations, as obtained from
the ALARO-0 model, will be the subject of the current chapter.

In general, the amount and intensity of precipitation is determined to a large
extent by the available energy and moisture. Although global mean precipitation is
primarily constrained by the energy budget, extreme rainfall events are likely to oc-
cur when effectively all the moisture (or a constant fraction thereof) in a volume of
air is precipitated out (Allen and Ingram, 2002). This physical consideration sug-
gests that the intensity of these events is determined by the moisture availability,
which will generally rise in a warming climate. As discussed in the previous chap-
ter (Chapter 4, Section 4.3.4), changes in atmospheric moisture roughly follow the
saturation specific humidity, which in turn is governed by the Clausius-Clapeyron
(hereafter CC) relation. Hence, it has been suggested that the moistening of the
atmosphere could lead to an increase in the frequency and intensity of extreme
precipitation events following the same CC rate of increase of 6-7% per degree
(Allen and Ingram, 2002; Frei et al., 2006; Attema et al., 2014).

Consistent with these conceptual considerations, significant recent obser-
vational and modeling work also points to an increase of precipitation extremes
in many regions in the world. Studies of observed data show an increase of
extreme daily rainfall intensity and/or frequency over most continents, and for
more than half of the areas where reliable data are available positive trends for
annual maximum precipitation extremes over 1951-1999 are detected (Westra
et al., 2014). Many climate change modeling studies have used coupled ocean-
atmosphere Global Climate Model (GCM) simulations forced with projected
GHG and aerosol emissions as a primary tool for studying possible future changes
in mean climate, variability and extremes (Russo and Sterl, 2012). These global
climate change experiments generally project an increase in frequency and inten-
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sity of precipitation extremes almost everywhere over the world, even for regions
with a decrease in mean precipitation (Nikulin et al., 2011). At the regional scale,
potential future changes in precipitation patterns and magnitudes are usually
assessed by means of nested Regional Climate Models (RCMs) simulations, as
these allow to calculate climate change scenarios consistent with the driving GCM
but with more regional detail and a better representation of processes leading to
heavy precipitation (Kyselý and Beranová, 2009). For Europe, numerous studies
have analyzed future changes in daily precipitation extremes from climate change
simulations with RCMs and report a distinct seasonal response in extreme pre-
cipitation. In winter, models reveal an increase in extreme precipitation in central
and northern Europe, and show smaller changes with a tendency to a decrease
to the south. In contrast, in summer a gradual pattern is found with increases
in northeastern Europe and Scandinavia and decreases in southern Europe and
the Mediterranean region (e.g. Frei et al., 2006; Beniston et al., 2007; Buonomo
et al., 2007; May, 2008; Fowler and Ekström, 2009; Kyselý and Beranová, 2009;
Nikulin et al., 2011). Compared to the projections for summer, the wintertime
projections of heavy precipitation based upon different RCMs driven by one GCM
(e.g. Frei et al., 2006; Kyselý and Beranová, 2009) and based upon one RCM
driven by different GCMs (e.g. Nikulin et al., 2011), are found to be much more
robust. The projected changes of extreme summer precipitation show much more
varying patterns and less agreement among the models, which may be explained
by the strong dependency of the physical parameterization formulation during this
season (Frei et al., 2006).

Furthermore, this contrasting seasonal pattern and consistency in European
precipitation extremes is also reflected in changes in annual and seasonal mean pre-
cipitation. Jacob et al. (2014) for example, assessed changes in mean precipitation
for Europe from the first set of EURO-CORDEX simulations at 12.5 km resolution
for the new Representative Concentration Pathway scenarios (RCP) RCP4.5 and
RCP8.5 (EURO-CORDEX, Coordinated Regional Climate Downscaling Experi-
ment for Europe). The study also compares the EURO-CORDEX ensemble data to
the Special Report on Emission Scenarios (SRES) A1B scenario results achieved
within the ENSEMBLES project. Overall, for all three scenarios the ensemble
mean projects a statistically significant increase in annual mean precipitation in
large parts of central and northern Europe, and a decrease in southern Europe.
For the transition zone located in central Europe where the climate change signals
change in sign, climate models show small and mostly non-significant changes
as well as large disagreements concerning the tendency of the change (Feldmann
et al., 2012; Jacob et al., 2014). Seasonal changes of mean precipitation are simi-
lar to the annual mean pattern, with exception of this transition zone which shifts
southwards in summer and northwards in winter (Jacob et al., 2014).

Before a RCM can be used to project future changes, it is important to eval-
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uate the performance of the model in simulating past observed changes. Such an
evaluation helps to decide whether or not we can trust a model response in a sen-
sitivity experiment (Déqué, 2007). As it is often done in model evaluation studies,
the regional model is driven by so-called perfect boundary conditions provided by
reanalyses (Maraun et al., 2010). Previous chapters (Chapter 3 and Chapter 4) have
indeed evaluated present-day daily and subdaily precipitation from the downscal-
ing ALARO-0 model driven by reanalysis data. We have demonstrated that the
ALARO-0 model, and in particular at the highest resolution of 4 km, is able to
realistically simulate several characteristics of the daily and subdaily extreme pre-
cipitation climatology.

This chapter aims to derive potential future changes in extreme precipitation
for Belgium from downscaled GCM data using the ALARO-0 model at 4 km res-
olution. In a first step, it is verified whether or not the observed climatology for
the control period is correctly represented by the ALARO-0 model, which is im-
portant if one couples a RCM to a GCM. Whatever the model, it is a simplification
of nature. Hence, it is not surprising that model results do not fit exactly the obser-
vations. Such imperfections or model biases are usually postprocessed with bias
correction methods (Déqué, 2007). However, we limit ourselves in this chapter to
a sensitivity study (i.e. the impact of a warming on extreme precipitation), the use
and relevance of different bias correction techniques will be briefly highlighted at
the end of the chapter.

Future changes for Belgium are first assessed for mean precipitation both at
daily and subdaily timescales. Climate model estimations of mean precipitation
under several future climate scenarios for central Belgium have previously also
been examined by Baguis et al. (2010). The authors based their assessment on
GCM and RCM data from the 4th Assessment Report of the Intergovernmental
Panel on Climate Change (IPCC AR4) and the European project PRUDENCE
(Prediction of Regional scenarios and Uncertainties for Defining EuropeaN Cli-
mate change risks and Effects), respectively. In line with the general pattern found
by many other modeling studies, their analyses of changes in monthly and sea-
sonal means of RCM simulations demonstrated a clear shift in the precipitation
pattern with an increase during winter and a decrease during summer. However, it
has been found, that the signal may be less clear or different when another set of
scenarios from the GCM simulations are taken into account (Baguis et al., 2010).

To extend the previous study, a great part of our analysis is attributed to
changes in extreme precipitation at subdaily timescales. Furthermore, most of
the previous modeling studies used a relatively coarse resolution (i.e., about
50-10 km). The ongoing EURO-CORDEX initiative provides regional climate
projections for Europe up to resolutions of 12.5 km, and thereby complements
the existing coarser resolution datasets of former coordinated activities like, e.g.,
PRUDENCE and ENSEMBLES (See also the General introduction Chapter 1 and
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Jacob et al., 2014). However, if one wants to study future climate changes at the
regional scales, and provide relevant information for e.g. hydrological impact
studies, higher spatial and temporal resolutions are needed (Willems et al., 2012).
In this respect, the derived projected changes at hourly timescales and at high
resolutions of 4 km offer a great benefit w.r.t. many other regional climate studies,
as it may provide valuable information to hydrological applications and impact
studies in Belgium.

The outline of this chapter is as follows. The next section (Section 5.2) pro-
vides a description of the model data and observations, as well as the experimental
design. The methods and statistical procedures for significance testing are pre-
sented in detail in Section 5.3. Results on the evaluation and changes in mean and
extreme precipitation are discussed in Section 5.4.

Finally, it should be kept in mind that model projections of future climate
change encompass a wide range of uncertainties (Kendon et al., 2010). One source
of uncertainty is associated with modeling deficiencies. For example, only a few
studies have investigated changes in subdaily rainfall, mainly due to the difficulty
of climate models to correctly simulate rainfall at such high temporal resolution
(Kendon et al., 2014). Related to this, it is well-known that the uncertainties in the
precipitation results of climate models are an order of magnitude higher in com-
parison with the climate model outputs of other variables such as e.g. temperature
(Willems, 2011). To assess reliability in the context of modeling uncertainty, a
mechanistic approach is commonly used (e.g. Rowell and Jones, 2006; Kendon
et al., 2010). This approach aims to gain a better understanding of the underlying
mechanisms of the regional climate change. By attributing the changes to specific
mechanisms, each of which is associated with a different level of confidence, a sub-
jective judgement can be made of the overall reliability of the projected changes
(Kendon et al., 2010). Furthermore, it should be taken into account that our cli-
mate projection represents just one possible realization of the future climate, solely
based on downscaling results from one RCM, driven by the outputs of one GCM
under one scenario of natural and anthropogenic forcing (Pan et al., 2011). Since
natural variability of the climate limits the precision of future climate projections,
it is thus expected that the use of a different RCM, GCM and/or emission scenario
might give different results (Kendon et al., 2010; Pan et al., 2011). In addition,
climate models are found to show large disagreements concerning the tendency
of precipitation in the transition zone where our study region (i.e. Belgium) is
located. Multi-model ensemble systems are commonly used to assess the uncer-
tainties related to natural variability (Frei et al., 2006). Therefore, at the end of
Section 5.4.4 results from a recent multi-model intercomparison study, including
our ALARO-0 projection, are discussed. We end this chapter with the conclusions
in Section 5.5.
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5.2 Data and experimental design

5.2.1 Model data

To assess the possible changes in future precipitation, two climate projection sim-
ulations with the ALARO-0 model driven by the coupled GCM CNRM-CM3 (fur-
ther in the text and figures also denoted as CNRM-CM3), are considered. Each
of the simulations cover a 30-yr period: (i) 1961-1990 as period representative of
the historical or control climate (hereafter denoted by CTL), and (ii) 2071-2100 as
scenario period representing the future climate (hereafter denoted by SCN).

CNRM-CM3 is developed by the Centre National de Recherches Météorologi-
ques (CNRM). The model was applied to carry out several climate simulation in
the framework of the Coupled Model Intercomparison Project Phase 3 (CMIP3),
which consists of a large ensemble of GCMs for which the outcomes have been
synthetisized in IPCC AR4 (Salas-Mélia et al., 2005; Meehl et al., 2007). CNRM-
CM3 is based on the coupling of the ARPEGE-Climate GCM version 3, which
is the atmospheric part of the system, OPA8.1 is the ocean model, GELATO2 the
sea ice model, and TRIP is used for the river routing scheme. ARPEGE-Climate
uses a spectral representation for most variables, and was used on a horizontal grid
corresponding to a T63 triangular truncation with 45 vertical layers (Salas-Mélia
et al., 2005).

Similar to the reanalysis driven simulations (see Chapter 3 and Chapter 4), the
experimental design consists of a dynamical downscaling of the GCM data with
daily reinitializations using two intermediate nestings. First, the GCM data are
downscaled using the ALARO-0 model at 40-km resolution corresponding to a 69
× 69 grid point domain that encompasses most of Western Europe. Subsequently,
these 40-km output are used as input for a one-way nesting on a 181 × 181 4-km
resolution domain centered on Belgium. More details on our approach for daily
reinitializations are given in Chapter 2, Section 2.3.2 and Chapter 3, Section 3.2.1.

A realistic approach is to consider the transient climate response (TCR) as-
sociated with a transient increase based on expected emission scenarios. IPCC
has defined “emission scenarios” for future changes in the GHG concentrations
which are dependent on different economic evolutions as well as on evolutions in
decision making and policy (De Troch et al., 2014b). Therefore, in order to quan-
tify the sensitivity of the climate to external forcings, the CTL and SCN model
integrations are performed with an equivalent GHG forcing corresponding to an
equivalent CO2 increase according to the IPCC SRES A1B scenario (Nakićenović
et al., 2000). As mentioned previously in the General introduction (Chapter 1),
the A1B scenario is the scenario that was mostly used within the ENSEMBLES
project (Niehörster et al., 2008), and it is still the current scenario used at the Royal
Meteorological Institute of Belgium (RMI).

Figure 5.1 shows the equivalent CO2 evolution as described by the SRES
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A1B scenario, used for the CTL and SCN simulation respectively. This scenario
follows the storyline of the IPCC family of A1 scenarios. It assumes a future
world of very rapid economic growth and the rapid introduction of new and more
efficient technologies, with a worldwide population peaking in the middle of the
21st century, and a balanced use across all energy sources. This scenario leads
to a rapid increase in fossil CO2 emissions until 2050 and a decrease afterwards.
Compared to other SRES scenarios, the CO2 emissions in the A1B scenario lie in
the middle of the scenario range (Jacob et al., 2014).

In addition to the GCM driven model data, the ERA40-reanalysis driven
model results (see Chapter 3) are used as a reference for validation of the hourly
and daily precipitation model output for the control period (1961-1990).
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Figure 5.1: Values for equivalent CO2 (expressed in parts per million, ppm) corresponding
to the Special Report on Emission Scenarios (SRES) A1B scenario, as used for the control
(CTL, 1961-1990) and the scenario (SCN, 2071-2100) simulation, respectively.

5.2.2 Observations

The simulated results for daily precipitation are validated against the same obser-
vation dataset as used in Chapter 3, comprising 93 climatological stations with
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daily accumulated precipitation, selected from the climatological network of the
RMI for the control period 1961-1990 (Fig. 5.2, right).
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Figure 5.2: Model topography (m) of Belgium showing the location of the 50 (left) and
93 (right) selected climatological stations (black dots) which are used for the validation of
modeled daily temperature and precipitation, respectively.

Furthermore, observations of daily mean temperature for 50 station locations
in Belgium (Fig. 5.2, left) are selected from the climatological observation network
of the RMI. These temperature observations are used to validate the modeled daily
mean temperature for the control period, before the projected warming under the
A1B scenario is analyzed. These daily mean temperatures are also used to assess
the dependency of hourly precipitation with temperature change (i.e. CC relation).
Finally, hourly observation data for Uccle are used, for which a more detailed
description can be found in the previous Chapter 4.

5.3 Methods

5.3.1 Data processing and analysis

Validation of the model data (precipitation and temperature) against the observa-
tions is done by selecting the nearest grid box to the station points. The aver-
age lapse rate of 6.5 K km−1 under standard atmospheric conditions is added to
the modeled temperature values, according to the altitude difference between the
model grid point and the observational station. In this way the modeled tempera-
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ture values have the same altitude as the nearest observation series. For the assess-
ment of the CC relation, observed and modeled daily mean temperature values are
simply derived by averaging daily maximum- and minimum 2-meter temperature
values. Observations of daily maximum (minimum) temperatures are measured
between 8 and 8 Local Time (LT) of the day after (before). The modeled daily
maximum- and minimum temperatures are calculated accordingly the definition
of the observations.

As previous modeling studies have demonstrated fundamental different re-
sponses in precipitation changes for the winter and summer season, we limit our
analysis to these seasons. Note that through the selection of the winter months
December-January-February (DJF), the length of our CTL and SCN study periods
is reduced to 29 winter seasons.

The analysis at the subdaily timescale is restricted to 1-hour durations only.
In the previous chapter (Chapter 4), it has been demonstrated that observed hourly
precipitation is fairly well reproduced by the 4-km ALARO-0 model, driven by
the so-called “perfect boundary conditions” from ERA-40. Hence, to extend the
validation of the hourly precipitation from the CTL simulation to more than only
the model grid box value closest to the Uccle station, hourly model values from
the ERA-40 downscaling are used as a gridded reference or “pseudo-observation”
dataset at 4-km resolution. Furthermore, since the ERA-40 driven simulations
were only done for the summer period 1961-90, the analysis of the 1-hour precip-
itation is limited to the June-July-August (JJA) summer months.

Two types of methodologies that are generally used for the assessment of
changes in extreme precipitation are applied: (i) Extreme Value Analysis (EVA)
which allows to estimate the change in terms of return level values giving an ex-
treme value of a variable that will statistically be exceeded exactly once within
a certain period (i.e. the return period) (Knote et al., 2010), and (ii) direct sum-
maries of extremal behavior described by seasonal or annual maxima, quantiles,
and threshold-based indices (Beniston et al., 2007). In the first method the re-
turn levels of daily and 1-hour precipitation are computed by fitting the parametric
Generalized Extreme Value (GEV) distribution to a sample of summer- and winter
annual maxima. More details on the fitting of the GEV distribution and calcula-
tion of return levels are given in the methodology section of the previous chapter
(Chapter 4, Section 4.3.2). In addition, it is verified to what extent future changes
in extreme hourly precipitation as simulated by our scenario are consistent with
the expectations from the CC relation.

Finally, for the spatial analysis with gridded model data, an analysis grid of
81 × 81 grid points that coincide with Belgium is selected.
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5.3.2 Significance testing

Two approaches are used to test the statistical significance of the differences be-
tween the CTL simulation and the observations or ERA-40 driven simulation, as
well as between the SCN and CTL simulation: (i) significance testing based on the
Kolmogorov-Smirnov (K-S) test, and (ii) significance testing based on bootstrap
resampling. In both approaches the statistical significance is assessed at the 5%
significance level.

When the significance in the biases and projected changes are assessed for
all 81 × 81 grid points over Belgium, the K-S test is used because of computa-
tional efficiency. Here it is tested whether or not the differences are drawn from
the same distribution at a chosen level of significance (i.e. 5%). The K-S test is
a nonparametric test (see also Chapter 3 and Chapter 4), having the advantage of
making no assumptions about the distribution of the underlying data. For each
model grid point where the null hypothesis, that both distributions of CTL and the
ERA-40 driven reference data or SCN and CTL data are drawn from the same dis-
tribution, can be rejected at the 5% significance level, significant biases or changes
are quantified (Russo and Sterl, 2012).

In case that only station points are considered, the significance of model bi-
ases and future changes w.r.t. year-to-year variability is assessed through bootstrap
resampling (Kendon et al., 2014). This approach consists of producing 1000 boot-
strap samples by selecting randomly with replacement 30 (29) JJA (DJF) seasons
from the full dataset. For each station point, 1000 estimates of the mean differ-
ences between either CTL model data and observations, or either CTL and SCN
model data, are calculated. These 1000 differences are then used to calculate for
each station point lower and upper limits of the 95% confidence intervals for the
difference or future change as respectively the 2.5th and 97.5th percentile. Differ-
ences or changes lying inside the respectively confidence interval are considered
to be significant at the 5% significance level compared to year-to-year variability.

The significance of the EVA results is also tested through bootstrap resam-
pling applied over each model grid point or station point, although, the approach
is slightly different. Similar as in the previous chapter (Chapter 4), 95% confidence
intervals around the GEV parameter estimates (i.e. location, scale, and shape pa-
rameter) are obtained from 1000 parametric bootstrap iterations. Differences be-
tween the GEV estimates of the CTL and the observations/ERA-40 simulation, as
well as changes between the GEV estimates of the SCN and CTL simulation, are
considered to be significant at the 5% significance level if the respectively 95%
confidence intervals do not overlap. According to Eq. (4.5), the estimated GEV
parameters are then used to calculate return levels xT for different return periods
T . Likewise, statistically significance of differences and changes in return level es-
timates are considered to be statistically significant at significance level 5%, if the
95% confidence intervals derived from 1000 bootstrap samples of the two separate
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datasets are not overlapping. The 1000 bootstrap samples of return level estimates
are derived from 1000 GEV parameter estimates, which are obtained by fitting the
GEV to 1000 bootstrap samples of size 30, randomly generated from the originally
fitted GEV. Here, the 2.5th and 97.5th percentile of the resulting collection of 1000
return level estimates are also used as lower and upper 95% confidence bounds for
the true T-yr return level. Again, the difference or future change between two re-
turn level estimates is said to be statistically significant if their 95% confidence
intervals do not overlap, which corresponds to the 5% significance level (Kharin
and Zwiers, 2000).

5.4 Results and discussion

5.4.1 Simulated mean precipitation and temperature in the
control period

As mentioned in the Introduction (Section 5.1), if one couples a RCM to a GCM,
it is important to first verify whether or not the climatology for the control period
is correctly represented by the regional model. Differences between model and
observations help to decide whether one can trust a model response or not in a
sensitivity experiment. One is more confident in a model response greater than the
model bias than in a small model response (Déqué, 2007). However, validation
of a GCM driven RCM is fundamentally different from a validation of a RCM
driven by reanalysis data. In the former case, simulated and observed weather
are independent. Therefore, as suggested by Maraun et al. (2010), the validation
of our CTL simulation is limited to an evaluation of the spatial structure of the
climatological fields and the frequency distributions.

Evaluation of the simulated daily temperature and (sub)daily precipitation for
the summer (JJA, 1961-1990) and winter seasons (DJF, 1962-1990) is shown in
the spatial distributions in Figs. 5.3 to 5.5 and frequency distributions in Figs. 5.6
to 5.8. The observed daily temperature and precipitation fields show a topograph-
ical dependency, with a gradual decrease (increase) in temperature (precipitation)
going from the northwest (low altitudes) to the southeast (high altitudes) of the
country (Fig. 5.3(a), Fig. 5.3(b), Fig. 5.4(a)and Fig. 5.4(b)). A common fea-
ture, evident for both summer and winter daily temperatures simulated during the
control period, is a systematic and significant warm bias over the whole country
(Fig. 5.3(c) and Fig. 5.3(d)). During summer the overestimation of daily tempera-
ture by CTL is largest (up to 4◦C), while, for winter the overestimation is smaller.

In contrast to daily temperature, significant biases of daily precipitation show
an opposite pattern for summer and winter. Simulated precipitation during sum-
mer are systematically underestimated (up to more ≈ 50%), while daily winter
precipitation is strongly overestimated (up to ≈ 80%) during the control period
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(Figs. 5.4(c) to 5.4(d)).
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Figure 5.3: 30-yr mean daily summer (JJA, 1961-1990) and winter (DJF, 1962-1990) tem-
perature (◦C) estimated from (a-b) observation data (OBS) and (c-d) biases of daily summer
and winter temperature (◦C) estimated from the control (CTL) simulation with respect to
the observations (OBS). For each station the significance of the biases between CTL and
OBS is tested through bootstrap resampling. All biases are found to be significant at the
5% significance level compared to year-to-year variability. The numbers correspond to
the minimum (MIN), average (AVG) and maximum (MAX) of the significant values over all
station points.

The spatial distribution of the 30-yr mean hourly precipitation during sum-
mer of the ERA-40 driven ALARO-0 simulation is displayed in Fig. 5.5(a). The
subdaily precipitation shows also an orographical dependency, with higher precipi-
tation rainfall amounts at the higher altitudes in Belgium. Similar to the evaluation
of daily precipitation, the hourly precipitation amounts are significantly underesti-
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mated in the control simulation w.r.t. the ERA-40 driven ALARO-0 simulation.
The differences between modeled and observed temperature and precipita-

tion as have been identified in the spatial distributions, are also apparent in the
frequency distributions. Frequencies are obtained by binning daily temperature,
daily precipitation, and 1-hour precipitation values into bins of 1◦C, 1 mm day−1,
and 1 mm hour−1, respectively. Frequencies of 1-hour summer precipitation val-
ues in Uccle are calculated from 30-yr values which are binned into bins of 0.1
mm hour−1. For the precipitation frequency distributions, a logarithmic scale has
been used for a better representation of the extreme values.
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Figure 5.4: As in Fig. 5.3, but for daily precipitation (mm day−1).

Figure 5.6 shows the frequency distributions of daily summer- and winter
2-meter temperature for the observations and CTL simulation. Compared to the
observations, both the summer and winter frequency distribution for the CTL sim-
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ulation is systematically shifted towards higher temperatures. Although, the shift
is clearly smaller for the winter than for the summer. As can be seen from the
relative differences in frequencies between the model and observations, CTL has
the tendency of producing too few (much) temperatures in the lower (higher) end
of the temperature range.
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Figure 5.5: 30-yr mean hourly summer precipitation (JJA) for 1961-1990 (mm hour−1)
estimated from (a) the ERA40-driven simulation (ERA40) and (b) relative biases of hourly
summer precipitation (JJA) for 1961-1990 (%) estimated from the control (CTL) simulation
with respect to ERA40. For each grid point the significance of the biases between CTL
and OBS is tested with the Kolmogorov-Smirnov (K-S) test. All biases are found to be
significant at the 5% significance level. The numbers correspond to the minimum (MIN),
average (AVG) and maximum (MAX) of the significant values over all 81 × 81 grid points.

The frequency distribution of daily precipitation (Fig. 5.7) is clearly more
variable than the one of temperature (Fig. 5.6). Precipitation is known to be a
much more variable field than temperature. This is reflected by the presence of
outliers in the frequency distributions, i.e. rainfall events with very high precipi-
tation amounts. Given the rareness of these events, we limit the discussion of the
results on the precipitation frequencies to the precipitation range corresponding
to the more frequent events (i.e. ≈ 60 mm day−1). The relative differences in
frequencies of daily precipitation again reveal an opposite bias for summer and
winter, characterized by a systematic underestimation of frequencies during sum-
mer and a strong overestimation during winter. As a reference, the frequencies
of daily precipitation in summer from the ERA-40 driven simulation during the
control period are also calculated (Fig. 5.7(a)). Two features are apparent: (i) the
number of dry days and low precipitation amounts are slightly overestimated by
ERA40, and (ii) the highest precipitation values between 40 and 60 mm day−1
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values are not very well captured by the model. However, these are known model
deficiencies and compared to CTL, the reanalysis driven rainfall frequencies are
much better represented and approach satisfactory well the observations.
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Figure 5.6: Frequencies of the observations (OBS, black), the control simulation (CTL,
blue), and the scenario simulation (SCN, red). Frequencies are computed with the daily
temperature (◦C) in (a) summer (JJA, 1961-1990 and 2071-2100) and (b) winter (DJF,
1962-1990 and 2072-2100) given for each of the 50 climatological stations and their closest
model grid points separately (Fig. 5.2). Relative biases and projected changes between CTL
and OBS (blue), and SCN and CTL (red) are shown in the bottom of the figures.

The frequency distribution of 1-hour summer precipitation is given in Fig. 5.8.
For the calculation of the relative bias in frequencies of 1-hour summer precip-
itation from the control simulation for all 81 × 81 grid points coinciding with
Belgium (Fig. 5.8(a)) we have used ERA40 as a reference. The relative biases
for the closest model grid point to Uccle on the other hand are calculated w.r.t.
the observations (Fig. 5.8(b)). The control simulation shows, both w.r.t. ERA40 as
well as w.r.t. the observations, a consistent underestimation of 1-hour precipitation
amounts, suggesting that the underestimation is a robust feature present in CTL.
Only for the lowest precipitation values (i.e. between 0-1 mm hour−1), the under-
estimation by CTL could be attributed to a wet bias in ERA40, which produces too
much dry hours w.r.t. the observations in Uccle.
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Figure 5.7: As in Fig. 5.6, but for daily precipitation (mm day−1) given for each of the
93 climatological stations and their closest model grid points separately (Fig. 5.2). The
frequency distribution in summer for the ERA-40 driven simulation (ERA40, green) and
its relative biases with respect to observations (OBS) are also shown. Frequencies are
displayed on a logarithmic scale.

In a recent model intercomparison study of Tabari et al. (2016), the down-
scaled daily precipitation from both the ERA-40 driven as well as GCM CNRM-
CM3 driven 4-km ALARO-0 model simulations are compared with the daily pre-
cipitation values from the driving models. Figure 5.9 shows for the CTL period
1961-90 the daily summer precipitation intensities in Uccle as a function of return
period. In line with our previous results (e.g. Fig. 5.7(a)), the daily summer precip-
itation intensities from the ALARO-0 model driven by ERA-40 (ALAROERA40,
blue dots) closely approach the observed intensities (Obs., black dots). Further-
more, Fig. 5.9 demonstrates that the previously suggested underestimation in daily
(and hourly) summer precipitation by the CTL simulation (ALAROCNRM−CM3,
red dots), can be attributed to a pronounced dry bias which is apparent in CNRM-
CM3 (yellow dots). It can be seen that this large bias in the CNRM-CM3 GCM,
is significantly reduced when the GCM is downscaled to a high resolution of 4 km
using the ALARO-0 model (ALAROCNRM−CM3, red dots).

It is unclear to what extent these biases for Belgium are representative for
other regions in Europe. However, published evaluations suggest biases of a simi-
lar magnitude in some regions of central and northern Europe. Baguis et al. (2010)
for example, evaluated for the same control period 1961-1990 monthly mean pre-
cipitation amounts for central Belgium from an ensemble of GCM driven RCM
data from the European project PRUDENCE. Compared to the observations of Uc-
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cle, the RCMs show a general overestimation in precipitation for the winter months
and an underestimation during the summer months. In line with the findings of
Baguis et al. (2010) and with the tendencies identified from previous spatial- and
frequency distributions, the 30-yr average of monthly precipitation values as sim-
ulated by our control simulation in the closest grid point to Uccle reveals a similar
response w.r.t. the observations (Fig. 5.10).
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Figure 5.8: Frequency distribution of hourly precipitation (mm hour−1) in summer (JJA,
1961-1990 and 2071-2100) for (a) all 81 × 81 subgrid points for the ERA-40 driven simu-
lation (ERA40, green), control simulation (CTL, blue), and scenario simulation (SCN, red),
and (b) the closest model grid point to Uccle for observations (OBS, black), the ERA-40
driven simulation (ERA40, green), control simulation (CTL, blue), and scenario simulation
(SCN, red). Relative biases and projected changes between CTL and reference (which is
ERA40 in (a) and OBS in (b)), ERA40 and OBS (green), and SCN and CTL (red) are shown
in the bottom of the figures. Note that frequencies are displayed on a logarithmic scale and
the different limits of the x axes in (b).

Fowler et al. (2005) assessed the performance of the 50-km resolution RCM
HadRM3H, driven by the GCM HadCM3, in the simulation of UK mean and ex-
treme rainfall. Similar to our results, the authors find an overestimation by the
model in mean rainfall during winter, particularly at high elevations, but underes-
timates rainfall in summer. These seasonal anomalies lead to significant underes-
timations (up to 170%) of annual mean rainfall in some parts of the UK (Fowler
et al., 2005). In another validation study for Germany, Berg et al. (2013b) analyzed
the performance of a five-member ensemble of high-resolution RCM simulations
downscaled with two different GCMs at a 7 km nested domain over Germany. Al-
though, in contrast to our evaluation results, the authors find a consistent cold bias
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for their study region, the magnitude of the deviations of individual members of
the ensemble reach similar values up to 4.3 K for summer and 1.9 K for winter. It
is suggested by the authors that the temperature biases are a direct consequence of
biases in shortwave radiation due to deficiencies in cloud cover.

Figure 5.9: Daily summer (JJA) precipitation intensities in Uccle as a function of return
period for the control period 1961-90 obtained from the ALARO-0 model at 4 km resolu-
tion driven by the ERA-40 reanalysis (ALAROERA40, blue dots) and the GCM CNRM-CM3
(ALAROCNRM−CM3, red dots), together with intensities from different versions of the driv-
ing CNRM-CM3 model and the latest Coupled Model Intercomparison Project Phase 5
(CMIP5) GCM ensemble (adopted from Tabari et al., 2016).

Furthermore, for precipitation, the authors find for all seasons for the GCM
driven RCM simulations an overestimation in comparison to the observations. For
summer, this response is in contrast to our results, showing a systematic underes-
timation of summer precipitation. However, the magnitudes of the precipitation
biases as found by Berg et al. (2013b) lie in the same range as ours. From this, we
could conclude that although the biases are sometimes large, the high-resolution
control simulation with ALARO-0 is similar to other state-of-the-art simulations
efforts within Europe.
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Figure 5.10: 30-yr (control period 1961-90, scenario period 2071-2100) average monthly
mean cumulated precipitation in Uccle from observations (OBS, black), the control sim-
ulation (CTL, blue), and the scenario simulation (SCN, red). Shaded areas indicate the
95% confidence intervals as inferred from the 2.5th and 97.5th percentile of 1000 boot-
strap samples which are obtained by randomly selecting 30 monthly mean values from the
respectively datasets.

5.4.2 Mean changes in daily precipitation and temperature

The previous section has investigated how well ALARO-0 reproduces the con-
trol climate w.r.t. observed mean temperature and precipitation. It has become
clear that the good model performance obtained from the reanalysis driven simu-
lations does not persist if the model is coupled to a GCM, leading to large model-
observation differences up to 4◦C for daily temperature and more than 50% for
daily and hourly precipitation. The actual effect of biases which are present in the
GCM and its consequences on the uncertainty of the future climate change results,
will be further explored in a later section of this chapter (Section 5.4.4). Provided
that we keep in mind the above mentioned limitations present in the control model
simulation, we investigate in this section the potential changes in mean tempera-
ture and precipitation.

Projections of the future changes in summer and winter daily mean temper-
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ature and precipitation are shown in the spatial distributions displayed in Fig-
ures 5.11 to 5.12 and the frequency distributions are given in Figures 5.6 to 5.7.
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Figure 5.11: 30-yr mean daily summer (JJA, 1961-1990) and winter (DJF, 1962-1990)
temperature (◦C) estimated from (a-b) the control simulation (CTL) and (c-d) projected
changes of daily summer and winter temperature in the scenario period (SCN) (JJA, 2071-
2100; DJF, 2072-2100) relative to the control period (CTL) (JJA, 1961-1990; 1962-1990)
(◦C). For each grid point the significance of the changes between SCN and CTL is tested
with the Kolmogorov-Smirnov (K-S) test. All changes are found to be significant at the 5%
significance level. The numbers correspond to the minimum (MIN), average (AVG) and
maximum (MAX) of the significant values over all 81 × 81 grid points.

We find a significant warming in 2-meter mean temperature by the end of
the 21st century throughout the summer and winter season (Fig. 5.11). For both
seasons the differences are smaller in the coastal region than in the rest of the
country. This gradual distribution is most pronounced during the summer showing
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a clear increase in anomalies going from the northwest to the south of the country.
Furthermore, the increase in daily mean temperature during summer corresponds
on average to ≈ 3◦C.
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Figure 5.12: As in Fig. 5.11, but for daily precipitation (mm day−1). For each grid point the
significance of the changes between SCN and CTL is tested with the Kolmogorov-Smirnov
(K-S) test. Gray indicates changes that are not statistically significant at the 5% significance
level according to the results of the K-S test.

The precipitation field given in Fig. 5.12(c), shows a significant decrease up
to ≈ 45% in summer precipitation for whole Belgium. For the winter, only the
coastal and central region of the country displays significant and positive changes
in precipitation (Fig. 5.12(d)).

Changes in frequencies of the SCN simulation w.r.t. the CTL simulation, give
a first indication of changes in extreme temperature and precipitation (Figs. 5.6
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to 5.8). In line with the spatial distributions, the frequencies for 2-meter mean
temperature show a clear shift to higher temperature values for SCN, with an in-
crease in the number of the highest summer- and winter temperature values w.r.t.
CTL. For precipitation, summer frequencies in SCN are consistently lower com-
pared to CTL, while the SCN frequency distribution for winter displays w.r.t. CTL
a slight decrease in dry days and an increase in frequencies for the higher precipi-
tation amounts ranging between 20 and 60 mm day−1.

Tabari et al. (2016) assessed by means of change factors for the model grid
point of Uccle, the projected changes in daily precipitation from the CNRM-CM3
driven ALARO-0 simulation in the context of the latest Coupled Model Intercom-
parison Project Phase 5 (CMIP5) GCM ensemble. The authors found for the sum-
mer season that the change factors of ALARO-0 are rather situated on the lower
side of the CMIP5 ensemble, while for the winter season the models’ change fac-
tors were found to lie above the mean of the CMIP5 ensemble. This is in agreement
with our findings of a substantial decrease (increase) in daily summer (winter) pre-
cipitation amounts and frequencies in the SCN simulation compared to the CTL
simulation. In addition, the authors compared the change factors of daily win-
ter and summer precipitation from the CNRM-CM3 driven ALARO-0 simulation
with the change factors obtained from the driving GCM CNRM-CM3 model. The
comparison revealed for both seasons no remarkable differences in the change fac-
tors for the downscaled ALARO-0 simulation and those obtained from the driving
CNRM-CM3 model. This demonstrates that the projected changes of the CNRM-
CM3 driven ALARO-0 simulation are mainly a reflection of the climate change
signal which is present in the driving GCM (Tabari et al., 2016).
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Figure 5.13: 30-yr mean hourly summer (JJA, 1961-1990) precipitation (mm hour−1) es-
timated from (a) the control simulation (CTL) and (b) projected relative changes of hourly
summer precipitation in the scenario period (SCN) (JJA, 2071-2100) relative to the control
period (CTL) (JJA, 1961-1990) (%). For each grid point the significance of the changes
between SCN and CTL is tested with the Kolmogorov-Smirnov (K-S) test. All changes are
found to be significant at the 5% significance level. The numbers correspond to the mini-
mum (MIN), average (AVG) and maximum (MAX) of the significant values over all 81 × 81
grid points.

The projected changes in 1-hour precipitation for summer are found to be
similar to the changes in daily summer precipitation, i.e. a systematic and signifi-
cant decrease in 1-hour summer precipitation throughout Belgium. As can be seen
from Fig. 5.8, the same response is also visible from the frequency distributions
obtained for the subgrid domain of 81 × 81 grid points as well as for Uccle. How-
ever, the projected relative decrease as shown by the 81 × 81 grid points appears
to be lower than the projected decrease for Uccle.

These results are in general agreement with other regional modeling studies
that assessed the potential future changes in mean temperature and precipitation.
Jacob et al. (2014) found for the EURO-CORDEX ensemble seasonal positive
changes of mean temperature in Europe in the same order of magnitude as we
have found for our A1B scenario. When it comes to precipitation, the projected
changes are more uncertain. As discussed in the Introduction (Section 5.1), Bel-
gium is located in the transition zone where climate models are found to show
large disagreements concerning the tendency of future precipitation changes. The
sign of the changes in seasonal daily and 1-hour mean precipitation is similar to
what has been found by Baguis et al. (2010) for central Belgium; an increase in
seasonal precipitation during winter and a decrease during summer. However, as
stated before, one is more confident in a model response which is greater than the
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model bias than in a model response which is smaller than the bias. As can be
seen from the 30-yr mean monthly precipitation values in Uccle given for the ob-
servations, and the control and scenario simulation, future changes only appear to
be significantly different from the control simulation during the summer months
(Fig. 5.10). Furthermore, relative differences in the frequencies of daily winter
precipitation show a future positive response which is much lower than the strong
wet biases present in the control simulation. Hence, making the positive change in
mean winter daily precipitation relatively doubtful. Tendencies in summer daily
and 1-hour precipitation are generally also smaller than the model biases. The
only feature which has similar or larger magnitudes than the model biases, appears
to be the strong and consistent decrease in the number of dry days and hours, or
a lowering in the number of days and hours with low precipitation amounts dur-
ing summer. In the next sections, we will explore more in detail if these mean
precipitation changes during summer are also reflected in the extremes.

5.4.3 Changes in extreme precipitation

As previously mentioned in the Introduction (Section 5.1), increases in the fre-
quency or intensity of heavy precipitation events under global warming, are po-
tentially one of the most important impacts on society (Muller et al., 2011). In
accordance to the methods used for the evaluation of extreme daily- and subdaily
precipitation, future changes in extreme (sub)daily precipitation as simulated by
SCN are assessed by means of the CC relation, Extreme Value Analysis, and ex-
treme indices. Furthermore, for reliable projections it is important that processes
leading to long-term changes in local precipitation such as e.g. relationships of
precipitation with temperature are captured (Maraun et al., 2010).

5.4.3.1 Clausius-Clapeyron relation in a warming climate

If the relative humidity in the future climate remains approximately the same as in
the present-day climate - which is generally expected based on model results and
physical arguments - the moistening of the atmosphere could lead to an increase
in the frequency and intensity of extreme precipitation events following the same
CC rate of increase of 6-7% per degree (Allen and Ingram, 2002; Frei et al., 2006;
Lenderink and van Meijgaard, 2010; Attema et al., 2014).

Figures 5.14(a) to 5.14(c) show the dependencies of different extreme per-
centiles (90th-99.9th) of the distribution of hourly precipitation on temperature in
Uccle and its closest model grid box values for the observations, and CTL and
SCN simulation. Scaling exponents are also calculated for different percentiles of
hourly precipitation by fitting a linear regression between the logarithmic of the
hourly precipitation amounts and the daily mean temperatures (Fig. 5.14(d)).
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Figure 5.14: (a-c) Dependencies of different extreme percentiles (90th-99.9th) of the distri-
bution of (a) observed (OBS), (b) control (CTL), and scenario (SCN) hourly precipitation on
temperature in Uccle and its closest model grid box values, for the CTL period 1961-1990
and the SCN period 2071-2100. Exponential relations given by a 7% and a 14% increase
per degree are given by the black and red dotted lines, respectively. Percentiles are dis-
played on a logarithmic y axis. (d) Variation of the observed (OBS, black), CTL (blue) and
SCN (red) scaling exponent with percentile of hourly precipitation. The scaling exponents
are calculated for the whole temperature range up to 22◦C, as well as for temperatures be-
low and equal to 12◦C and for temperatures above 12◦C. The horizontal black dotted line
corresponds to the theoretical 7% Clausius-Clapeyron (CC) increase per degree. Shaded
areas correspond to 95% confidence intervals given by ± 1.96 × the standard deviation of
the respectively scaling exponents which are calculated for the whole temperature range up
to 22◦C.
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Similar to the results from the ERA-Interim driven simulations (see Chap-
ter 4, Section 4.4.3.2), CTL also shows a strong reduction in modeled precipita-
tion intensity for temperatures above ≈ 22◦C, and in particular for the 90th and
95th percentiles. Hence, likewise as in previous Chapter 4, the scaling exponents
are calculated for daily mean temperatures to 22◦C. To quantify whether the ob-
servations and model reproduce the super-CC scaling, the scaling exponents are
also computed separately for temperatures below and equal to 12◦C, as well as for
temperatures above 12◦C.

As can be seen from Fig. 5.14(b) and Fig. 5.14(d), the CTL simulation re-
produces for Uccle relatively well the CC scaling for the highest 99th and 99.9th

percentiles. However, the super-CC scaling as visible in the highest observed per-
centiles for temperatures above 12◦C is not captured by CTL (Fig. 5.14(d)). As
can be seen, CTL systematically underestimates the observed scaling exponents.
Although, a similar underestimation has been identified in the ERA-Interim driven
simulation (Fig. 4.15(a)). The hourly precipitation dependency with daily mean
temperature in the SCN simulation (Fig. 5.14(c) and Fig. 5.14(d)) are consistent
with the expectations from the CC relation, i.e., the increase of the most extreme
events appears to converge to a value of about 7%/◦C. This implies that on the re-
gional scale hourly precipitation extremes are constrained by the CC relation, that
is, by moisture availability (Ban et al., 2015). Furthermore, the scaling exponents
obtained for the SCN simulation approach very closely the ones from CTL. Only
for the lower percentiles up to the 90th percentile the scaling exponents for SCN
are consistently higher than those of CTL. Although, the differences between the
SCN and CTL scaling exponents are still smaller than the differences between the
model and observations for the control period.

To further asses the climate change signal of subdaily precipitation, per-
centiles of observations, and the control and scenario simulation in Uccle are cal-
culated for 1-hour summer and winter precipitation (Fig. 5.15). For summer, only
from the 99.95th percentile onwards SCN percentiles are higher than CTL. How-
ever, the changes in the summer percentiles of SCN w.r.t. CTL is as large as the
bias in CTL w.r.t. the observations. Hence, the future response cannot be consid-
ered to be robust. On the other hand, one can be more confident in the changes
of the percentiles, and in particular the highest percentiles for winter hourly pre-
cipitation. The highest winter percentiles show a positive future change of more
than 50% which is much larger than the model bias in the control simulation. Al-
though, it was previously found that we could not grant much confidence to the
positive changes in daily mean winter precipitation, the latter suggests a more cer-
tain intensification of extreme 1-hour winter precipitation in Uccle under the A1B
scenario as calculated with the ALARO-0 model.
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Figure 5.15: Percentiles of 1-hour precipitation in (a) summer (JJA, 1961-1990 and 2071-
2100), and (b) winter (DJF, 1962-1990 and 2072-2100) for observations (OBS), control
simulation (CTL), and scenario simulation (SCN) in Uccle.

For summer, these results are in contrast to what has been found in some
previous studies, suggesting a super-CC scaling for extreme summer precipita-
tion events in future. Lenderink and van Meijgaard (2008) for example, analyzed
the relative change of a 30-yr present and future climate integration with a 25-
km RCM, and found for central Europe changes in 1-hour summer precipitation
extremes that exceed 10% per degree. Furthermore, Kendon et al. (2014) per-
formed GCM driven climate change experiments with a 12-km RCM and a very
high resolution 1.5-km model, nested into the 12-km model. The 12-km RCM and
the 1.5-km convection permitting model have similar model physics, except that
at 1.5 km resolution the convection scheme has been switched off. The authors
found for southern UK a robust future increase in extreme hourly winter precipi-
tation for the 12-km model as well as for the 1.5 km model. However, in summer
the convection-permitting model detected an intensification of extreme summer-
time hourly rainfall which was not seen in the coarser 12-km resolution model. As
suggested by the authors, in summer, deficiencies in the convective parameteriza-
tion scheme in coarse resolution models thus have a serious impact on projections
of changes in precipitation (Kendon et al., 2014). The positive response in extreme
winter hourly precipitation for southern UK, as found by Kendon et al. (2014), is
in agreement to our findings for Uccle (Fig. 5.15). Although the future increase
in extreme hourly summer precipitation as found by Lenderink and van Meijgaard
(2008) and Kendon et al. (2014) is not present in our results. As suggested by Ban
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et al. (2015), these discrepancies with our results might be due to different models
and regions considered. As mentioned previously, Belgium is indeed located in
the transition zone where climate models are found to show large disagreements
concerning the tendency of future precipitation changes.

Furthermore, up to now there is no complete and consistent picture of how
subdaily extreme rainfall patterns might change in a future climate (Westra et al.,
2014). There is generally low confidence in the projections for subdaily precipi-
tation, in particular because of the difficulties of the model to correctly simulate
precipitation at these high temporal scales (Kendon et al., 2014).

5.4.3.2 Extreme Value Analysis

The GEV distribution is fitted to the summer annual maxima of 1-hour precipita-
tion from the ERA-40 driven ALARO-0 simulation, as well as the from the GCM
driven control and scenario simulation. The analyses are done for each grid point
over the 81 × 81 subdomain separately. In a first step, the spatial distributions
of the biases and future changes of the estimated parameters describing the GEV
distribution (i.e. location µ, scale σ, and shape γ) are assessed.

The spatial distributions of the location parameter as estimated from CTL
shows systematic negative biases w.r.t. ERA40 (Fig. 5.16(c)). Also the estimated
future change in the location parameter appears to be mostly negative throughout
Belgium. However, both the biases as well as the projected changes are significant
for only a limited number of grid points. Taking into account that µ is closely
related to the mean of the GEV distribution, these negative responses in the loca-
tion parameter describe a shift of the whole distribution towards lower values. The
spatial distributions of the biases and projected changes for the scale and shape pa-
rameter display a mostly non-significant and highly spatially variable distribution
(see Appendix C, Figs. C.1 to C.2). Hanel and Buishand (2010), analyzed hourly
and daily precipitation extremes in the Netherlands in 13 RCM simulations, where
eight of the simulations were driven by transient runs of GCMs forced by the SRES
A1B emission scenario and five of them by perfect boundary conditions of ERA-
40 reanalysis. The authors fitted the GEV distribution to the annual maximum
amounts and evaluated and assessed the GEV parameter estimates for present and
future climate conditions. In agreement with our results, the authors find a nega-
tive bias in the location parameter of 1-hour precipitation extremes in the majority
of the RCM simulations considered. However, their evaluation reveals for most
RCM simulations a significant overestimation of the scale and shape parameter.
Although, the large differences between the projected GEV parameters for the dif-
ferent RCM simulations, all three GEV parameters show a general increase leading
to very large increases in large quantiles (or return levels), i.e., a 45-60% increase
at return periods from 50 to 200 years.
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Figure 5.16: Spatial distributions of the estimated location parameter µ from the GEV
fit of 1-hour precipitation in summer (JJA, 1961-1990 and 2071-2100) for (a) the ERA-
40 driven simulation (ERA40), and (b) the control simulation (CTL), and (c-d) absolute
differences between CTL and ERA40, and SCN and CTL, giving the bias and projected
change, respectively. Dotted areas indicate regions where the bias or change is statistically
significant at the 5% significance level for which the 95% confidence intervals of CTL and
ERA40, and SCN and CTL, as inferred from 1000 bootstrap samples, do not overlap.

Similar to the GEV analyses in previous chapter (Chapter 4), we have also
applied a K-S goodness-of-fit test to verify the accuracy of the GEV fits. At the 5%
significance level, the null hypothesis that the annual extremes are drawn from the
GEV distribution, is accepted for all 81× 81 grid points in the ERA40 simulation,
and the control and scenario simulation. This thus justifies the use of the GEV
distribution as a model for the precipitation extremes.

The spatial distributions of the bias and future change in 5-yr return levels are
presented in Fig. 5.17. Overall, negative biases and negative relative changes in
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5-yr return levels are visible, which may result from the negative tendencies in the
location parameter. However, the decrease in the return levels is only significant
for a few grid points and smaller or equal in magnitude than the biases in the
control simulation.
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Figure 5.17: Spatial distributions of the 5-yr return level of 1-hour precipitation in summer
(JJA, 1961-1990 and 2071-2100) for (a) the ERA-40 driven simulation (ERA40), (b) the
control simulation (CTL), and (c-d) absolute differences between CTL and ERA40, and
SCN and CTL, giving the bias and projected change, respectively. Dotted areas indicate
regions where the bias or change is statistically significant at the 5% significance level for
which the 95% confidence intervals of CTL and ERA40, and SCN and CTL, as inferred from
1000 bootstrap samples, do not overlap.

Return level values are also calculated for daily precipitation extremes, both
for the summer and winter season (Fig. 5.18 and Fig. 5.19). Here, the analysis is
done for the observation stations, and the closest model grid point values to the
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station locations from the CTL and SCN simulation. Although the magnitudes
are smaller, the results of 5-yr return level values for daily summer precipitation
(Fig. 5.18) show negative biases and future changes, similar to the 1-hour precip-
itation results. Both the biases and changes are again significant for a few station
locations. Similar with previous results for daily mean precipitation, the results
for winter daily precipitation display an opposite pattern to the results for summer,
with positive biases and changes in 5-yr return level estimates which are significant
for a relatively high number of stations (Fig. 5.19).
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Figure 5.18: Spatial distributions of the 5-yr return level of daily precipitation in summer
(JJA, 1961-1990 and 2071-2100) for (a) the observations (OBS), (b) the control simulation
(CTL), and (c-d) absolute differences between CTL and OBS, and SCN and CTL, giving the
bias and projected change, respectively. Circled symbols indicate stations where the bias or
change is statistically significant at the 5% significance level for which the 95% confidence
intervals of CTL and OBS, and SCN and CTL, as inferred from 1000 bootstrap samples, do
not overlap.
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Our results are in agreement with the findings of Kyselý and Beranová (2009).
The authors applied a peaks-over-threshold analysis to an ensemble of RCM out-
puts from the PRUDENCE project to estimate the effects of climate change of
extreme daily precipitation in Czech Republic (i.e. central Europe) by means of
changes in return level values.
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Figure 5.19: Spatial distributions of the 5-yr return level of daily precipitation in winter
(DJF, 1962-1990 and 2072-2100) for (a) the observations (OBS), (b) the control simulation
(CTL), and (c-d) absolute differences between CTL and OBS, and SCN and CTL, giving the
bias and projected change, respectively. Circled symbols indicate stations where the bias or
change is statistically significant at the 5% significance level for which the 95% confidence
intervals of CTL and OBS, and SCN and CTL, as inferred from 1000 bootstrap samples, do
not overlap.

Their results demonstrate that in a warmer late-21st century climate, extreme
precipitation events are likely to increase in severity in winter and, with less agree-
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ment among the models, also in summer. With some level of confidence, we could
conclude from previous results that extreme daily precipitation during winter is
expected to increase.

5.4.3.3 Extreme statistics

Finally, similar to Beniston et al. (2007), we have calculated relative changes in
several extreme statistics of daily precipitation in summer and winter averaged
over all 93 station points: fre: Frequency of wet days (daily amount larger than
1 mm); me: mean seasonal precipitation; int: precipitation intensity (average
amount on wet days); q95: 95% quantile of wet days; dsl: dry spell length (annual
maximum of consecutive periods of dry days, i.e. daily amount smaller or equal
than 1 mm); wsl: wet spell length (annual maximum of consecutive periods of wet
days, i.e. daily amount larger than 1 mm);R1d: 30-yr means of summer maximum
1-day precipitation totals; R5d: 30-yr means of winter maximum 5-day precipita-
tion totals. These different aggregation times of 1- and 5-day aggregations account
for the different character and impact of extreme precipitation in the two seasons;
extreme winter precipitation is generally due to persistent large-scale precipitation
whereas extreme summer precipitation is more often due to short-term localized
convective activity (Beniston et al., 2007).
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Figure 5.20: Relative bias (CTL/OBS, blue) and relative change (SCN/CTL, red) in several
statistics of daily precipitation in (a) summer (JJA, 1961-1990 and 2071-2100), and (b)
winter (DJF, 1962-1990 and 2072-2100) averaged over all 93 station points. Vertical bars
represent the 95% confidence interval of the estimated bias / change as inferred from 1000
bootstrap samples.
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To assess the uncertainty of the relative changes, the relative biases of the
extreme statistics as inferred from the control simulation w.r.t. the observations
have also been calculated.

In line with previous results, the relative changes of extreme statistics for
summer show a decrease in the frequency of wet days (fre) and mean precipita-
tion (me). Furthermore, the annual maximum of both consecutive periods of dry
as well as wet days appears to increase under future-climate conditions. This sug-
gests that when dry or wet periods occur, they will last longer. However, it can
be seen that the level of confidence in the changes is relatively low, since most
changes (and its confidence intervals) are not or only slightly larger (smaller) than
the biases. For winter, most extreme statistics vary around one, and are smaller
than their respective biases. Although, in agreement with the mostly significant
increase in 5-yr return levels for daily winter precipitation (Fig. 5.19), the statistics
for which a change is visible, also show a positive change. The mean precipitation
(me), the mean precipitation on wet days (int), and the 95% quantile of wet days
show slight positive changes of around 10% under future climate conditions. The
30-yr means of winter maximum 5-day precipitation totals (R5d) also show a pos-
itive response, which is opposite to the negative change of the corresponding R1d

statistic as obtained from daily summer precipitation.

5.4.4 Uncertainty assessment and bias correction

Déqué et al. (2007) attribute uncertainties in projected climate change to four dif-
ferent sources: (i) radiative uncertainty, related to the fact that the radiative forcing
as described by the amplitude of anthropogenic emissions and the resulting GHG
concentration is merely one hypothesis; (ii) model uncertainty, caused by the for-
mulation and accuracy of the atmosphere-ocean GCM (AOGCM) driven by this
radiative forcing; (iii) boundary uncertainty, introduced due to the fact that pro-
jections of local climate change at high spatial resolutions needed for the impacts
community and policy makers, require a further downscaling of the AOGCM with
RCMs; and (iv) sampling uncertainty, since the climate statistics are estimated
from a finite sample or number of years (usually 30 years) (Déqué et al., 2007).
Previous results of the projected climate change can to some extent be assessed by
means of these sources of uncertainty.

Generally, the uncertainty of scenarios of anthropogenic climate changes is
evaluated by two approaches. One approach is to gain a better understanding of the
underlying mechanisms of the regional climate change. By attributing the change
to particular mechanisms, and using a qualitative knowledge of the uncertainty
of each mechanism, a subjective judgement can be made of the reliability of the
change (Rowell and Jones, 2006).

Another common approach, are multi-model ensemble studies, as these allow
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to estimate an uncertainty range in the projected regional model results. There has
been considerable international effort to quantify uncertainty in regional climate
change through the inter-comparison of multiple RCMs, for example the PRU-
DENCE and ENSEMBLES projects for Europe, and the NARCCAP (North Amer-
ican Regional Climate Change Assessment Program) project for North America.
Furthermore, the recent CORDEX initiative from the World Climate Research Pro-
gram promotes running multiple RCM simulations at 50 km and 12.5 km resolu-
tion for multiple regions (Maraun et al., 2010). The use of such large ensembles
of models results in more accurate estimates of future changes, since the effect
of internal variability is reduced (May, 2008). In order to provide a range of po-
tential expected future changes in (extreme) precipitation over Belgium, ideally
one should have done the above analyses using different future climate scenarios.
Unfortunately, due to limited computer power it is impossible for a small institute
like the RMI to perform 30-year model integrations using different regional mod-
els and GHG scenarios at such high spatial resolutions. Hence, it should be kept
in mind, that the results as discussed above are one possible outcome of future
changes at the end of the 21st century.

The previous chapters (Chapter 3 and Chapter 4) have demonstrated that the
ALARO-0 model, when driven by so-called perfect boundary conditions from re-
analyses, is able to correctly simulate daily and subdaily extreme precipitation
over Belgium. Furthermore, a validation study by Hamdi et al. (2012), has shown
that summer maximum surface air temperature over Belgium from the ALARO-0
model at 4 km resolution is correctly represented by the model. Nevertheless, re-
sults from previous sections suggest that once ALARO-0 is coupled to the CNRM-
CM3 GCM, the model is subject to significant biases which are not present in the
control reanalysis driven simulations (i.e. boundary uncertainty). This is related to
the second source of uncertainty, as proposed by Déqué et al. (2007). Hence, it is
clear that the GCM as driving data introduces additional biases in the downscaling
simulations. Therefore, it is important to explore to which extent these GCM bi-
ases, are propagated through the downscaling chain. It should however be noted,
that both precipitation and 2-meter temperature are products of the GCM which
are not used in the coupling process to the RCM. The biases as found in these
variables from the ALARO-0 control simulations could thus have various sources,
and are not necessarily good proxies for biases in the driving fields of atmospheric
temperature, winds and humidity provided at the RCM lateral boundaries (Berg
et al., 2013b).

As previously discussed, the results from the recent study of Tabari et al.
(2016), indeed suggest that the underestimation (overestimation) in summer (win-
ter) daily extreme precipitation amounts in the CNRM-CM3 driven ALARO-0
simulation for the control period are explained by underestimations (overestima-
tions) in the global CNRM-CM3 model, rather than in the ALARO-0 model itself.
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Furthermore, it has been demonstrated by the authors that compared to the driving
low-resolution CNRM-CM3 GCM, the downscaling of the GCM data towards
higher spatial resolutions of 4 km results in more extreme summer precipitation,
significantly reducing the bias w.r.t. the observations in the control simulation.
Similarly, Berg et al. (2013b) found that biases from the driving GCMs are gener-
ally transferred unchanged to the high-resolution RCMs, but that compared to the
GCMs, the RCMs add value to the intensity distributions of precipitation, when
compared to observations at the fine nest resolution, and especially for extreme
events.

Although the projections of hourly precipitation extremes are often needed
for climate change impact assessment, the large deviations in e.g. return level
values or extreme statistics obtained from the control simulation w.r.t. the ob-
servations, limit our confidence in the results under future climate conditions. If
one considers the future impact as the difference between the model output un-
der future climate conditions from the scenario simulation minus the output under
the control climate conditions, these deviations or biases mostly due to model im-
perfections will indeed be included in the impact term. Therefore, to reduce the
GCM/RCM biases, bias correction or postprocessing methods can be applied. In
recent years, a wide range of bias correction methods have been developed and
applied by many users of GCM/RCM output. However, it is beyond the scope
to extensively discuss all the existing bias correction methods. We rather aim to
provide a taste of the range and approaches of bias correction methods, by briefly
highlighting the different methods and indicating for which purposes one or an-
other method might be more useful. Déqué (2007) distinguishes five categories
of bias correction methods. The confident methods, in which no correction is ap-
plied, as used in this chapter, assume that most of the bias is canceled out when
studying the climate change response as the difference between the scenario and
control simulation. Secondly, the delta methods, are often used, and simple meth-
ods which assume that both the control and scenario model output can be rep-
resented by observations, with the scenario model output being corrected by the
mean difference (or ratio in case of precipitation) between the scenario and control
simulation. These methods are very robust, but it requires that time series of obser-
vational data are available for the study region. Furthermore, they assume that the
climate variability in the scenario projection is unchanged and inherited from the
observed variability. Therefore, if one is interested in changes in the frequency of
extreme events, these methods which assume a simple shift of the observed mean
and variance may not be convenient. A third family of methods are the unbiasing
methods, in which both the control and scenario model output are corrected for the
mean model bias (i.e. observations minus control model output). One advantage
of these methods compared to the delta methods is that it might be easier to get a
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climatology (i.e. mean) of the observations than a (daily) times series of the obser-
vations at some locations. In the variable correction methods a particular function
f is build with the observation dataset and applied on the control dataset as well as
on the future scenario dataset. These methods are a generalization of the previous
unbiasing methods, in such a way that the function f(x) corresponds to x − B

where x is the model field to be corrected and B is the mean bias. The functions
used in these methods cover many statistical techniques and can for example be
based on a linear regression, a quantile-quantile function, etc. The last family of
methods, as described by Déqué (2007), are the regime methods. These methods
cover the clustering and analogue techniques, which are based on statistical models
that generate for the control and scenario model output random weather sequences
that resemble the statistical properties of observed weather (Déqué, 2007; Maraun
et al., 2010).

Although bias correction methods are important tools to address the model
biases, this brief overview yet indicates that the large variety of the existing bias
correction methods and their corresponding assumptions do not always facilitate
it to use the right method in the right way or context. Ehret et al. (2012) argue that
bias correction as used to correct GCM or RCM output in climate change impact
studies is often used in an invalid way. In general, the biases corrected for are a
function of time, space, and meteorological variable and spread in a non-uniform
way through the entire distribution of the variable. As suggested by the authors,
these complex interactions of the biases are often neglected in the application of the
bias correction. In this way bias correction methods often alter the spatiotemporal
consistency of the model fields or the relations among variables. Furthermore, it is
unclear whether bias correction methods are time-invariant under climate change
conditions. The physical justification of the correction method is often not pro-
vided or not transparent to the end user, and hence, the authors conclude that the
use of a bias correction rather hides than reduces the uncertainty range of simu-
lations and projections. This is an important motivation for the approach used in
this chapter, where the future changes in temperature and (extreme) precipitation
are quantified as the difference between the scenario and control model output,
without any bias correction.

5.5 Conclusion

This chapter assessed the potential future changes in extreme precipitation for Bel-
gium under the A1B scenario as inferred from the ALARO-0 model at 4 km res-
olution. The comparison of daily precipitation and temperature, as well as hourly
mean precipitation from the 1961-90 CTL simulation with the observations re-
vealed significant biases, which are found to be mainly related to model errors
present in the driving GCM CNRM-CM3. Furthermore, it is found that the down-
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scaling of the GCM data towards higher spatial resolutions of 4 km results in more
extreme summer precipitation, and significantly reduces the bias w.r.t. the obser-
vations in the control simulation.

We have limited ourselves in this chapter to a sensitivity study, where future
changes are analyzed through quantification of the differences between the SCN
and CTL simulation, without any bias correction. The results from the analysis
on the future changes in mean temperature show a significant warming in 2-meter
mean temperature by the end of the 21st century throughout the summer and win-
ter season. For mean precipitation our results demonstrate for summer an overall
significant decrease for the whole country, and a significant increase during winter
for the coastal and central region of the country. The future changes in extreme
precipitation were explored through analysis of the CC relation, EVA, and extreme
statistics. The most extreme percentiles in the hourly precipitation dependency
with daily mean temperature in the SCN simulation converge closely to the CC
scaling, i.e. 7%/◦C. Although, the scaling exponents for the SCN simulation are
only for the lower percentiles up to the 90th percentile slightly higher than those of
the CTL simulation. Finally, the results from the EVA show for summer little sig-
nificant but negative changes in the GEV location parameter, which are reflected in
the negative response of 5-yr return level values of hourly and daily precipitation.
For winter, 5-yr return level values of daily precipitation show mostly positive and
significant changes between the SCN and CTL simulation.

However, we did not attempt to quantify the uncertainties of these future
changes, the comparison of the changes w.r.t. the model biases as well as w.r.t.
other GCM/RCM results, allowed us to provide a qualitative notion of the un-
certainty and confidence of our results. Except for a few responses, most of the
changes are as large as, or not much larger than the biases. For example, the posi-
tive changes in daily mean winter precipitation are of the same order of magnitude
as the biases. However, the positive future change in the highest percentiles of
hourly winter precipitation in Uccle is more than 50% larger than the model bias.
This suggests that with some level of confidence, one can expect an intensification
of extreme hourly winter precipitation in Uccle, which is also reflected in the posi-
tive changes in extreme daily winter precipitation as given by the 5-yr return level
estimates for Belgium.

The future changes as derived from the ALARO-0 model are to some ex-
tend in agreement with other GCM/RCM results. The positive changes in mean
temperature as inferred from our ALARO-0 CTL and SCN simulations, are in
line with other modeling studies. The distinct seasonal response in mean and ex-
treme precipitation as apparent in our results, is also reported by other modeling
studies. Although, the actual projected precipitation tendencies are more uncer-
tain, as they do not show a general agreement with the tendencies as obtained
from other regional climate change experiments in Europe. Our finding in the



FUTURE CHANGES OF EXTREME PRECIPITATION 5-39

decrease of future summer mean precipitation is also reflected in the negative re-
sponses in extreme and hourly summer precipitation. However, these negative
changes in extreme summer precipitation are relatively uncertain since (i) most of
the changes are non-significant and smaller than the respectively biases, and (ii)
other modeling studies for our regions project an increase in extreme summer pre-
cipitation, which is in disagreement with our results. In general, the disagreements
and highly varying patterns of projected changes in extreme summer precipitation
can be explained by the transition zone in which Belgium is located. Furthermore,
the strong dependency of the parameterizations, and in particular the deep convec-
tive parameterizations, are also a key source for the uncertainty in future climate
projections of extreme summer precipitation. In contrast, wintertime projections
of heavy precipitation are found to be much more robust. Our results for winter ex-
treme precipitation are indeed in line with other RCM and high-resolution model
results for our region, showing a future increase in extreme winter precipitation
amounts. Finally, our CC results are in disagreement with the limited number of
other high-resolution modeling studies that assessed the CC scaling relationships
in the context of climate change. This points to the need for more extensive obser-
vational and modeling studies to investigate the dominant physical processes that
are effectively responsible for changes of (sub)daily extreme rainfall in a future
climate.

As mentioned previously, the CTL climate simulation demonstrates that the
downscaling of the driving GCM CNRM-CM3 data with ALARO-0 towards high
spatial resolutions of 4 km, results in more extreme summer precipitation. How-
ever, compared to the change factors derived from the driving GCM, the change
factors as obtained from the CTL and SCN simulation with ALARO-0 at 4 km
resolution do not show a significant additional change. Nevertheless, our high-
resolution scenario simulations provide valuable information to hydrological ap-
plications, as well as useful spatial detail for impact studies in Belgium. For cli-
mate change studies at for example the urban scale, this high-resolution informa-
tion may still remain relatively coarse in space and time. Hence, to tackle this
scale difference between the climate model scales and the local urban drainage
scale, statistical downscaling or bias correction methods are commonly used. As a
future outlook, the ongoing project CORDEX.be (COmbining the Regional Down-
scaling EXpertise in BElgium: CORDEX and beyond), which aims to produce a
set of comparable simulations by the Belgian regional climate modeling groups,
will apply several statistical downscaling techniques, to indeed overcome the reso-
lution differences between the RCM simulations and the local impact model simu-
lations, as well as to infer the climate uncertainties so that the CORDEX.be micro-
ensemble can be properly situated w.r.t. the other runs in the EURO-CORDEX
archive.





6
PRACTICAL ASSESSMENT OF

CLIMATE CHANGE IMPACT ON
WINTER SMOG EPISODES: A
CASE STUDY FOR BRUSSELS

Based on De Troch, R., P. Termonia, and R. Hamdi, 2015: Practical
assessment of climate change impact on winter smog episodes: a

case study for Brussels. J. Appl. Meteor. Climatol., to be submitted.



6-2 CHAPTER 6

“There is consensus among Global Climate Models (GCMs) that 21st-century
climate change will increase the frequency of stagnation episodes over northern

mid-latitudes continents.”
– Jacob and Winner (2009)

6.1 Introduction

In the previous chapter we have assessed the impact of climate change on extreme
precipitation. This chapter focuses on another major area where climate change
may cause adverse effects, i.e. air quality. Pollution peaks have a great impact
on health and environment, in particular in large cities and urban environments.
Hence, reducing the impact of air pollution is a major issue in environmental policy
making. Policy makers express a growing interest in quantifying the effect of
climate change on air pollution to make an effort to meet the air quality targets in
the next years and decennia (Lauwaet et al., 2014).

Figure 6.1: Schematic overview of the effect of climate change on surface air quality in the
context of chemistry-climate interactions. An external forcing from change in anthropogenic
emissions triggers interactive changes within the chemistry-climate-emissions system, re-
sulting in perturbation to surface air quality (adopted from Jacob and Winner, 2009).

The effects of climate change on surface air quality is often described in the
broader context of chemistry-climate interactions. Generally, the concentrations
of air pollutants are determined by three factors: (i) anthropogenic and natural
emissions, (ii) atmospheric chemistry and (iii) meteorological conditions (Jacob
and Winner, 2009; Giorgi and Meleux, 2007). As can be seen from Fig. 6.1, emis-
sions may be affected by an external forcing from a perturbation to anthropogenic
emissions resulting from socio-economic factors external to the chemistry-climate



CLIMATE CHANGE IMPACT ON WINTER SMOG EPISODES 6-3

system. These changes in emissions in turn cause changes in the other determining
factors (i.e. atmospheric chemistry and meteorology), possibly driven by interac-
tive changes in climate. Examples of forcings include anthropogenic emissions of
carbon dioxide (CO2) (driving change in climate), nitrogen oxides (NOx) (driving
atmospheric chemistry), or elemental carbon (driving change in climate as well as
direct change in air quality) (Jacob and Winner, 2009). Anthropogenic emissions
of pollutants thus change the chemical composition of the atmosphere, which in
turn has a feedback effect on the regional and global climate (Juda-Rezler et al.,
2012). Furthermore, change in atmospheric chemistry affects air quality (ozone
O3 and Particulate Matter PM) and climate (O3, PM, methane CH4), and change
in climate affects natural emissions (biosphere, dust, fires, lightning) which cause
changes in air quality (Jacob and Winner, 2009). Finally, global, regional and local
weather conditions, determined by temperature, precipitation, clouds, atmospheric
water vapor, wind speed, and wind direction, also influence the surface air qual-
ity through atmospheric chemical reactions and by affecting atmospheric transport
and deposition processes as well as the rate of pollutant export from urban and
regional environments to global scale environments and vice-versa (Juda-Rezler
et al., 2012).

Climate impact on air quality is often assessed by computing scenarios of
future greenhouse gas (GHG) emissions using Global Climate Models (GCMs).
These global meteorological data together with the changes in the global anthro-
pogenic precursor emissions consistent with the greenhouse scenario may serve as
input to a Chemical Transport Model (CTM) that calculates the atmospheric com-
position on a global scale. If one is interested in air quality changes at finer scales
and for a specific region of interest, dynamically downscaled meteorology from a
Regional Climate Model (RCM), chemical boundary conditions from the global
CTM and (if desired) future pollutant emissions provide then the forcing condi-
tions for a regional CTM (Jacob and Winner, 2009). The GCM/RCM and CTM
are usually runned in off-line mode, with no feedback between the input meteo-
rological fields and the tracer concentrations calculated by the CTM, but in some
studies also the on-line mode is used (e.g. Giorgi and Meleux, 2007) (Juda-Rezler
et al., 2012). Each of the models address a different aspect; the GCMs and RCMs
take mostly care of the transport and the dispersion of the pollutants, while the
CTMs mostly address the problem of the emissions and the chemical reactions.

This GCM/RCM-CTM approach has been used in many previous studies as-
sessing the relative effects on air pollution (most of them dealt solely with O3 and
PM) from changes in emissions vs. changes in meteorology associated with cli-
mate change (e.g. Kelly et al., 2012; Hedegaard et al., 2013; Lauwaet et al., 2014).
Kelly et al. (2012) found a potential improvement in ambient air quality for the
USA with reducing anthropogenic precursor emissions according to the Intergov-
ernmental Panel on Climate Change (IPCC) Representative Concentration Path-
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way (RCP) RCP6. On the other hand the impact of climate change alone, when
emissions remain fixed at their present values, shows an increase in O3 and PM2.5

concentrations and thus a worsening of the air quality. However, it was found that
the magnitude of the potential improvements from changes in emissions is larger
than the deteriorated signal from climate change. Other studies for respectively
the Benelux and Belgium from Hedegaard et al. (2013) and Lauwaet et al. (2014)
reported similar findings, i.e. future changes in air pollutants and more specific
O3 concentrations, are dominated by the expected emission reductions over the
expected climatic changes.

Other studies have investigated solely the effect of climate change. In that
case the changes in the anthropogenic precursor emissions are not taken into ac-
count and the CTMs consider a constant emission rate under the greenhouse sce-
nario (Jacob and Winner, 2009). Several studies demonstrated for Europe that due
to changes in meteorological variables favoring the production of O3 (e.g. temper-
ature, precipitation, solar radiation, ...) a general degradation of (summer) ozone
air quality can be expected (e.g. Giorgi and Meleux, 2007; Katragkou et al., 2011;
Juda-Rezler et al., 2012). However, for PM the response to climate change is
found to be more complicated than for O3, because of the diversity of PM com-
ponents, compensating effects, and general uncertainty in GCM projections of the
future hydrological cycle (Jacob and Winner, 2009). Although the effect of cli-
mate change on PM could also be significant, the little consensus between studies
on the sign of the effect, makes it very uncertain (Jacob and Winner, 2009). Fur-
thermore, Jacob and Winner (2009) reported in their review paper that there is a
general agreement among GCMs that 21st-century climate change will increase
the frequency of stagnation episodes over the northern mid-latitudes. So even if
the emission rates and background concentrations of specific air pollutants would
stay constant, climate mitigation measures following climate scenarios will have
an impact on air-pollution events due to changes in the meteorological conditions
that are unfavorable for the dispersion of air pollutants.

This chapter addresses the impact of climate change on winter smog events
in Brussels. These winter smog peaks occur during anticyclonic, calm and sta-
ble meteorological conditions, characterized by low wind speeds, an absence of
horizontal transport and a temperature inversion with a stable boundary layer that
prevents the mixing of the air pollutants into the higher atmospheric layers (Eu-
ropean Environment Agency, 1998). If these conditions last for several days, the
trapped air pollutant emissions will accumulate until the concentrations exceed the
prescribed European threshold values (i.e. European Directive 2008/50/EC Euro-
pean Community, 2008). The magnitude of the resulting concentrations are then
proportional to the emissions. The main pollutants involved in such events are
a mixture of PM, NOx (or nitrogen dioxide NO2) and sulfur dioxide SO2, and
mainly originate from anthropogenic activities such as transport, energy consump-
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tion or industrial and power generation facilities (European Environment Agency,
1998). Hence, such events during winter are particularly relevant for urbanized
and industrialized regions with higher than average and constant emission rates.

Figure 6.2: Radiative forcing bar chart for the period 1750-2011 based on emitted com-
pounds (gases, aerosols or aerosol precursors) or other changes. Red (positive radiative
forcing) and blue (negative forcing) are used for emitted components which affect few forc-
ing agents, whereas for emitted components affecting many compounds several colors are
used as indicated in the inset at the upper part the figure. The vertical bars indicate the
relative uncertainty of the radiative forcing induced by each component. Their length is
proportional to the thickness of the bar, that is, the full length is equal to the bar thickness
for a ± 50% uncertainty. The net impact of the individual contributions is shown by a di-
amond symbol and its uncertainty (5 to 95% confidence range) is given by the horizontal
error bar (adopted from Myhre et al., 2013).

The emissions of the winter smog pollutants can be considered to be rela-
tively constant on a day-to-day basis, since they are weakly reactive and during
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wintertime when photochemistry is less important, they do not act significantly
as precursor for the production of ozone for example (Sillman, 1999). This fact
allows to determine the peaks to a high degree of reliability by the meteorolog-
ical conditions, which also has been explored in the past with the application of
atmospheric stability classification schemes, such as the Pasquill-type of systems
(Pasquill, 1961), where pollutant events are detected or forecasted based on mete-
orological data only.

Furthermore, the most important anthropogenic driver of climate change is
the radiative forcing of the GHGs. However, the most important GHGs (e.g.
CO2 and CH4) are not considered to be direct pollutants of human health con-
cern such as O3, PM10, PM2.5, SO2, NO2, carbon monoxide CO, and lead Pb
(Ebi and McGregor, 2008). We asses the future climate change impact on win-
ter smog episodes under the Special Report on Emission Scenarios (SRES) A1B.
The background values of the relevant elements of winter smog peaks (i.e. SO2

and NOx) also contribute to the overall radiative climate forcings and the changes
in their background concentrations and emissions are taken into account in the
SRES (Nakićenović et al., 2000), as well as in the more recent RCPs (Lamarque
et al., 2011; van Vuuren et al., 2011) used in the latest Assessment Report of the
IPCC (Fifth Assessment Report, AR5). However, as can be seen from Fig. 6.2,
the radiative forcing (or climate sensitivity) of these short-lived compounds SO2

and NOx is of an order of magnitude smaller than the main anthropogenic GHGs
such as CO2 and CH4. Furthermore, the projected emissions in the background
concentrations of the relevant pollutants of winter smog peaks as given by the
SRES and RCPs are of a completely different order of magnitude than the ac-
tual peak concentrations occurring during such winter smog episodes when the
European prescribed thresholds are exceeded. This important difference between
the background and peak concentrations is illustrated in Fig. 6.3. The top figure
(Fig. 6.3(a)) shows for the SRES A1B an overall decrease or stabilization by 2100
in the projected global NOx emissions. In contrast, the observed NO2 concentra-
tions, as illustrated in Fig. 6.3(b) for a station in Brussels (St.-Jans-Molenbeek) for
January 2001, show that the peak concentrations during winter smog events cor-
respond almost to a threefold of its background concentrations (i.e. ≈ 50 µg m−3

versus 135 µg m−3) (Termonia and Quinet, 2004). Hence, these extreme and lo-
calized concentrations, as measured during winter smog events, can be considered
as superimposed peak concentrations on the everyday background concentrations.
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Figure 6.3: (a) Standardized global NOx emissions in the SRES scenarios, classified into
four scenario families (each denoted by a different color code - A1, red; A2, brown; B1,
green; B2, blue). Marker scenarios are shown with thick lines without ticks, globally harmo-
nized scenarios with thin lines, and non-harmonized scenarios with thin, dotted lines. Black
lines show percentiles, means, and medians for SRES scenarios (adopted from Nakićenović
et al., 2000). (b) The hourly values of the NO2 concentrations (in µg m−3) in January 2001
for the station of St.-Jans-Molenbeek as measured by the Brussels Institute for Management
of the Environment (BIME). The EU guide value of 135 µg m−3 for the 98th percentile of
the hourly values measured during the calendar year (Directive 85/580/EEC) is indicated
by the dashed line (adopted from Termonia and Quinet, 2004).
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In this way, our study that focuses on winter smog peaks allows to isolate the
impact of climate change on unfavorable meteorological conditions for the disper-
sion of air pollutants from the impact of the anthropogenic emissions and produc-
tion of air pollutants, since both impacts are driven by different forcings and thus
potentially by different economic activities. Two stability indices are calculated
for a 9-yr winter period using present (1990/91-1998/99) and future (2046/47-
2054/55) climate data that has been obtained from a dynamically downscaling of
GCM data from the ERA-Interim reanalysis as well as from the coupled CNRM-
CM3 model using the limited area model ALARO-0 at 4 km spatial resolution
(De Troch et al., 2013; Hamdi et al., 2014, 2015). The simulations are performed
within the framework of the ACCEPTED project (Assessment of Changing Con-
ditions, Environmental Policies, Time-activities, Exposure and Disease, Delcloo
et al., 2014). The ACCEPTED project aims to set up an observational and mod-
eling approach, accounting for the effects of a changing urban climate, in order to
improve our understanding of future exposure situations and their impact on health
in a mid-century horizon (2050s) (Hamdi et al., 2015).

The first index has been proposed and tested by Termonia and Quinet (2004)
and combines horizontal transport and vertical stability into one single and unique
transport index. The index can be easily computed from meteorological output
of an atmospheric model such as a Numerical Weather Prediction (NWP) model.
In Belgium the transport index has been used for launching smog alerts and has
been part of policy measures over the past years. Based upon the index the authors
introduced a simple criterion to determine whether the meteorological conditions
will lead to a winter smog alert. Furthermore, this criterion can be easily adapted
to detect events that would lead to smog alerts using output of climate models
without the need to run a CTM. This transport index is similar to an index used
in an old Pasquill-type scheme (i.e. Bultynck-Malet scheme, Bultynck and Malet,
1972). Although, Termonia and Quinet (2004) demonstrated that the transport
index is more convenient to detect the strongest pollution peaks and more easy to
interpret physically, the well known Pasquill classes are also calculated in order to
provide a reference.

Each model component in the GCM-CTM model chain (i.e. GCMs, RCMs,
CTMs, or inline chemical modules) requires additional computing resources and
the coupling between the models may imply specific challenges such as lateral
boundary issues, two-way nesting issues, consistency of the underlying scientific
hypotheses and of the used numerical algorithms. Furthermore, all models have
model errors and the resulting model error of the coupled system is the superpo-
sition of the errors of the different individual components. It should be avoided
to correct for biases in one downstream model if they are originating from model
errors in the driving model (Ehret et al., 2012). Assessing and diagnosing the
behavior of the GCMs and RCMs for the conditions that are unfavorable for the
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dispersion of air pollution, independently of the outputs of the CTMs, is therefore
important.

In climate modeling, model biases are tackled by carrying out bias correc-
tions, such as for example a correction for the distribution where the mean and
standard deviation are readjusted to match better with the observations. Identi-
fying the biases and applying correction methods can also be seen as a way to
quantify model uncertainties (Ehret et al., 2012). For this study, where the climate
impact on air pollution is studied by means of stability indices, applying a bias
correction directly on the vertical profiles of the meteorological variables used as
input to calculate the indices, would break the physical consistency of the pro-
files or not properly retain the climate change signal of the stability. Applying the
bias correction directly on a simple index that incorporates both the stability in-
formation and the horizontal transport, we assure a more physically coherent bias
correction and facilitate the estimation of the uncertainties in the impacts. There-
fore, in the present paper we propose a direct bias correction on the transport index
of Termonia and Quinet (2004) based on the quantile mapping approach.

The approach proposed here will be evaluated and applied for Brussels, the
capital of Belgium. This is motivated by the fact that Belgium is one of the coun-
tries in Europe where air quality levels of different pollutants such as O3, NOx,
and PM still exceed the prescribed European norms multiple times a year (Euro-
pean Environment Agency, 2014). Furthermore, winter smog pollutants mainly
originate from urban emission sources and its impacts are often strongly felt in
urban areas. The main known effect on Brussels due to climate change is the
so-called Urban Heat Island effect (UHI). Recently, Hamdi et al. (2014, 2015)
proposed a new high-resolution dynamical downscaling strategy to examine the
Brussels’s UHI under present and future climate conditions. The regional climate
simulations in Hamdi et al. (2014, 2015) were performed with ALARO-0 coupled
to the single layer urban canopy parameterization scheme, Town Energy Balance
(TEB). Our study extends the work of Hamdi et al. (2014, 2015), in the sense
that we assess an additional impact of climate change on Brussels (i.e. winter
smog episodes) by applying our presented method on the same high-resolution
downscaled A1B scenario data that accounts for the urban scale aspects in the me-
teorological conditions. As an application of the presented method we will show
that under the studied scenario in this chapter, we can expect an increase of the un-
favorable conditions for the dispersion of air pollutants up to 60 - 70% in Brussels
by the middle of the 21st century.

Finally, we emphasize that the methodological approach proposed for this
study does not replace the use of CTMs or on-line chemistry modeling. Instead,
our method can provide a complement to the GCM-CTM approach in three ways
by: (i) giving an additional estimate of the impact of climate change on winter
smog events isolated from changes in emissions, (ii) facilitating a physically co-
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herent bias correction that gives an uncertainty estimation of the atmospheric part
in the modeling chain, and (iii) providing a computationally inexpensive indicator
(no extra computing time needed) which is physically easy to interpret.

This chapter is organized as follows. The data used for the calculation of
the indices are described in Section 6.2. A detailed description of the transport
index and the Pasquill indices is given in Section 6.3. The results are discussed in
Section 6.4 and conclusions are given in Section 6.5.

6.2 Data

The different datasets used for the calculation of the transport- and Pasquill indices
are described in Table 6.1. High-resolution model data from the ALARO-0 model
at 4 km resolution is obtained by dynamically downscaling the ERA-Interim re-
analysis (Dee et al., 2011) as well as GCM data from CNRM-CM3 (Salas-Mélia
et al., 2005) to a 20-km model grid that encompasses most of western Europe.
Our study periods are limited to the December-January-February (DJF) winter
months. The reason for this is that transport index only applies for stable atmo-
spheric conditions which mainly occur during the winter season. For the valida-
tion of the stability indices (see further Section 6.3), the 29-yr DJF present-day
ERA-Interim study period is considered (1981/82-2009/10) as well as a 9-yr DJF
subperiod hereof (1990/91-1998/99). The study period for the assessment of the
future climate impact covers two times nine winter seasons: 1990/91-1998/99 and
2046/47-2054/55, representing the present-day control (CTL) and future scenario
(SCN) climate conditions. In contrast to the previous chapter (Chapter 5) which
used the last 30 years of the 21st century as study period, the future climate period
in this chapter corresponds to a near future time period. Considering that the time
horizon in the decision making process of the air quality targets rarely exceed the
next decades, a near future study period is highly relevant.

In contrast to the previous chapters, the land-surface parameterization used
for the ALARO-0 model simulations is not based upon the ISBA scheme (Inter-
actions between Soil, Biosphere and Atmosphere) (Noilhan and Planton, 1989;
Noilhan and Mahfouf, 1996). Instead, the ALARO-0 model is coupled to a new
externalized land and ocean surface platform called SURFEX (SURface Exter-
nalisée; Masson et al., 2013). The coupling strategy relies on a simple interface
to allow implicit coupling between the atmosphere and the tiled surface proposed
by Best et al. (2004). To allow a further downscaling to an urban scale resolution
of 1 km, the SURFEX land surface modeling system is employed in offline mode
using the forcing coming from the lowest model level of the 4-km simulations. To
account for the simulation of the interactions with urban areas, the TEB scheme,
was switched on. Further details on SURFEX and the downscaling approach are
described in Chapter 2 and Hamdi et al. (2015).
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Acronym in the text
and figures

Description DJF Period

Present climate
OBS Station observations. Used as reference for

the Pasquill indices.
1990/91-1998/99
1981/82-2009/10

ERAINT ALARO-0 model data driven by ERA-
Interim reanalysis. Used as reference for the
transport index.

1990/91-1998/99
1981/82-2009/10

CTL ALARO-0 model data driven by CNRM-
CM3.

1990/91-1998/99

Future climate
SCN ALARO-0 model data driven by CNRM-

CM3.
2046/47-2054/55

Table 6.1: Description of the different datasets.

The ERA-Interim driven runs have used the ACRANEB radiation parame-
terization scheme. To ensure a consistent use of the radiation scheme within the
driving GCM CNRM-CM3 and the ALARO-0 model, the CTL and SCN model
integrations for this chapter were performed with another radiation scheme than
in previous chapter (i.e. the European Centre for Medium-Range Weather Fore-
casts (ECMWF) Fouquart-Morcrette Radiation (FMR) scheme). Similar to pre-
vious chapter, the CTL and SCN model integrations are performed according to
the IPCC SRES A1B scenario. However, in previous chapter the sensitivity of the
climate to external forcings was quantified with an equivalent GHG forcing value
given by one value for equivalent CO2, the use of the FMR scheme allowed us
here to specify the radiative forcing by the concentration evolution of the GHG
components separately. More details on the SRES A1B scenario and the radiation
schemes are given in the previous chapters, Chapter 5 and Chapter 2, respectively.

The observation dataset which is used as a reference for the validation of the
Pasquill indices (see further Section 6.3.2) consists of hourly SYNOP observa-
tions of cloudiness and wind speed as well as global solar radiation measurements
performed at the station in Uccle (longitude: 4.358◦E, latitude: 50.798◦N). The
observation data have undergone a thorough quality control.

6.3 Methodology

6.3.1 Transport index

The transport index gives a measure of the horizontal and vertical transport of
nonreactive pollutants in stable atmospheric conditions and has been proposed and
tested by Termonia and Quinet (2004). It gives a characteristic length scale l which
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is the ratio of the mean horizontal wind speed u and the Brunt-Väisälä frequency
ν:

l =
u

ν
(6.1)

where

ν =

√
g

θ

∂θ

∂Z
(6.2)

is a measure for the stability of the atmosphere, where Z is the geopotential height,
g is the gravity, and θ is the potential temperature. This physical relation given by
Eq. (6.1) shows that low values for l correspond to weak horizontal transport (i.e.
small u) and weak vertical transport (i.e. high ν). Hence when l reaches its lowest
values in the lower part of the boundary layer during an extended period of several
hours, one can be sure that these calm situations with a weak horizontal wind and a
very stable atmosphere indicate conditions that are unfavorable for the dispersion
of air pollution (Termonia and Quinet, 2004).

6.3.2 Pasquill stability indices

The stability scheme that is used to determine the Pasquill indices has been adopted
from Van Der Auwera (1991a,b) (Table 6.2).

Wind speed (m s−1)
METEOROLOGICAL DAY METEOROLOGICAL NIGHT

Global radiation (W m−2) CloudinessN (okta)
Strong Moderate Slight Weak

]600-. . . ] ]300-600] ]150-300] [0-150] N ≥ 4/8 N < 4/8
≤ 1.5 m s−1 A A B C F F
≤ 2.5 m s−1 A B C C E F
≤ 3.5 m s−1 B B C Dd E E
≤ 4.5 m s−1 B C C Dd Dn E
≤ 5.5 m s−1 C C Dd Dd Dn Dn

≤ 8.0 m s−1 C Dd Dd Dd Dn Dn

> 8.0 m s−1 Dd Dd Dd Dd Dn Dn

Table 6.2: Pasquill stability scheme with definition of the stability classes ranging from
the very unstable atmospheric conditions (A) to the most stable atmospheric conditions (F)
(adopted from Van Der Auwera (1991a,b)).

Pasquill (1961) defined six stability classes ranging from the very unstable
atmospheric conditions (A) to the most stable atmospheric conditions (F). The
classification depends on the global solar radiation G during the day or the cloudi-
ness N during the night, combined with the wind speed w at 10 m. The D stability
class is defined for the meteorological night (i.e. Dn) and meteorological day (i.e.
Dd) separately. The thresholds for the different categories of radiation (strong,
moderate, slight and weak) as defined by Van Der Auwera (1991b) are based on
other quantitative definitions found in the scientific literature. Furthermore, the
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meteorological day has been defined from one hour after sunrise to one hour be-
fore sunset and thus varies throughout the year. Here we have used the timings for
sunrise and sunset of the year 2013.

6.3.3 Data processing and analysis

All meteorological variables that are used for the calculation of both indices are
listed in Table 6.3. For each variable it is also indicated whether the variable is
given as direct output from the model (i.e. base variable) or whether other quanti-
ties have been used to derive the respectively meteorological variable.

Index Variable (Unit) Symbol Derived from

Transport index

Air temperature (K) Ta Base variable
Zonal wind speed (m s−1) u Base variable
Meridional wind speed (m s−1) v Base variable
Specific humidity q Base variable
Surface pressure (Pa) ps Base variable
Pressure (Pa) p ps
Potential temperature (K) θ p, Ta
Geopotential height (m) Z p, q, Ta
Brunt-Väisälä frequency (s−1) ν θ, Z
Horizontal wind speed (m s−1) u u, v

Pasquill indices Cloudiness (okta) N Base variable
Global solar radiation (W m−2) G Base variable
Wind speed at 10 m (m s−1) w Base variable

Table 6.3: Overview of the meteorological variables used as input for the transport- and
Pasquill indices.

In the ALARO-0 model the vertical variation of the base variables Ta, u,
v and q serving as input for the transport index, is represented by dividing the
atmosphere into 46 layers n. These layers are defined by the pressures at the
interfaces between them (so-called “half-pressure-levels”) (European Centre for
Medium-Range Weather Forecasts, 2010):

pk+1/2 = Ak+1/2 +Bk+1/2ps (6.3)

for 0 ≤ k ≤ n, with n = 46 corresponding to the lowest model level. The Ak+1/2

and Bk+1/2 are constants whose values define the vertical coordinate and ps is
the surface pressure field. The “full-level” pressure pk associated with each model
level (middle of layer) can then be reconstructed from:

pk =
1

2
(pk−1/2 + pk+1/2) (6.4)

with 1≤ k ≤ n by using Eq. (6.3). The “half-level” geopotential is then calculated
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using the discrete analogue of the hydrostatic equation:

φk+1/2 = φs +

n∑
j=k+1

Rd(Tv)j ln

(
pj+1/2

pj−1/2

)
(6.5)

where φs is the geopotential at the surface, Rd is the gas constant of dry air (i.e.
287.058 J kg−1 K−1) and Tv is the virtual temperature defined for each vertical
level k by:

(Tv)k ≈ Tak [1 + 0.61qk] (6.6)

where Ta is the air temperature, q is specific humidity and Rv is the gas constant
of water vapor. Full-level values of the geopotential height Z are then calculated
by:

Zk =
φk+1/2 + αkRd(Tv)k

g
(6.7)

where α1 = ln 2 and for k > 1:

αk = 1− pk−1/2

∆pk
ln

(
pk+1/2

pk−1/2

)
. (6.8)

The potential temperature θ is obtained for each vertical level k by:

θk = Tak

(
p0
pk

)R/cp
(6.9)

with p0 = 100 000 Pa being the standard reference pressure, R is the universal
gas constant of air (i.e. 8.314 J mol−1 K−1), and cp is the specific heat capacity at
constant pressure (i.e. 29.070 J mol−1 K−1). Finally, the horizontal wind speed u
is calculated for each vertical level k as:

uk =
√
uk2 + vk2 (6.10)

The transport index is calculated up to the model level corresponding to a maxi-
mum height of≈ 2000 m, which roughly coincides with the height of the boundary
layer. This layer of air near the ground that is affected by diurnal heat, moisture,
and momentum transfer to/from the surface (Ebi and McGregor, 2008), can thus be
considered as most relevant for the assessment of the dispersion of air pollutants.

As mentioned earlier, the impacts from air pollution are strongest felt in ur-
ban environments. Therefore, both indices are calculated for the closest model
grid point to the station of Uccle, located some 6 km from the city centre of Brus-
sels. As the transport index only applies for stable conditions which mostly occur
during the winter season, our analyses focuses on nine DJF winter months. This
9-yr winter period, hence allows to assess the climate impact on meteorological
conditions that are unfavorable for the dispersion of air pollution by means of fre-
quencies of index values corresponding to stable atmospheric conditions.
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6.4 Results and discussion

The transport index has previously been validated in Termonia and Quinet (2004)
for three consecutive winter seasons (DJF) 2000/01-2002/03 using the output of
0-48-h forecasts from 0000 UTC runs of the ALADIN model. There are several
differences in the experimental setup of the study of Termonia and Quinet (2004)
and the experimental setup as used for our model simulations in this chapter. First,
the model simulations used here are obtained with the ALARO-0 model at 4 km
spatial resolution, which uses the 3MT physics package specifically developed for
the convection permitting scales (see Chapter 2). The ALADIN model as used in
in Termonia and Quinet (2004) at 7 km spatial resolution, is based on different
physical parameterizations. Secondly, the coupling data used for the simulations
in this chapter are the recent reanalysis from ERA-Interim, while Termonia and
Quinet (2004) used an “old” forecast as initial state for the 48-h forecasts. This
points to a last and third difference, which is related to the fact that our simula-
tions are performed through a dynamical downscaling with daily reinitializations,
instead of a continuous forecast mode which was applied in Termonia and Quinet
(2004).

We can expect that the above differences in the experimental setup will affect
the simulation of the stable boundary layers. Therefore, both the transport index as
well as the Pasquill indices are in a first step validated for the present-day winter
(DJF) periods 1990/91-1998/99 and 1981/82-2009/10 (Section 6.4.1). In a next
step, the future climate impact on both stability indices is assessed for the near-
future DJF period 2046/47-2054/55 (Section 6.4.3).

6.4.1 Validation for present-day climate

6.4.1.1 Transport index

For the validation of the transport index we consider the profiles of l obtained from
the ERAINT dataset as a reference. The reason why we do not use observed pro-
files of l calculated from observations of radio-sounding profiles is simply because
such profiles are usually only available with time intervals of 12 or 24 h, which
does not allow to validate l for consecutive periods up to e.g. 12 hours (Termonia
and Quinet, 2004).

Similar to Termonia and Quinet (2004), we validate our transport index
with the measured concentrations of NO2 for the three consecutive DJF seasons
2000/01-2002/03. Termonia and Quinet (2004) defined a pollution peak as ex-
treme when the hourly value of observed NO2 concentrations exceeded the value
of 135 µg m−3 in at least two-third of the measurement stations in the Brussels
Capital Region. For improving health protection and for longterm protection of
the environment, this guide value of 135 µg m−3 has been prescribed by the
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European Directive 85/580/EEC as the 98th percentile of the hourly mean values
of the concentrations of NO2, measured during the respectively calender year
(European Community, 1985). In the more recent Daughter Directive 1999/30/EC
(European Community, 1999) or Directive 2008/50/EC on ambient air quality
and cleaner air for Europe (European Community, 2008), this guide value is not
included anymore. Both directives solely provide a limit value of 200 µg m−3 for
the hourly values that can be exceeded only 18 times per year. As stated by Ter-
monia and Quinet (2004), this limit value is exceeded only rarely in the Brussels
Capital Region. Therefore, we keep similar to Termonia and Quinet (2004) the
same definition for extreme pollution peaks based upon the old guide value of 135
µg m−3. With this definition, the authors found an exceedance of the guide value
for observed NO2 concentration on 5 days: (i) 17 January 2001, (ii) 18 January
2001, (iii) 15 February 2001, (iv) 9 January 2002, and (v) 20-21 February 2003.

For these 5 days, the calculated profiles of l obtained from the ERAINT
dataset are shown in Fig. 6.4. For most days, there appear instabilities (i.e. white
areas) in the stable layers near the surface where the Brunt-Väisälä frequency is
not defined. These instabilities are the result of heating during the day, and can
be ignored if they are covered from above with a layer of small transport length
values (Termonia and Quinet, 2004). The profiles of l, which correspond to days
with extreme pollution peaks of observed NO2 concentrations, allow us to define
a criterion for the conditions that are unfavorable for the dispersion of nonreactive
pollutants. These conditions are generally determined by (i) the value of the trans-
port length l, (ii) the height of the stable layer, and (iii) the time span or duration.
Hence, we consider conditions as unfavorable for the dispersion of air pollutants,
when for a minimum duration of 9 h, a layer at the surface with transport length
values l < 200 m, reaches a minimum height of 100 m. In this way, 4 out of the
5 days with observed extreme pollution peaks, fulfill the criterion for unfavorable
conditions for the dispersion of air pollutants.
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Figure 6.4: Transport length values on 5 days when an extreme pollution peak has been
recorded during the winter season DJF 2000/01-2002/03 (i.e. 17 January 2001, 18 January
2001, 15 February 2001, 9 January 2002, and 20-21 February 2003). The transport index is
calculated from the ERA-Interim (ERAINT) dataset for the closest model grid point to Uc-
cle. The white areas indicate unstable parts of the atmosphere where the Brunt-Väisälä fre-
quency is not defined.
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Figure 6.5: Vertical profile of the horizontal wind speed (m s−1) and Brunt-Väisälä fre-
quency (s−1) on 17 January 2001, for the closest model grid point to Uccle from the ERA-
Interim (ERAINT) dataset. The white areas indicate unstable parts of the atmosphere where
the Brunt-Väisälä frequency is not defined.

As an illustration, Fig. 6.5 shows the horizontal wind speed (m s−1) and
Brunt-Väisälä frequency (s−1) for 17 January 2001, as obtained from the ERAINT
dataset. As expected, the low l values in the lower surface layers are mainly deter-
mined by low horizontal wind speed values and stable atmospheric conditions (i.e.
high Brunt-Väisälä frequencies).

Figure 6.6 shows the absolute frequencies of the transport index for values
lower than 200 m from ERAINT for the 9-yr winter period 1990/91-1998/99.
These frequencies, corresponding to cases with calm wind situations and a very
stable atmosphere, are shown accordingly to our defined criterion, i.e. for differ-
ent durations up to 10 hour and vertical heights between 100 and 600 m. It can
be seen that the number of cases per year in ERAINT that meets the criterion for
the 9-yr study period (i.e. 76 cases) corresponds to 8-9 cases per winter season.
This number gives an indication of the “order of magnitude” of the number of
cases of very stable atmospheric conditions or extreme pollution peaks, that can
be expected according to our criterion under present climate winter conditions.
However, this number of 8-9 cases per winter season is more than double of the
number of observed extreme pollution peaks (i.e. 1-2 cases per winter season)
as had been selected in Termonia and Quinet (2004). The reason for this differ-
ence can be explained by the experimental setup used for our model simulations,
which differs from the one used in Termonia and Quinet (2004). As mentioned
previously, Termonia and Quinet (2004) performed forecasts up to 48 h from 0000
UTC runs to assess the evolutions of the transport length. On the other hand, our
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procedure of dynamically downscaling for climate integrations uses daily reinitial-
izations, where a 36-h run at a high spatial resolution of 4 km is performed. The
first 12 h of this 36-h run are dismissed for spinup, to end up with 24 h of out-
put (see also Chapter 2, Section 2.3.2 for more details on our procedure of daily
reinitialization).

Minimum duration [hours]

ERAINT − l < 200 m

299 260 237 208 183 157 127 105 91 76

245 217 194 166 141 121 101 88 76 65

194 170 148 122 107 91 75 59 49 37
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Figure 6.6: Absolute frequencies of transport length values l < 200 m from the ERA-
Interim driven ALARO-0 simulation (ERAINT) for the closest model grid point to Uccle.
The frequencies are calculated for the 9-yr DJF present climate period 1990/91-1998/99
and are shown for maximum heights ranging between 0 and 600 m, and minimum durations
ranging between 1 and 10 h.

Hence, because of this daily reinitialization procedure, our algorithm cannot
be applied over a continuous time span of 48 h. However, when it comes to the
assessment of the evolution of transport length values throughout a time span of
48 h, it is clear that this procedure will not allow a build up of a stable layer for
a sufficiently long period. Hence, over a separate duration of two times 24 h, our
algorithm will detect two separate cases while in reality these correspond to one
case which has been build up over a continuous time span of 48 h. To illustrate this
issue, the profile of l for 16 January 2001 is shown in Fig. 6.7. As can be seen, over
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the course of the day a stable layer characterized by low transport length values is
build up. These stable conditions then persist throughout the night and morning
of the following day (i.e. 17 January 2001), for which a extreme pollution peak
had been observed. Overall, our results demonstrate that also with the new model
version ALARO-0, the transport index can be used to detect peaks of extreme
concentrations of pollutants such as NO2.
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Figure 6.7: Transport length values for 16 January 2001. The transport index is calculated
from the ERA-Interim (ERAINT) dataset for the closest model grid point to Uccle. The white
areas indicate unstable parts of the atmosphere where the Brunt-Väisälä frequency is not
defined.

6.4.1.2 Pasquill indices

Before validating the frequencies of Pasquill indices, it is first assessed how well
the model reproduces the observed hourly frequencies of the meteorological vari-
ables that are used to obtain the indices.

Figure 6.8 presents barplots for 29-yr DJF (1981/82-2009/10) observed
(OBS) and simulated (ERAINT) wind speed, global solar radiation and cloudi-
ness. The absolute frequencies are calculated according to the thresholds given by
the stability scheme that is used to determine the Pasquill indices (Table 6.2). To
ensure a fair comparison between ERAINT and OBS frequencies, missing values
within the observed time series are also set on missing in the ERAINT dataset.
Furthermore, it is important to note that wind speed measurements at the station of
Uccle are performed at a height of the mast that corresponds to 21 m. Therefore,



CLIMATE CHANGE IMPACT ON WINTER SMOG EPISODES 6-21

the simulated ERAINT wind speed values are also obtained for the model level
corresponding to a height of 21 m, and thus the frequency distribution for wind
speed as shown here are obtained with wind speed values at 21 m instead of 10 m.
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Figure 6.8: Frequency distribution of (a) wind speed at 21 m (m s−1), (b) global solar
radiation (W m−2), and (c) cloudiness (okta) for the 29-yr DJF period 1981/82-2009/10.
Frequencies are calculated for observed (OBS) values in Uccle and modeled (ERAINT)
values for the closest model grid point to Uccle, according to the thresholds given by the
stability scheme that is used to determine the Pasquill indices (Table 6.2).

The observed wind speed frequencies are relatively well reproduced by
ERAINT. Only for the wind speed (w) classes ]1.5-2.5] m s−1 (]5.5-8.0] m s−1)
the model strongly underestimates (overestimates) the number of observed wind
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speed hours (Fig. 6.8(a)). Since we are only considering the winter season, both
the observed and modeled distributions of global solar radiation (G) are positively
skewed towards the lowest radiation values (i.e. [0-150] W m−2). The number
of hours which are underestimated by the model for the lowest radiation values
are mostly shifted towards the next radiation class, for which the model displays
an overestimation. A similar feature is apparent for the frequency distribution of
cloudiness (N ); the model underestimates the cloudy hours (i.e. ≥ 4 okta) and
shows a tendency for too many hours with cloudiness values < 4 okta. However,
if frequencies are obtained by binning the hourly cloudiness into bins of 1 okta, it
is found that the underestimation by ERAINT for the cloudiness values ≥ 4 okta,
is mainly due to a strong underestimation by the model for the overcast cases (see
Appendix D, Fig. D.1). This underestimation by ALARO-0 in the occurrence of
overcast conditions has also been detected in a previous study of Hamdi et al.
(2012). As indicated by Hamdi et al. (2012), the diagnostic of total and partial
cloud cover (low, medium, high, and convective) is computed in the model with
two options; (i) random overlap of adjacent clouds assumption, and (ii) maximum
overlap of adjacent clouds. Hence, when using the maximum overlap assumption,
the occurrence of cloud covers near 100% is underestimated with respect to the
observed frequencies. Taking into account that differences between observed
and modeled frequencies are strongly dependent on the threshold values, we can
say that the model reproduces the observed frequencies ofw,G, andN fairly well.

The frequencies of Pasquill indices as obtained from ERAINT and station
observations for Uccle are presented in Fig. 6.9. Missing values within the ob-
served time series are again also set on missing in the ERAINT dataset. The result-
ing hourly frequencies of Pasquill indices for the winter period 1990/91-1998/99
(Fig. 6.9(a)) consists of ≈ 67% of missing data mainly due to missing observa-
tions of cloudiness. Both the observed and ERAINT distribution show the highest
frequencies for the neutral Dd and Dn indices, followed by the stable E and F in-
dices. During the winter season these stable E and F classes are mostly relevant, as
they reflect stagnant conditions with few dispersion of potentially present air pol-
lutants. The model (ERAINT) slightly under- and overestimates the frequencies in
E and F indices. To assess the impact of the great number of missing data on the
validity of this result, the frequencies of Pasquill indices are also calculated for the
winter period 1981/82-2009/10 (Fig. 6.9(b)). Also for this longer winter period
the ERAINT distribution coincides fairly well with the observed distribution, with
acceptable relative differences between the frequencies of the relevant and stable
Pasquill indices E and F for ERAINT and OBS.
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Figure 6.9: Relative frequencies and differences of observed (OBS, black) and modeled
(ERAINT, darkgreen and CTL, darkblue) Pasquill indices in Uccle and its closest model
grid point for DJF (a) 1990/91-1998/99 and (b) 1981/82-2009/10. The numbers indicate
relative differences between ERAINT and CTL w.r.t. OBS.
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6.4.2 Bias correction

Previous results have demonstrated that stability indices obtained from the down-
scaled ERA-Interim reanalysis with the ALARO-0 model are a useful tool to infer
meteorological conditions that are unfavorable for extreme pollution peaks. Be-
fore future changes in occurrences of the transport- and Pasquill corresponding to
such unfavorable meteorological conditions are assessed, we investigate how well
the stability indices derived from present-day downscaled GCM CNRM-CM3
fields (CTL) are reproduced by ALARO-0 w.r.t. to the reference datasets.

The relative frequencies of Pasquill indices obtained from the control simu-
lation are given in Fig. 6.9(a). To ensure a consistent comparison, the frequencies
are also derived with the wind speed for the model level corresponding to a height
of 21 m. Compared to the relative differences between the frequencies obtained
from the ERAINT driven fields and the observed frequencies, the biases between
the CTL and OBS frequencies are slightly larger. The introduction of such addi-
tional biases when one couples a GCM to a RCM instead of reanalyses is a well
known issue in regional climate modeling (see also previous Chapter 5). Menut
et al. (2013) evaluated the changes in air quality-related weather variables induced
by replacing reanalyses-forced (ERA-Interim) by GCM-forced regional climate
simulations. The authors investigated, amongst several meteorological variables
that are critical for air quality modeling, two variables which are used here for the
Pasquill classification; i.e. the wind speed and short-wave radiation, which are es-
sential for respectively dispersion and photochemistry. Their results demonstrated
that in winter, air quality is mostly driven by dispersion, and that no significant
differences in wind statistics between GCM-driven and reanalyses-driven regional
simulations could be identified (Menut et al., 2013). Although, a different set of
models is used here, this finding supports to decide to not apply a bias correction
on the Pasquill indices. Furthermore, the overall CTL distribution follows rela-
tively well the observed one, with biases for the relevant E and F classes that vary
in an acceptable range.

Figure 6.11(a), Fig. 6.11(c), and Fig. 6.11(e), show respectively the frequen-
cies of low transport length values l calculated from CTL and its absolute and
relative differences with ERAINT for the 9-yr DJF period 1990/91-1998/99. It
can be seen that the CTL frequencies substantially differ from ERAINT (Fig. 6.6).
The CTL ALARO-0 simulation systematically underestimates the number of cases
characterized by transport values smaller than 200 m, and one can thus expect to
have more transport of pollutants during the winter with CTL. These large dif-
ferences in the number of l < 200 m can be attributed to biases in the driving
GCM CNRM-CM3 that are reflected in the downscaled meteorological fields for
CTL that are used as input for the transport index calculation. However, as men-
tioned previously in the introduction (Section 6.1), applying a bias correction on
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the base meteorological variables (Ta, u, v, q and ps) would unavoidably alter the
physical relationships on which the transport index is based upon. Nevertheless,
in order to estimate future frequencies of low transport length values, these differ-
ences between the reference ERAINT and CTL transport length values should be
addressed. Therefore, we perform a bias correction directly on the transport length
values from CTL, which takes into account the differences between the CNRM-
CM3 downscaled and ERA-Interim downscaled values. As we are interested here
in the tail (i.e. lowest values) of the transport length distributions, Déqué (2007)
proposes a variable correction method to be a suitable method. In this variable
correction method a particular function f is build with the observation dataset (or
in our case the ERAINT dataset) and applied on the CTL dataset as well as on the
future climate SCN dataset (Déqué, 2007). By doing so, we assume that the model
bias in the future climate stays the same as in the present-day climate.

A linear Quantile-Quantile (Q-Q) function is used as correction function
f(x). Figure 6.10 shows the Q-Q plot for downscaled transport length values us-
ing ERAINT versus CNRM-CM3 (i.e. CTL) for the DJF period 1990/91-1998/99.
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Figure 6.10: Quantile-Quantile (Q-Q) plot showing downscaled transport length values for
the closest model grid point to Uccle using ERAINT versus CNRM-CM3 (i.e. CTL) for the
DJF period 1990/91-1998/99. The bias-corrected CTL transport length values are shown
in light blue. The dashed line represents the perfect model (1:1 line).

As we are only interested in the height-duration-frequency of low transport
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length values smaller than 200 m, quantiles are not plotted for values larger than
300 m. As expected, CTL clearly overestimates the ERAINT quantiles, and this
overestimation gets larger as the transport length increases. It can be seen that the
Q-Q curve is a straight line, suggesting that a linear Q-Q correction is appropriate
here. The following linear correction function is applied on the CTL transport
length values:

lcorr = 0.84 ∗ lnon−corr − 0.69 (6.11)

The intercept of the linear correction function [Eq. (6.11)] is chosen in such a
way that after correction no negative and nonphysically transport length values are
present. After the bias correction the results improve significantly. The corrected
CTL transport length values are indeed much closer to the perfect model line (1:1
line), and this for all quantiles ranging between 0 and 200 m (light blue quantiles in
Fig. 6.10). This result, where we have used the Q-Q plot as a correction function,
suggests that the ALARO-0 model driven by CNRM-CM3 global data is now able
to predict a ranked category of transport length but not the exact value for this
variable (Déqué, 2007).

The improvement after correction is also reflected in the height-duration-
frequency plots, as displayed in Fig. 6.11. Compared to the non-corrected CTL
frequencies, the corrected CTL frequencies of the transport length values < 200
m are now for all durations and heights higher and the absolute and relative dif-
ferences with the ERAINT frequencies are remarkably smaller. However, it seems
that for the longer durations and for the larger heights the Q-Q correction “over-
corrected” the CTL transport lengths, while for the shortest durations and for the
lowest heights the frequencies are still slightly underestimated by CTL. This may
be explained by the fact that the correction method based on Q-Q plot does not
correct for the temporal properties of the series (Déqué, 2007), suggesting that this
correction is not sufficient for postprocessing frequencies based upon duration.
Although a more advanced and non-linear correction might be more appropriate,
the bias has been significantly reduced after correction and has an acceptable max-
imum magnitude of 10% for the most relevant heights of up to 200 m. As there is
even after correction, a considerable overestimation in frequencies for the longest
durations and largest heights, we do not give much confidence to the results found
here and keep in mind that these results are likely to be an upper boundary of
(future) frequencies of low transport length values.

6.4.3 Future impact

The possible future changes in the occurrences of the transport- and Pasquill in-
dices, which have been found to provide a confident measure for the dispersion of
air pollutants, is explored in the following section.
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Minimum duration [hours]

CTL − l < 200 m

228 202 179 162 142 117 103 86 74 59

187 161 138 126 113 96 82 70 54 48

144 126 110 101 87 72 57 52 41 30

117 102 84 71 56 41 33 23 12 10

102 89 70 56 43 35 24 18 9 7
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(a)
Minimum duration [hours]

CTL CORR − l < 200m

276 252 220 194 177 160 132 117 100 83

235 204 181 160 144 121 108 94 81 66

181 155 135 121 112 95 80 68 61 48

137 123 109 96 83 73 58 47 36 27
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(b)

Minimum duration [hours]

CTL − ERAINT

−71 −58 −58 −46 −41 −40 −24 −19 −17 −17

−58 −56 −56 −40 −28 −25 −19 −18 −22 −17

−50 −44 −38 −21 −20 −19 −18 −7 −8 −7
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(c)
Minimum duration [hours]

CTL CORR − ERAINT

−23 −8 −17 −14 −6 3 5 12 9 7
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(d)

Minimum duration [hours]

(CTL − ERAINT)/ERAINT

−0.2 −0.2 −0.2 −0.2 −0.2 −0.3 −0.2 −0.2 −0.2 −0.2

−0.2 −0.3 −0.3 −0.2 −0.2 −0.2 −0.2 −0.2 −0.3 −0.3

−0.3 −0.3 −0.3 −0.2 −0.2 −0.2 −0.2 −0.1 −0.2 −0.2

−0.3 −0.2 −0.2 −0.2 −0.3 −0.3 −0.2 −0.3 −0.5 −0.4

−0.2 −0.2 −0.2 −0.3 −0.3 −0.3 −0.2 −0.1 −0.3 −0.4

1 2 3 4 5 6 7 8 9 10

100

200

300

400

600

M
ax

im
um

 h
ei

gh
t [

m
]

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1
[Rel. Freq.]

(e)
Minimum duration [hours]

(CTL CORR − ERAINT)/ERAINT
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(f)

Figure 6.11: Absolute frequencies of transport length values l < 200 m from (a) the con-
trol (CTL) and (b) bias corrected control simulation (CTL CORR), and absolute and rela-
tive differences in frequencies between (c, e) CTL and ERAINT and (d, f) CTL CORR and
ERAINT. The frequencies and differences are calculated for the 9-yr DJF present climate
period 1990/91-1998/99 for the closest model grid point to Uccle, and they are shown for
maximum heights ranging between 0 and 600 m, and minimum durations ranging between
1 and 10 h.
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Figure 6.12 presents absolute frequencies of l < 200 m derived from the sce-
nario simulation (SCN), together with its absolute and relative differences w.r.t.
the control simulation (CTL). The bias corrected SCN frequencies and potential
future differences are also shown (Fig. 6.12(b), Fig. 6.12(d), and Fig. 6.12(f)).
These corrected SCN frequencies are obtained by applying the same Q-Q based
correction as used for the present-day climate to the SCN dataset [Eq. (6.11)]. As
mentioned previously, by doing so it is assumed that the model bias in the future
will be similar to the bias in the present-day climate. As shown in Fig. 6.12, the
future response for both the non-corrected and corrected data shows a systematic
increase in frequencies of low transport length values < 200 m. According to our
criterion, our results suggest that an increase of 60 to 70 % in the conditions which
are unfavorable for the dispersion of air pollutants can be expected in Brussels
by the middle of the 21st century under the A1B SRES scenario. This consistent
future climate response as obtained from postprocessed data, in complement with
the non-corrected data, narrows the uncertainty range on our potential future im-
pact and thus increases the confidence in the finding of a positive future signal.
Furthermore, these results are also supported by the shift towards higher relative
frequencies of the stable Pasquill indices E and F in winter for the future scenario
period (SCN) (Fig. 6.13). Although, the increase in the relative frequency of E
and F Pasquill classes (i.e. ≈ 30%) is lower than the 60 - 70 % increase in the
frequencies of low transport length values. This can be explained by the fact that
the positive response of the E and F Pasquill classes reflects a general increase
towards more stable cases, while according to our criterion, the changes in the
transport length frequencies correspond to an increase of the most extreme stable
cases.
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Figure 6.12: Absolute frequencies of transport length values l < 200 m from (a) the sce-
nario (SCN) and (b) bias corrected scenario simulation (SCN CORR), and absolute and
relative differences in frequencies between (c, e) the SCN and the control (CTL) simulation
and (d, f) the SCN CORR and the bias corrected control simulation (CTL CORR). The fre-
quencies and differences are calculated for the 9-yr DJF CTL climate and future climate
period 1990/91-1998/99 and 2046/47-2054/55 for the closest model grid point to Uccle,
respectively, and they are shown for maximum heights ranging between 0 and 600 m, and
minimum durations ranging between 1 and 10 h.
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Our results, showing an overall positive tendency towards more stable con-
ditions, are in agreement with the findings of previous studies. As reported by
Jacob and Winner (2009), there is a consensus among GCMs that 21st-century
climate change will increase the frequency of stagnation episodes over northern
mid-latitudes continents. The authors relate this increase in stagnation to the weak-
ening of the general circulation and a northward shift of the mid-latitude cyclone
tracks, which decreases the frequency of cold fronts that are the principal venti-
lation mechanism for eastern North America, Europe, and East Asia (Jacob and
Winner, 2009). Furthermore, Giorgi and Meleux (2007) assessed the regional ef-
fects of climate change on air quality by analyzing outputs of climatological vari-
ables from the Coupled Model Intercomparison Project Phase 3 (CMIP3) dataset
for the A1B emissions scenario. The authors analyzed ensemble mean changes for
the period 2071-2100 w.r.t. to the reference period 1961-1990 for climatological
variables such as temperature, precipitation and sea-level pressure, which are im-
portant drivers in the distribution of pollutants. For winter (DJF), the authors also
find a pronounced increase in sea-level pressure over the Mediterranean region and
central Europe, which are indicative of greater subsidence and stagnant conditions,
and which indeed inhibit the dispersion of pollutants (Giorgi and Meleux, 2007).

Finally, this tendency in more stagnant episodes and consequently increased
pollutant concentrations, can also be associated to changes in the meteorological
parameters used to derive the transport length values and Pasquill classes. Fre-
quency distributions of wind speed at 10 m, radiation and cloudiness demonstrate
a shift towards lower wind speeds, lower cloudiness and consequently higher solar
radiation (see Appendix D, Fig. D.2). This decrease in 10-m wind speed and the
increased number of clear-sky days under A1B future climate conditions in Brus-
sels have also been reported in a recent study of Hamdi et al. (2015). Furthermore,
similar changes in these parameters are found by Katragkou et al. (2011), who
studied future changes in summer surface ozone from regional climate-air quality
simulations over Europe for two future decades, 2041-2050 and 2091-2100 under
the A1B scenario and the control decade 1991-2000. The authors find that the com-
bination of relatively more stagnant conditions associated with a strong decrease
of wind speed, decrease of cloudiness, and increased temperatures and solar radi-
ation within an anticyclonic anomaly, favors an enhanced ozone production in the
western part of Europe, where mean surface summer ozone increases mostly (Ka-
tragkou et al., 2011). Despite the agreement of the future response in wind speed,
radiation and cloudiness as found in our simulations and the other reported studies,
it is important to stress that this result can only be interpreted as a sensitivity of the
ALARO-0 model to the two different sets of CTL and SCN boundary conditions.
For a more certain statement on the future changes, a multi-model approach which
allows to quantify the uncertainty around the results is needed.
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Figure 6.13: Relative frequencies and differences of control (CTL, darkblue) and scenario
(SCN, darkred) Pasquill indices for the closest model grid point to Uccle for respectively
DJF 1990/91-1998/99 and 2046/47-2054/55. The numbers indicate relative differences
between SCN and CTL.

6.5 Conclusion

In this chapter, we analyzed the impact of climate change on unfavorable me-
teorological conditions for the dispersion of air pollution associated with winter
smog peaks in Brussels (Uccle). For this, we have calculated two stability indices
for a 29-yr and 9-yr winter period using present (1981/82-2009/10 and 1990/91-
1998/99) and future (2046/47-2054/55) climate data that has been obtained from a
dynamically downscaling of GCM data from the ERA-Interim reanalysis as well
as from the coupled CNRM-CM3 model using the ALARO-0 model at 4 km spa-
tial resolution.

In a first step, we have assessed whether the ERA-Interim driven ALARO-0
model is able to reproduce observed cases of winter smog alerts by means of the
transport length values as well as observed frequency statistics of the Pasquill sta-
bility indices. We defined a criterion of unfavorable conditions for the dispersion
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of nonreactive pollutants, and it was found that the model reproduces almost all
the observed smog peaks under consideration. In addition, the simulated frequency
distribution of Pasquill indices also showed a close agreement to the observed one.

When one replaces the reanalysis data providing the boundary fields for the
RCM with driving fields from a coupled GCM, it is well known that additional
model biases coming from the GCM are often introduced. Comparison of fre-
quency statistics of the transport- and Pasquill indices obtained from the control
simulation with the observed frequencies indeed revealed significant biases, and
in particular for the transport index. To account for these model imperfections, a
linear Q-Q bias correction has been applied directly on the transport length val-
ues. After correction, the present-day frequencies are significantly improved, with
remaining deviations from the observations that fall within an acceptable range of
10%.

In order to quantify the uncertainty on the future changes, the same linear
correction method as used to correct present-day transport length values, has been
applied to correct the future transport lengths. In line with previous studies, our
results suggest a consistent increase in frequencies of low transport length values
as well as stable Pasquill classes under future A1B climate conditions, reflecting
a tendency towards more stable conditions and a possible degradation of air qual-
ity during winter smog episodes. The confidence of these results is supported by
the consistent response that is found between corrected and non-corrected sce-
nario results. Nevertheless, it is important to keep in mind that the assumption of
constant bias under present and future climate conditions may not be valid, and
that a more advanced bias correction method could be more appropriate. Further-
more, it should be taken into account that the future climate change impact on
winter smog episodes as found here, is based upon one single emission scenario
from the downscaling results of one RCM. Our assessment has been made under
the consideration that the actual concentration peaks of the relevant winter smog
pollutants are superimposed on their background concentrations, and hence of a
much larger order of magnitude than the respectively background concentrations.
However, in this consideration, future background concentrations and emissions of
GHGs and other pollutants, remain an important source of uncertainty, due to the
unknown changes in population vulnerability and human activity patterns (Ebi and
McGregor, 2008). In this respect, a multi-model approach is a promising strategy
to narrow the uncertainty on the projected model results.

Another important limitation in our assessment of the climate change impact
on winter smog episodes, is the relatively short study period of nine winter seasons.
Such short periods may indeed bias the results since on the decadal time scales
the climate change signal is small compared to natural variability (Maraun et al.,
2010). As a future outlook our methodology will be extended for a longer study
period of 30 years, and applied to other European cities, using IPCC’s most recent
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RCP emission pathways.
Finally, it is important to highlight the relevance and innovative strength of

the methodology of stability indices as proposed in this chapter. In practice, it is
generally hard to evaluate the skill of CTM results because of the limited availabil-
ity of observational data for the evaluation (Menut et al., 2013). To our knowledge,
no previous studies have focused on examining the sensitivity of unfavorable con-
ditions for the dispersion of winter smog pollutants to future climate change, by
means of frequencies of stability indices, rather than aiming to project actual con-
centrations of the air pollutants. Therefore, our presented results provide a perfect
complement to validate CTM results, and possibly increasing the confidence of the
results. Furthermore, the simplicity of our methodology makes it a powerful tool
for decision making in the context of air pollution reduction strategies.
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7.1 Main conclusions and limitations

Regional climate modeling based on dynamical downscaling resolves the scale dis-
crepancy between Global Climate Model (GCM) output and the high resolutions
required for impact assessment. Compared to lower resolution models, Regional
Climate Models (RCMs) provide added value and more appropriate information
by simulating the local aspects and underlying subgrid scale climate processes,
such as extreme precipitation, more realistically. The ultimate aim of this thesis is
to investigate to what extent the Belgian ALARO-0 Numerical Weather Prediction
(NWP) model can be applied for regional climate modeling of (i) (extreme) pre-
cipitation and of (ii) the unfavorable meteorological conditions for the dispersion
of air pollution in Belgium.

The three key research goals of this thesis, which were formulated in the
General introduction (Chapter 1), are:

1. Describe in detail the Belgian operational ALARO-0 NWP model with its
revised physical parameterizations in the context of regional climate mod-
eling. A detailed study and validation of the application of the ALARO-0
NWP model for regional climate purposes in Belgium, has since its use for
regional climate simulations in 2010, never been carried out, making it a
very important novelty of this thesis.

2. Investigate at which temporal and spatial scales the downscaling results add
value. As mentioned previously, the downscaling principle aims that RCMs
should not alter the simulated climate on scales that can be skillfully repro-
duced by the resolutions of the global model, but should rather add value on
the finer scales, such as for example mesoscale structures and extremes.

3. Assess qualitatively the uncertainty of the regional downscaling climate
change results. Multi-model ensemble simulations, allowing to quantify
the spread of uncertainty due to model formulation and natural variability,
is not feasible at a small institute such as the RMI with limited computing
resources. Therefore, the uncertainty is explored in a qualitative manner
by comparing our downscaled future climate model results in its proper
context, i.e. w.r.t. other RCM climate projections, which ideally use the
same scenario of natural and anthropogenic forcing.

These goals were addressed by two main research steps, focusing on extreme
precipitation and air pollution dispersion during winter smog episodes in Belgium.
In a first step, the Belgian operational ALARO-0 NWP model for climatological
time scales is validated, by driving the model with “perfect boundary conditions”
coming from global reanalyses. In a next step, the ALARO-0 model is applied
for a dynamical downscaling of climate change projection, by driving the model
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with a GCM scenario. The key findings of both research steps are summarized and
discussed below.

7.1.1 Validation of the ALARO-0 model for regional climate
modeling in Belgium

The first part of this thesis (including Chapters 2 to 4) focused on the validation
of the ALARO-0 model in a climate setup, and more specifically on the validation
of extreme precipitation. The ALARO-0 model, which is operationally used at the
Royal Meteorological Institute of Belgium (RMI), finds its origins in NWP. In the
research department of the RMI the model is since 2010 also used for regional
climate simulations. Hence, Chapter 2 described in detail the Belgian operational
ALARO-0 NWP model as used for the regional climate simulations that were per-
formed for this research. The model is a new version of the ALADIN model,
centred around an improved physical parameterization package for precipitation
and clouds, called Modular Multiscale Microphysics and Transport (3MT). The
basic concepts of 3MT which were given in Chapter 2, yet highlighted the impor-
tance of the new physics parameterization scheme for the simulation of convective
and extreme precipitation.

Furthermore, the different options in the surface and radiation parameter-
ization schemes of the model were discussed in this chapter. Historically, the
ALARO-0 model relies for the land-surface parameterization on the ISBA scheme
(Interactions between Soil, Biosphere and Atmosphere). However, during the last
decade, the more sophisticated land surface scheme called SURFEX (SURFace
EXternalisée) has been developed. For radiation there are two different param-
eterization schemes available within ALARO-0: the Action de Recherche Pe-
tite Echelle Grande Echelle (ARPEGE) Calcul Radiatif avec Nebulosité scheme
(ACRANEB) scheme, and the European Centre for Medium-Range Weather Fore-
casts (ECMWF) Fouquart-Morcrette Radiation (FMR) scheme. The greater part of
the ALARO-0 simulations carried out in this thesis have used the “default” settings
using the ISBA and ACRANEB scheme, which is also the configuration as used for
the current operational NWP applications of the model. However, for the analysis
of Chapter 6, simulations were performed with the SURFEX and FMR scheme.
Therefore, the sensitivity and relative impact to the use of the more sophisticated
surface scheme SURFEX and a different radiation scheme was assessed. This was
done through comparison of 30-yr daily precipitation and daily 2-meter minimum
temperature from ERA-Interim driven ALARO-0 simulations at 4 km resolution,
using the different options in the surface and radiation scheme. The results from
this assessment demonstrated for precipitation a minor sensitivity to the surface
scheme, and smaller differences in precipitation w.r.t. the observations with the
ACRANEB scheme, which has been specifically designed for ALARO-0, than
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with the FMR scheme. From this, we could conclude that w.r.t. the other setups,
the “default” settings using the ACRANEB and ISBA scheme, is an acceptable
setup for the simulation of precipitation with the ALARO-0 model. In particular,
because, except for Chapter 6, the focus in this thesis is mainly limited to precipi-
tation as climatological variable.

The experimental setup used for the regional climate simulations in this
thesis are based on the widely used “nesting technique”. This technique, which
originates from NWP, consists of a pure downscaling with reinitializations based
on the concept of one-way nesting. However, it should be stressed that the nesting
technique involves several technical issues. One of these issues is related to the
Lateral Boundary Condition (LBC) problem, where possible errors in the large-
scale circulation produced by the driving model will be transmitted to the nested
model. In order to minimize the effects of this problem, it is recommended to first
validate the model for the current climate using analyses of observations, i.e. the
so-called “perfect boundary conditions”. In Chapter 3 and Chapter 4, LBCs from
reanalyses of ERA-40 as well as ERA-Interim have indeed been used to drive the
ALARO-0 model for the validation of (extreme) precipitation in Belgium at daily
and subdaily temporal scales as well as at multiple spatial resolutions. The main
feature of the ALARO-0, i.e. the new 3MT physics parameterization package, and
its multiscale characteristic, had never been validated for precipitation in a climate
context.

Hence, to study in detail the multiscale characteristic of 3MT, Chapter 3
elaborated on the relative importance of resolution versus parameterization formu-
lation on the model skill to simulate realistic extreme daily precipitation. This was
achieved by comparing at varying horizontal resolutions 30-yr (1961-1990) daily
cumulated summer precipitation from the ALADIN model and the ALARO-0
model with respect to observations. We assessed the model performances through
standard statistical errors and density, frequency, and quantile distributions as well
as Extreme Value Analysis (EVA), using the peak-over-threshold method and Gen-
eralized Pareto Distribution. The 40-km simulations of ALADIN and ALARO-0
showed similar results, both reproducing the observations reasonably well. For the
high-resolution simulations, we found that ALARO-0 at both 10 and 4 km is in
better agreement with the observations than ALADIN. The ALADIN model con-
sistently produces too high precipitation rates. These findings demonstrated that
the new 3MT parameterization, and its multiscale characteristic, is responsible for
a correct simulation of extreme summer precipitation at various horizontal resolu-
tions.

For impact studies of extreme precipitation events, decision makers often re-
quire current and projected future climate information at the local scale and at
higher temporal resolutions than the daily scale. To address this issue, Chapter 4
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validated in detail for multiple spatial resolutions different aspects of the char-
acteristics of (extreme) precipitation at the subdaily timescale, ranging between
1-hour aggregation levels up to the daily timescale (24-hour aggregation level).
Furthermore, the central question in this assessment was whether the multiscale
performance of ALARO-0 in the simulation of daily summer precipitation, as was
found in the previous chapter (Chapter 3), is also retained in the simulation of
subdaily precipitation. First, our results for the diurnal cycle showed for both
high-resolution simulations at 4 and 10 km resolution an improvement in the onset
and peak of convective activity w.r.t. the observations. The low resolution 40-km
run on the other hand, is not able to reproduce the observed diurnal cycle both in
magnitude and phase. Furthermore, compared to the 40-km simulation, we found
for the high-resolution ALARO-0 runs a consistent improvement in the simula-
tion of high hourly precipitation amounts. Finally, two scaling properties related
to extreme rainfall; i.e. the linear behavior of the Generalized Extreme Value pa-
rameters and the Clausius-Clapeyron (CC) relation were examined. Again, the
high-resolution simulations showed for all durations a power law dependency that
approaches very closely the observed power law. In contrast, the low-resolution
40-km run did not reproduce the observed scaling properties for the lowest du-
rations (1 to 3 hour aggregation times). Only for the 24-h durations both the
high-resolution as well as the low, 40-km resolution runs displayed an Intensity-
Duration-Frequency relationship based upon this power law which is in agreement
with the observations. The CC relation was also relatively well reproduced by the
model at a spatial resolution of 4 km. In particular for the most extreme events (i.e.
highest percentiles) and for a rather large temperature range, the model is able to
reproduce the (super-)CC relation.

These results suggest that the multiscale performance of ALARO-0 in the
simulation of daily summer precipitation, as was found in Chapter 3, does not
hold for the simulation of subdaily precipitation. Furthermore, our results demon-
strated that the highest-resolution simulations of ALARO-0 at 4 km benefit from
added value in the description of several characteristics of subdaily precipitation,
such as the diurnal cycle, heavy precipitation amounts, and important scaling prop-
erties. This finding is in line with previous studies that explored w.r.t. observations
the added value of low-resolution RCMs where deep convection is parameterized
versus high-resolution CPMs where the convection parameterizations are (partly)
switched off. The multiscale character of the physics package 3MT for clouds and
deep convection allowed us to use consistently the same model physics at a range
of different spatial resolutions, which is an important strength in our assessment
w.r.t. other studies where one is often obliged to use a different model physics or
treatment of deep convection once the horizontal resolution is changed.

Overall the results of the validation of extreme precipitation at the daily and
subdaily timescale, as extensively studied in Chapter 3 and Chapter 4 demon-
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strated that the ALARO-0 model is able to consistently capture the relevant pre-
cipitation characteristics at a wide range of atmospheric and corresponding tem-
poral scales, varying from the micro- to the mesoscales. It is important to mention
that this finding is representative to only one climate variable (i.e. precipitation),
one season (i.e. the summer season) and one location (i.e. Belgium or Brussels
(Uccle)). It is important to mention that this finding is representative to only one
climate variable (i.e. precipitation), one season (i.e. the summer season) and one
location (i.e. Belgium or Brussels (Uccle)). It is clear that these limitations in the
validation do not assure a similar performance of the model for other variables,
seasons or locations. If one desires to assess the performance of the ALARO-0
model for another study area, it is preferable to enlarge or relocate the respective
model domain. In a recent validation study of Giot et al. (2016), using the same
configuration of the ALARO-0 model but a slightly different setup as used here,
the model has indeed been tested for Europe within the framework of the Coordi-
nated Regional Climate Downscaling Experiment (EURO-CORDEX). The perfor-
mance of the model is quantified through several metrics which are compared to
metrics from an ensemble of 17 other EURO-CORDEX experiments. The results
demonstrated that the model is capable of correctly representing the precipitation
and temperature climate variables for the European region in an acceptable way as
most of the ALARO-0 scores lie within the existing ensemble (Giot et al., 2016).

7.1.2 Application of the ALARO-0 model for present and fu-
ture climate impacts on extreme precipitation and on the
unfavorable meteorological conditions for the dispersion
of air pollution

The highly promising and encouraging findings of the validation of extreme pre-
cipitation increased our confidence to apply the ALARO-0 model to compute In-
tergovernmental Panel on Climate Change (IPCC) scenarios for climate change
studies. In the context of climate change assessment, potential future changes in
extreme precipitation are of great importance. In particular because such precipita-
tion extremes are related to e.g. floods and landslides, which have a great impact on
many aspects of human society: health, natural and urban environments, buildings
and infrastructure, and economy. Hence, Chapter 5 studied the future response of
extreme precipitation over Belgium to increased greenhouse gas (GHG) concen-
trations under the A1B IPCC scenario. For this, the GCM CNRM-CM3 has been
dynamically downscaled for a 30-yr control period (1961-90) and future scenario
period (2071-2100), using the ALARO-0 model at 4 km spatial resolution. In a
first step, it was verified whether or not the observed climatology for the control
period is correctly represented by the model, which is important if one couples a
RCM to a GCM. The results of this evaluation revealed significant biases in the



GENERAL CONCLUSIONS AND PERSPECTIVES 7-7

simulation of daily precipitation and temperature, as well as hourly mean precip-
itation. These biases were found to be mainly related to model errors present in
the driving GCM CNRM-CM3. Furthermore, it was found that the downscaling of
the GCM data towards higher spatial resolutions of 4 km results in more extreme
summer precipitation, and significantly reduces the bias w.r.t. the observations in
the control simulation. It is worth mentioning that the formulation of clear rea-
sons for the model biases was out of the scope of this thesis. This can be done by
assessing the model sensitivity to changes in the driving GCM model formulation
(e.g. physical parameterizations, model resolution, atmosphere-ocean coupling,
...). Nevertheless, in order to address these questions for future research, one has
to know the biases.

In a next step, we analyzed the future changes in which we limited ourselves
to a sensitivity of the model to the different sets of control and scenario boundary
conditions, by quantifying the differences between the future scenario and control
simulation without the application of any bias correction. The results from the
analysis on the future changes in mean temperature showed a significant warming
in 2-meter mean temperature by the end of the 21st century throughout the summer
and winter season. For mean precipitation our results demonstrated for summer
an overall significant decrease for the whole country, and a significant increase
during winter for the coastal and central region of the country. The future changes
in extreme precipitation showed for summer little significant but negative changes,
which are reflected in a negative response of 5-yr return level values of hourly and
daily precipitation. For winter, the 5-yr return level values of daily precipitation
showed mostly positive and significant changes between the scenario and control
simulation.

However, we did not attempt to quantify the uncertainties of these future
changes, we compared the changes w.r.t. the model biases as well as w.r.t. other
GCM/RCM results. This allowed us to provide a qualitative notion of the uncer-
tainty and confidence of our results. For example, the highest percentiles of hourly
winter precipitation in Uccle showed a positive future change which is more than
50% larger than the model bias, which is also reflected in the positive changes in
extreme daily winter precipitation as given by the 5-yr return level estimates for
Belgium. Furthermore, our results for winter extreme precipitation are in line with
other RCM and high-resolution model results for our region, which also show a
projected increase in extreme winter precipitation amounts. In this way we could
expect, with some level of confidence, an intensification of extreme hourly winter
precipitation in Belgium. However, for summer the negative changes in extreme
and hourly precipitation are much more uncertain, since (i) most of the changes
are non-significant and smaller than the respective biases, and (ii) other modeling
studies for our regions project an increase in extreme summer precipitation, which
is in disagreement with our results. In general, the disagreements and highly



7-8 GENERAL CONCLUSIONS AND PERSPECTIVES

varying patterns of projected changes in extreme summer precipitation can be
explained by the transition zone in which Belgium is located. Furthermore, the
strong dependency of the parameterizations, and in particular the deep convection
parameterizations, are also a key source for the uncertainty in future climate
projections of extreme summer precipitation.

The last chapter, Chapter 6, assessed the impact of climate change on an-
other major area where climate change may cause adverse effects, i.e. air quality.
The effect of climate change on winter smog episodes was studied through the
analysis of two different stability indices, i.e. the transport index and the Pasquill
classes, which are based on meteorological conditions determining the dispersion
of air pollution. This methodology, which is commonly used for alerts of win-
ter smog peaks in a context of operational weather impact, was applied and vali-
dated here for the first time with the high-resolution climatological data from the
ALARO-0 model. We have calculated both stability indices for a 29-yr and 9-yr
winter period using present (1981/82-2009/10 and 1990/91-1998/99) and future
(2046/47-2054/55) climate data that has been obtained from a dynamical down-
scaling of GCM data from the ERA-Interim reanalysis as well as from the coupled
CNRM-CM3 model using the ALARO-0 model at 4 km spatial resolution.

In a first step, we assessed whether the ERA-Interim driven ALARO-0 model
is able to reproduce observed cases of winter smog alerts by means of the trans-
port length values as well as observed frequency statistics of the Pasquill stability
indices. The results showed that the model is able to reproduce almost all the
observed smog peaks, and also the simulated frequency distribution of Pasquill
indices are in close agreement to the observed one. Comparison of frequency
statistics of the transport- and Pasquill indices obtained from the control simula-
tion with the observed frequencies indeed revealed significant biases, and in par-
ticular for the transport index. To account for these model imperfections, a linear
Q-Q bias correction was applied directly on the transport length values. After cor-
rection, the present-day frequencies were significantly improved, with remaining
deviations from the observations that fall within an acceptable range of 10%.

In order to quantify the uncertainty on the future changes, the same linear
correction method as used to correct present-day transport length values, has been
applied to correct the future transport lengths. Our results demonstrated that we
can expect an increase of the unfavorable conditions for the dispersion of air pollu-
tants up to 60 - 70% in Brussels by the middle of the 21st century. It is important to
keep in mind that the assumption of constant bias under present and future climate
conditions may not be valid, and that a more advanced bias correction method
could be more appropriate. Furthermore, it should be taken into account that the
future climate change impact on winter smog episodes as found here, is based
upon one single emission scenario from the downscaling results of one RCM. It
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is important to highlight the relevance and innovative strength of the methodology
of stability indices as proposed in this chapter. In practice, it is generally hard
to evaluate the skill of Chemical Transport Model (CTM) results because of the
limited availability of observational data for the evaluation. To our knowledge,
no previous studies have focused on examining the sensitivity of unfavorable con-
ditions for the dispersion of winter smog pollutants to future climate change, by
means of frequencies of stability indices, rather than aiming to project actual con-
centrations of the air pollutants. Therefore, our presented results provide a perfect
complement to validate CTM results, and possibly increasing the confidence of the
results. Furthermore, the simplicity of our methodology makes it a powerful tool
for decision making in the context of air pollution reduction strategies.

The results from Chapter 6 suggested for the winter a possible change to-
wards more anticyclonic and stable situations, whereas the results from Chapter 5
indicated for the winter season an increase of future precipitation extremes which
is often associated with cyclonic conditions. This suggests that, according to our
model results, the future climate change impact for the winter season on the ex-
treme cases should rather be attributed to the fact that the extremes become more
extreme, and not so much to a change in the recurrence frequencies of respective
anticyclonic or cyclonic weather types.

Finally, it is important to mention, that the results on the future changes in
extreme precipitation and the meteorological conditions which are unfavorable for
the dispersion of air pollution associated with winter smog peaks in Brussels (Uc-
cle), are one possible outcome of future changes at the end or middle of the 21st

century. Our assessment on the climate impact of winter smog episodes has been
made under the consideration that the actual concentration peaks of the relevant
winter smog pollutants are superimposed on their background concentrations, and
hence of a much larger order of magnitude than the respectively background con-
centrations. However, in this consideration, future background concentrations and
emissions of GHGs and other pollutants, remain an important source of uncer-
tainty, due to the unknown changes in population vulnerability and human activity
patterns. In this respect, a multi-model ensemble approach is a promising strategy
to narrow and quantify the uncertainty on the projected model results.

7.2 Perspectives

7.2.1 Future developments in the ALARO model for climate
simulations

Extensive developments of the ALARO model have recently led to the release of
a new model version, i.e. the ALARO-1 model. The new features in this new
model version include amongst others several updates in the different physical
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parameterization schemes for e.g. radiation, turbulence, and deep convection. As
mentioned previously, the results on the validation of the subdaily precipitation
of the ALARO-0 model, showed a significant improvement in the representation
of the diurnal cycle for the high-resolution runs w.r.t. the low 40-km simulation.
However, there is still a time shift towards a too early onset of the convective build-
up notable. Recent NWP results demonstrated that changes in the 3MT physics
package which are included in ALARO-1, significantly reduced (or even canceled)
this time shift. These most recent changes are not implemented in the ALARO-0
version that is used for the simulations in this thesis. Hence, in the perspective of
climate applications with the new ALARO-1 model version, the presence of this
time shift in the diurnal cycle could be examined.

In NWP there is a general tendency to increase the models’ spatial resolution
to 1 km or even less. The developments of the ALARO-1 model also attempt to al-
low NWP applications to such high spatial resolutions. Hence, with the continuing
advancements in high-performance computing, we can expect parallel evolutions
in the application of the ALARO-1 model for regional climate simulations. It
is self-evident that such a refinement of the horizontal grid spacing requires an
adaptation and tuning of the physical parameterizations. At the same time these
improvements in the physical parameterizations are needed to further investigate
the dominant physical processes that are effectively responsible for changes of
subdaily extreme rainfall in a future climate.

Another important limitation in the validation and potential future changes of
extreme precipitation at the subdaily time scale, is the availability of sufficiently
long time series of observed precipitation at high-temporal resolutions. However,
a dense network of such point observations from gauge measurements are gen-
erally difficult to find. Gridded hourly radar data could provide a good alterna-
tive to gauge measurements, as they have excellent resolutions both in time and
space. At the RMI rainfall estimates from a 10-yr (2005-2015) dataset of volumet-
ric weather radar measurements from a radar located in the southeast of Belgium
(Wideumont), have recently been processed. For future climate research of the
subdaily precipitation characteristics this gridded rainfall product can be used as a
reference.

7.2.2 ALARO-0 in the context of the EURO-CORDEX project

As mentioned previously, our experimental setup for the regional climate simu-
lations in this thesis, is based on the nesting technique, which involves several
technical issues. One of these issues is related to the problem that the internal
climate of the RCM can start to diverge from the large-scale atmospheric circu-
lation given by the driving global model. In our experimental setup we deal with
these deviations by means of daily reinitializations, while taking into account a
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spinup period which allows that the physics can adjust. Although, another and
more commonly used approach within regional climate modeling, are continuous
and uninterrupted model runs over long periods, so that the RCM finds its own
climate equilibrium. Hence, it can be argued that the use of this setup for climate
integrations, does not allow for the nested model to find its balance. This may in-
deed cause some spurious biases. However, this issue has not been explored in the
thesis, a recent validation study of Giot et al. (2016) where the ALARO-0 model
is validated within the CORDEX framework, used a continuous model integration
setup, and revealed similar and positive results in the models ability to reproduce
the precipitation climatology over Europe.

Furthermore, for the simulations where SURFEX was employed, the soil
variables evolved freely after initialization and were never corrected or nudged
in the course of the simulation. This is motivated by the fact that daily restarts
would limit the equilibration of the surface physics (soil moisture and tempera-
ture), which is particularly desirable in long-term regional climate modeling. In
the framework of an ongoing research project at the RMI, the effects of the dif-
ferent nesting approaches (i.e. daily restarts versus continuous integrations) are
investigated, and this will be continued in further research.

Finally, the ongoing project CORDEX.be (COmbining the Regional Down-
scaling EXpertise in BElgium: CORDEX and beyond), aims to produce a set of
comparable simulations by the Belgian regional climate modeling groups within
the EURO-CORDEX framework. This will allow to extend our research on the
future climate impact of extreme precipitation and the meteorological conditions
for the dispersion of air pollutants to other European regions, using IPCC’s most
recent Representative Concentration Pathways (RCP). Furthermore, several statis-
tical downscaling techniques will be applied within the project, to infer the climate
uncertainties with the CORDEX.be micro-ensemble, to be properly situated w.r.t.
the other runs in the EURO-CORDEX archive.
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ABSTRACT

Daily summer precipitation over Belgium from the Aire Limit�ee Adaptation Dynamique D�eveloppement

International (ALADIN) model and a version of the model that has been updated with physical parame-

terizations, the so-called ALARO-0 model [ALADIN and AROME (Application de la Recherche �a
l’Op�erationnel �a Meso-Echelle) combined model, first baseline version released in 1998], are compared with

respect to station observations for the period 1961–90. The 40-yr European Centre for Medium-Range

Weather Forecasts Re-Analysis (ERA-40) is dynamically downscaled using both models on a horizontal

resolution of 40 km, followed by a one-way nesting on high spatial resolutions of 10 and 4 km. This setup

allows us to explore the relative importance of spatial resolution versus parameterization formulation on the

model skill to correctly simulate extreme daily precipitation. Model performances are assessed through

standard statistical errors and density, frequency, and quantile distributions as well as extreme value analysis,

using the peak-over-threshold method and generalized Pareto distribution. The 40-km simulations of

ALADIN and ALARO-0 show similar results, both reproducing the observations reasonably well. For the

high-resolution simulations, ALARO-0 at both 10 and 4 km is in better agreement with the observations than

ALADIN. TheALADINmodel consistently produces too high precipitation rates. The findings demonstrate

that the new parameterizations within the ALARO-0 model are responsible for a correct simulation of ex-

treme summer precipitation at various horizontal resolutions. Moreover, this study shows that ALARO-0 is

a good candidate model for regional climate modeling.

1. Introduction

Extreme precipitation events have a large impact on

societies through damage caused by floods, landslides,

and snow events. Precipitation is thus an important me-

teorological variable in weather prediction and climate

studies. Herrera et al. (2010) studied the ability of regional

climatemodels (RCMs) to reproduce themeanandextreme

precipitation regimes over Spain using a state-of-the-art en-

semble of RCM simulations. The RCMs show good agree-

ment with the observed mean precipitation regime, but for

the extreme regimes themodels reveal important limitations.

As described in the Fourth Assessment Report of the

Intergovernmental Panel on Climate Change (IPCC),

the model skill to simulate realistic extreme daily pre-

cipitation strongly depends on the spatial resolution and

convective parameterization of themodel (Randall et al.

2007). However, it is not straightforward to quantify the

relative contribution of an increase in spatial resolution
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versus an improvement in physical parameterization of

deep convection on the overall performance of themodel.

On the other hand, precipitation is one of the most

sensitive quantities in the different parameterization

schemes of the climate models and to their interplay

with the dynamics of the atmosphere represented in the

models. For this variable it has been shown that RCMs

are able to add significant information to the driving

global simulations, both in space and time (e.g., Jones

et al. 1995; Durman et al. 2001; Jones et al. 2004). In

general terms, the RCMs produce an intensification of

precipitation with respect to the driving global climate

model (GCM), related to the intensification of the hy-

drological cycle (Jones et al. 1995; Durman et al. 2001;

Buonomo et al. 2007). Lynn et al. (2010) tested a re-

gional climate model with different physics components

at two different spatial resolutions. Their results dem-

onstrated a sensitivity of the RCM to the choice of the

convective parameterization, leading to significantly

different summer precipitation outcomes. The authors

conclude that these differences are due to differences in

the convective parameterizations and not because of the

change in spatial resolution of the model.

The aim of the present paper is to elaborate on the

relative importance of resolution versus parameteriza-

tion formulation on the model skill to simulate realistic

extreme daily precipitation. This is achieved by com-

paring at varying horizontal resolutions the Aire Limit�ee

Adaptation Dynamique D�eveloppement International

(ALADIN) model with a version of the model that has

been updated with physical parameterizations, the so-

called ALARO-0 model [ALADIN and AROME

(Application de la Recherche �a l’Op�erationnel �a Meso-

Echelle) combinedmodel, first baseline version released

in 1998]. The ALADIN model is the limited area model

(LAM) version of the Action de Recherche Petite

Echelle Grande Echelle Integrated Forecast System

(ARPEGE-IFS) (Bubnov�a et al. 1995; ALADIN In-

ternational Team 1997). Since the 1990s the model has

been widely used by the numerical weather prediction

(NWP) community and, more recently, in regional cli-

mate modeling (e.g., Radu et al. 2008; Skal�ak et al.

2008). Furthermore, the model uses a diagnostic-type

deep convection and microphysics parameterization

based onBougeault (1985) with upgrades fromGerard and

Geleyn (2005). The new physical parameterizations within

theALARO-0model, as proposed byGerard et al. (2009),

were specifically designed to be used frommesoscale to the

convection-permitting scales (so-called gray-zone scales)

and are centered around an improved convection and

cloud scheme. For this study we use the version of the

ALARO-0 model that was adopted for the operational

applications in the Royal Meteorological Institute (RMI)

of Belgium in 2010. Since then this model has undergone

systematic verification with respect to observations at 7-km

resolution. Gerard et al. (2009) tested the new parameter-

izations within the ALARO-0 model in a 1-day case study

overBelgium,whichwas characterizedbyheavy convective

precipitation. From this study an improvement ofALARO-

0 at varying horizontal scales has been demonstrated.

Basically, the ‘‘nesting’’ strategy, or climate down-

scaling technique, in which a LAM or RCM is driven by

either a GCM or by analyses of observations, is the most

widely used strategy to produce high resolution over a

region of interest (Denis et al. 2002). Hence, limiting the

geographical domain of these atmospheric models re-

duces the total number of grid points and allows one to

perform simulations at high resolutions with an afford-

able computational cost. Because of the ability of these

high-resolution LAMs or RCMs to reproduce mean-

ingful small-scale features over a limited region (Denis

et al. 2002; Giorgi et al. 2004), they have become a pop-

ular tool in both the NWP and the climate community for

studying extreme events at regional and local scales (e.g.,

Jones and Reid 2001; Buonomo et al. 2007; D�equ�e and

Somot 2008; Duli�ere et al. 2011).

However, studies show that RCMs do not necessarily

improve their driving GCM simulations or global re-

analyses (e.g., Castro et al. 2005; Jacob et al. 2007; Sylla

et al. 2010). The use of nested LAMs or RCMs as a cli-

mate downscaling technique, indeed, involves a number

of issues, one of which is related to the lateral boundary

conditions (LBCs) (Giorgi andMearns 1999; Denis et al.

2002). This drawback of RCMs is related to the fact that

one is obliged to impose imperfect LBCs, inducing

various errors at the boundaries (e.g.,Warner et al. 1997;

Termonia et al. 2009). Despite this, past and current

applications with RCMs have shown that the one-way

nesting strategy is a workable solution (Giorgi andMearns

1999). To minimize the effects of the LBC problem,

Giorgi andMearns (1999) recommend to first validate the

model for the current climate using analyses of observa-

tions, that is, the so-called perfect boundary conditions.

Interesting work has been carried out by de El�ıa et al.
(2002) and Denis et al. (2002) with a perfect-model ap-

proach, showing that, in a downscaling with a one-way

nesting, a LAMorRCM is able to regenerate the correct

amount of variability at the scales smaller than the ones

of the driving model in which the high-resolution vari-

ability had been removed by filtering. However, de El�ıa
et al. (2002) found that the LAM is not capable of re-

producing the correct details with sufficient precision

required by the rms errors (RMSEs), that is, that the

variables locally in space and time do not fully reproduce

the ones of the perfect model run. Whereas de El�ıa et al.
concentrated on the short-term evolution of weather
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systems and quantified the models’ ability to simulate

the data in a deterministic day-by-day basis by means of

RMSEs, Denis et al. focused on climate time scales and

demonstrated the ability of high-resolution RCMs to

gain accuracy in a climatic–statistical sense.

Therefore, for studying the climate of weather ex-

tremes it is rather the statistics of the extremes that are

important, provided the large-scale evolution is consis-

tent with the large-scale flow of the driving model. This

is an important additional criterion in deciding to use

RCMs with respect to global ones.

For long-range runs at temporal scales of multiple

decades, there is also the problem that the internal cli-

mate can start to diverge from the climate of the global

model (Nicolis 2003; Qian et al. 2003; Nicolis 2004). One

can deal with this by either (i) interrupting the model

runs of the LAM after a few days and restarting them,

while allowing a spinup period so that the physics can

adjust, or (ii) carrying out uninterrupted model runs

over long periods, allowing the LAM to find its own

climate equilibrium (Qian et al. 2003). In the second

case, one can for instance apply a spectral nudging of the

large scales to the large scale of the driving globalmodel.

In the present paper, we will also study whether the in-

ternal climate variability generated by the higher reso-

lution of the RCM and its model physics, as identified by

Denis et al. (2002) and de El�ıa et al. (2002), reproduces

the correct statistics. For this we want to avoid imposing

an upper-air spectral nudging; hence, we will merely

carry out a pure downscaling with reinitializations using

a one-way nesting approach. Lucas-Picher et al. (2013)

demonstrated that dynamical downscaling with re-

initializations has lower systematic errors than with a

standard continuous model configuration.

The 40-yr European Centre for Medium-Range

Weather Forecasts (ECMWF) Re-Analysis (ERA-40)

(Uppala et al. 2005) is used as large-scale coupling data

to drive the coupled models, ALARO-0 and ALADIN.

As suggested by Giorgi andMearns (1999), atmospheric

reanalyses, such as ERA-40, can be used in climate

studies to provide the ‘‘perfect boundary conditions’’ for

RCMs (e.g., Csima andHor�anyi 2008; D�equ�e and Somot

2008; Skal�ak et al. 2008; Heikkil€a et al. 2011; Hamdi

et al. 2012). These reanalyses are produced by means of

data assimilation methods in order to find optimal esti-

mates for past atmospheric states that are consistent with

meteorological observations and the model dynamics.

In a recent study of Hamdi et al. (2012) the use of

high-resolution dynamical downscaling of ALARO-0 at

4-km horizontal resolution is explored by means of the

summermaximum surface air temperature over Belgium.

Our study extends the work of Hamdi et al. in the sense

that, instead of temperature, precipitation is now

analyzed. Daily summer precipitation from different

model runs is compared with respect to station observa-

tions, with an emphasis on extreme precipitation. This

approach by which model output is directly compared

against station observations can be motivated by the fact

that the station-level observations provide the closest rep-

resentation of extreme events (Duli�ere et al. 2011). Fur-

thermore, the motivation for only considering summer

precipitation is threefold: (i) other regional climate

studies (e.g., Caldwell et al. 2009; Soares et al. 2012a,b)

show difficulties of RCMs to simulate summer pre-

cipitation; (ii) the new parameterization scheme within

ALARO-0mostlymodifies convection,which is the process

most relevant for (extreme) precipitation events in summer

(Kyselý and Beranov�a 2009; Soares et al. 2012a); and (iii)

the relatively small scale on which these convective pro-

cesses often occur better corresponds to the high-resolution

ALARO-0 simulation (Kyselý and Beranov�a 2009).

We add to our evaluation the ALADIN-Climate

model developed by the Centre National de Recherches

M�et�eorologiques (CNRM), which took part in the Eu-

ropean ENSEMBLES project (www.ensembles-eu.org).

The ALADIN-Climate model is an ALADIN model

version that is specifically used for regional climate

modeling. The Ensemble-Based Predictions of Climate

Changes and their Impacts (ENSEMBLES) project

was finished near the end of 2009 and is aimed to de-

velop an ensemble climate forecast system to produce

probabilistic scenarios of future climate so as to provide

detailed, quantitative, and policy-relevant information to

the European society and economy. Several experiments

were performed with some 10 state-of-the-art European

and Canadian high-resolution, global, and regional cli-

mate models. The ENSEMBLES ALADIN-Climate/

CNRM simulations use a long uninterrupted model run,

which is a different setup than our ALADIN and

ALARO-0 simulations. Hence, a direct comparison

with the ALADIN-Climate/CNRM simulation is not

possible, and these uninterrupted climate runs are merely

added as a reference for regional climate modeling in

order to make the present paper complete.

The model simulations, experimental design, and ob-

servational data used in this study are described in the

next section. Section 3 gives a description of the applied

methods, and the results are discussed in section 4. The

results are summarized in the conclusions in section 5.

2. Model description and data

a. Experimental design

The experimental design is summarized in Table 1.

The ERA-40 reanalysis data (Uppala et al. 2005) are
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dynamically downscaled using the limited-area models

ALADIN and ALARO-0.

The physics parameterization package of the

ALARO-0 model has been specifically designed to be

run at convection-permitting resolutions. The key con-

cept behind the package lies in the precipitation and

cloud scheme called Modular Multiscale Microphysics

and Transport (3MT) developed by Gerard and Geleyn

(2005), Gerard (2007), and Gerard et al. (2009).

With mesh sizes mostly below the Rossby radius of

deformation for convective phenomena, the parame-

terization schemes must take into consideration that the

return current from updrafts is happening in a multitude

of grid boxes. Therefore, each individual grid-box re-

alization of the parameterization has a statistical view of

the ‘‘compensating subsidence’’ happening inside its

area. As long as the updraft computation can also be

considered as statistical with respect to its population of

updrafts of various depths and sizes, it seems not to

matter much that the compensating subsidence is com-

puted on the basis of a purely local closure. But when

mesh sizes become so small that only a few updraft re-

alizations happen inside each grid box, and with area

fractions that cease to be negligible with respect to

‘‘one,’’ the whole concept of ‘‘classical’’ convective pa-

rameterization schemes collapses. In the 3MT scheme

this problem is addressed by combining three key fea-

tures of the scheme: (i) the separately computed deep

convective condensation and large-scale condensation

are merged as single input for a ‘‘prognostic–geometric’’

set of microphysical computations (sedimentation, auto-

conversion, collection and melting–evaporation during

fall); (ii) the convective detrainment is not diagnosed

independently but becomes the result of the combined

computations of closure, entrainment, and condensa-

tion; and (iii) the closure assumption (core of the

physics–dynamics coupling) is a prognostic-type one

with memory of the updraft area fraction and of the

updraft vertical velocity of previous time steps. These

three interrelated characteristics of 3MT induce a good

multiscale performance of 3MT, in particular in the gray

zone. The latter can be defined as the range of horizontal

mesh sizes for which the precipitating convection is

partly parameterized and partly simulated by the re-

solved motions of the model. If nothing specific is done

(i.e., using the classical diagnostic-type schemes of, e.g.,

ALADIN at gray-zone scales), this ambivalence results

in double-counting or double-void situations, leading to

several negative ‘‘gray-zone syndromes.’’ In convective

situations drizzle appears nearly everywhere, and the

precipitation maxima are too intense and too scattered.

This happens especially over mountainous areas.

The multiscale performance of 3MT has been vali-

dated in a numerical weather prediction context up to

a spatial resolution of 4 km (see Gerard et al. 2009). The

ALARO-0 model utilizes 1) the Action de Recherche

Petite Echelle Grande Echell (ARPEGE) Calcul Radi-

atif avec Nebulosit�e (ACRANEB) scheme for radiation

(Ritter and Geleyn 1992, recast in a Net Exchanged Rate

framework), 2) a semi-Lagrangian horizontal diffusion

scheme (SLHD) (V�a�na et al. 2008), 3) some pseudo-

prognostic turbulent kinetic energy (pTKE) scheme (i.e.,

a Louis-type scheme for stability dependencies, but

with memory, advection, and autodiffusion of the overall

intensity of turbulence), and 4) a statistical sedimentation

scheme for precipitation within a prognostic-type scheme

for microphysics (Geleyn et al. 2008). The physics pack-

age of the ALARO-0 model is coupled to the dynamics

of the ALADIN model (Bubnov�a et al. 1995) via a

physics–dynamics interface based on a flux-conservative

formulation of the equations proposed by Catry et al.

(2007).

For the present study, the same land surface model—

Interactions between Soil, Biosphere, and Atmosphere

(ISBA) (Noilhan and Planton 1989)—is used in both the

ALARO-0 and ALADIN models. Furthermore, both

models can be run with different schemes to impose the

lateral-boundary conditions (Davies 1976; Radn�oti 1995;

TABLE 1. Overview of the experimental design.

Reference Daily cumulated precipitation Model Daily cumulated precipitation

1) Effect of downscaling Station observations 0800 LT (day) / 0800 LT

(day 1 1)

ERA-40 0600 UTC (day) / 0600 UTC

(day 1 1)ALR40

ALD40

2) Multiscale performance

of ALARO-0

Station observations 0800 LT (day) / 0800 LT

(day 1 1)

ALR40 0600 UTC (day) / 0600 UTC

(day 1 1)ALD40

ALR10

ALD10

ALR04

3) Reference for regional

climate modeling

Station observations 0800 LT (day) / 0800 LT

(day 1 1)

CNRM mean (0000–2400 UTC)
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Termonia et al. 2012). For this study, the version of

Radn�oti (1995) is used in both models.

The ALARO-0 model runs operationally in a number

of countries of the ALADIN and High-Resolution

Limited-Area Model (HIRLAM) consortia (Austria,

Belgium, Czech Republic, Croatia, Hungary, Norway,

Portugal, Romania, Sweden, Slovenia, Slovakia, and

Turkey) for the national NWP applications, the first of

them already since 2008. More recently, the model is

also used for climate runs. The ALARO-0 model is de-

veloped and maintained mainly through a collaboration

between the RMI of Belgium and the Regional Co-

operation for LimitedAreaModelling forCentral Europe

(RC LACE). The developments of the ALARO-0 model

(intentionally targeted at the gray-zone scales) are cen-

tered around the 3MT basic concept, which means that

many other parameterization schemesmust be adapted to

the use of 3MT, but also sometimes the reverse. Thus,

a rather wide international effort is needed.

As the first step of this study, the improvement of the

downscaling by means of the ALADIN and ALARO-0

models is examined. This is done by comparing recent

past (1961–90) summer precipitation data from an

ALARO-0 and ALADIN simulation performed at

40-km spatial resolution (ALR40 and ALD40) (Fig. 1)

with summer precipitation from the driving ERA-40

reanalysis data (Uppala et al. 2005).

Despite the fact that reanalysis data products are

more continuous in space and time than station data, they

inevitably contain biases. A number of evaluations for

ERA-40 reanalysis precipitation have been performed

(e.g., Zolina et al. 2004; Ma et al. 2009). The ERA-40

precipitation has distinct regional limitations: most of

them are generally related to the coarse horizontal res-

olution of the ERA-40 model, on one hand, and to its

strong model dependency, on the other (Ma et al. 2009).

All physical parameterizations within ERA-40, including

those of precipitation, were run on a spatial resolution of

about 125 km (Zolina et al. 2004; Ma et al. 2009). The

model diagnostics precipitation in ERA-40 is produced

by parameterizedmicrophysical processes in clouds, which

are formed at supersaturation by convective or large-

scale processes (Ma et al. 2009). Total precipitation is

then simply the sum of the convective precipitation

generated by convective clouds and large-scale strati-

form precipitation, associated with frontal or dynamical

systems (Zolina et al. 2004). Hence, ERA-40 precip-

itation is a pure model product. Due to the poor skill of

operational NWP models to account for all important

physical mechanisms that affect the atmospheric water

cycle, it appears to be one of the most uncertain fore-

casted parameters in the reanalysis (Zolina et al. 2004;

Ma et al. 2009; Heikkil€a et al. 2011). The 6-hourly fore-

casts from the ERA-40 reanalysis are used to calculate

daily cumulated summer precipitation between 0600 and

0600 UTC of the next day. For coupling to the regional

model we use a linear interpolation in time. This may

produce errors at the lateral boundaries on our small

domains (Fig. 1) but, as shown by Termonia et al. (2009),

such errors only occur very rarely, and the impact on the

statistics of extreme precipitation should be very minor.

To explore further the multiscale performance of

ALARO-0, as found by Gerard et al. (2009) but now for

climate time scales, we evaluate in a second step re-

cent past simulations (1961–90) of the ALADIN and

ALARO-0 models at varying horizontal resolutions

against different station datasets.

(i) and (ii) The ALADIN and ALARO-0 models are

driven by ERA-40 and run at a horizontal resolu-

tion of 40-km spatial resolution with 69 3 69 grid

points on a domain that encompassesmost of western

Europe (ALD40 and ALR40, respectively; Fig. 1).

These 40-km outputs are then used to perform a

one-way nesting on a domain centered on Belgium

(Fig. 1) using the following spatial resolutions:

(iii) and (iv) 10-km spatial resolution on a 67 3 67 grid

(ALD10 and ALR10) and

(v) 4-km spatial resolution on a 181 3 181 grid

(ALR04). That we did not run any ALD04 config-

uration is obviously linked to the corresponding

gray-zone-type resolution, where the diagnostic

FIG. 1. Domains corresponding to the different simulations at 40-,

25-, 10-, and 4-km horizontal resolution.
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parameterization of convection would have be-

come completely irrelevant (see section 4 for the

first syndromes already noticeable in ALD10).

Finally, we also include ALADIN-Climate/CNRM

simulations within our analysis so as to provide a refer-

ence for regional climate modeling. One part of the

performed experiments within the ENSEMBLES pro-

ject aimed to validate the models for the recent past

climate. The results from this experiment, including 40

years of 25-km resolution ALADIN-Climate/CNRM

simulations driven by the ERA-40 reanalysis (hereafter

denoted as CNRM), are used in our analysis for the pe-

riod 1961–90. From the ENSEMBLES data archive we

have only selected the CNRM precipitation data for the

grid points that coincide with the ALR04 domain (Fig.

1). The precipitation data correspond to daily means

calculated for the interval 0000–2400 UTC. As men-

tioned in section 1, the model setup of CNRM and our

simulations are different. The number of vertical levels

that is used in our runs with the ALADIN and

ALARO-0 models is 46 with a model top that extends

up to 72km. The CNRM simulations from ENSEMBLES

have used 31 vertical levels. Furthermore, the CNRM

simulations use a long-term and free run setup. Our pro-

cedure is to interpolate the original ERA-40 files to 40-km

resolution. These 6-h files serve as initial and boundary

conditions for 48-h ALD40 and ALR40 runs. These are

started at 0000 UTC every day. The (3h) output from

these first runs serves as input for the high-resolution 10-

and 4-km runs (ALD10, ALR10, and ALR04). However,

to exclude spinupproblems, the first 12h are not taken into

account. So we have 36h of data left for the 4- and 10-km

runs (which thus start at 1200 UTC). Finally, we again

dismiss the first 12h of the runs, to arrive at 24h of output

at 4- and 10-km resolution, and then integrate/reinitialize

over each subsequent 24-h period during the summer pe-

riod of June–August, 1961–90.

b. Observations

The observation dataset comprises 93 climatological

stations with daily accumulated precipitation, selected

from the climatological network of the RMI of Belgium.

The data have undergone a manual quality control by op-

erators, and the stations were chosen so that continuous

data for the 30-yr study period (1961–90) are available. The

stations cover all of Belgium, thus representing conditions

of coastal, inland, and higher orographic locations (Fig. 2).

3. Methods

a. Data processing and analysis

Model validation against observations can either be

done with station data or gridded station data. Both

validation methods have their disadvantages (Hofstra

et al. 2010). Model evaluation against observations at

station level often raise issues related to the scale dif-

ference between the model and observation field

(Tustison et al. 2001; Duli�ere et al. 2011). Themodel grid

cell values correspond to spatially averaged values rep-

resenting the area of the whole grid cell. Furthermore,

the spatial variability of these averaged model fields will

always be lower than the one of the observation field.

These differences in spatial variability depend on the

area of the grid cell as well as on the inherent variability

of the field variable. Precipitation, for example, is known

to have a relatively high spatial variability. To illustrate

the differences in spatial variability in this study, Fig. 3

shows the different grid cell areas of themodels together

with the 93 climatological stations (i.e., observation points).

The grid cell areas in this study range from 1600 km2 for

the 40-km horizontal resolution to 16 km2 for the 4-km

horizontal resolution (Fig. 3). Hence, reducing those

spatially averagedmodel values with an originally greater

heterogeneity to a single station point value leads to an

inconsistent comparison. However, for long time periods,

such as 30 years, we can assume that the spatial variability

within a grid cell would be reduced in such a way that the

spatial variability of both model and observation fields

tends to converge (Duli�ere et al. 2011).

Another common way to overcome this scale incon-

sistency is the use of gridded data. The Climate Re-

search Unit (CRU) and the European ENSEMBLES

project provide daily gridded observation datasets

(Mitchell and Jones 2005; Haylock et al. 2008). How-

ever, these gridded datasets are in some regions con-

structed by interpolation or area-averaging of station

observations from a small number of stations, which

FIG. 2. Topography (m) of Belgium showing the location of the 93

selected climatological stations (black dots).
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smooths and possibly affects the extreme values within

the dataset (Hofstra et al. 2010). Since this study aims to

examine extreme precipitation events, the models are

evaluated against station observations. This is done by

comparison of daily observed station-level precipitation

with modeled daily precipitation of the nearest grid box

over land. The 93 resulting precipitation time series se-

lected from the model simulations are not corrected

for topography with respect to altitude of the nearest

station. It is difficult to apply such correction for pre-

cipitation because of its dependency on topography,

humidity, buoyancy, and other local variables (Soares

et al. 2012a).

Time discrepancy between computations of daily

cumulated precipitation from station observations and

model output is an important, but rarely highlighted,

problem within precipitation evaluation studies. To deal

with this problem, the error analysis can be performed

on longer than daily time scales, such as monthly, sea-

sonal, or annual time scales (Ma et al. 2009; Soares et al.

2012b). However, in this study the model evaluation is

done on a daily basis, requiring a consistent calculation

of the daily precipitation values. Daily observed pre-

cipitation corresponds to the total accumulated pre-

cipitation between 0800 and 0800 local time (LT) of the

following day. Hence, the daily model values for all

FIG. 3. Model grid points over Belgium for each of the horizontal resolutions for which the simulations are

performed. The black dots represent the 93 climatological stations.
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simulations (ALR40, ALD40, ALR10, ALD10, and

ALR04) have been calculated based on the definition of

observed daily accumulation, which corresponds to 0600

and 0600 UTC of the following day (Table 1).

b. Extreme value analysis and peak-over-threshold
methods

The methods used for the modeling of extreme events

are similar to those used inHamdi et al. (2012). Threshold

models and peak-over-threshold (POT) methods are

useful tools for the modeling of extreme events. A well-

known distribution that may describe the behavior of

the excesses or POT events is the generalized Pareto

distribution (GPD) (Coles 2001). Recently, several au-

thors have modeled extreme precipitation with the

GPD (e.g., Ribatet et al. 2009; Roth et al. 2012; Mailhot

et al. 2013).

Consider a sequence of independent and identically

distributed random variables X1, X2, . . . , Xi from an

unknown distribution F. We are interested in the ex-

treme events that exceed a certain high threshold u. The

distribution function of such an extreme event X from

the Xi sequence can then be defined as

Fu(y)5PfX. u1 y jX. ug5 12F(u1 y)

12F(u)
, (1)

with y . 0. Equation (1) is the conditional probability

that the threshold u is exceeded by no more than an

amount y, given that the threshold u is exceeded. Given

that X . u, the GPD of the excesses (X 2 u) is then

given by

H(y)5 12

�
11

jy

s

�21/j

, (2)

where j is the shape parameter and s is the scale pa-

rameter. The GPD with parameters j and s describes

the limiting distribution for the distribution of excesses

[Eq. (1)] and can be used to model the exceedances of

a threshold u by a variable X. Thus, for x . u,

PfX. x jX. ug5
h
11 j

�x2u

s

�i21/j
. (3)

It follows that

F(x)5PfX. xg5 zu

h
11 j

�x2 u

s

�i21/j
, (4)

where zu5PfX. ug. In this study the parameters of the

GPD are estimated by the maximum-likelihood method,

following the definitions of Stephenson (2002). The level

xm that is on average exceeded once everym observations

is the solution of

zu

h
11 j

�xm 2 u

s

�i21/j
5

1

m
. (5)

The xm return level, which gives the amount of extreme

precipitation corresponding to a given number of ob-

servations m, is then given by

xm5 u1
s

j
[(mzu)

j21] . (6)

4. Results and discussion

a. Effect of downscaling

As a first stepwe validate the effect of the downscaling

of theERA-40with theALADINandALARO-0models.

Figure 4 shows the relative frequencies calculated for

daily precipitation amounts of ERA-40, ALR40, and

ALD40, which are binned into bins of 1mmday21. As a

reference the relative frequencies of the observations

are also shown. A logarithmic scale has been used for

better representation of the extreme values. From both

ERA-40 data and the ALR40 and ALD40 data 93 grid

points, corresponding to the closest grid points to the

observation stations, have been selected. It should be

noted that the ERA-40 only has two grid points over

FIG. 4. Relative frequencies of observations, ERA-40, ALR40,

and ALD40. Frequencies are computed with the 30-yr (1961–90)

daily cumulated summer precipitation given for each station sep-

arately and are displayed on a logarithmic scale. Numbers for PSS

correspond to the average of the Perkins skill score [Eq. (7)] cal-

culated for precipitation amounts below and above the 0.95th

quantile of the observations (PSS , q0.95 and PSS . q0.95). The

black line indicates the 0.95th quantile of the observations.
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Belgium. For low precipitation amounts (i.e., ,0.95th

quantile of the observations) the ERA-40 as well as

ALR40 andALD40 coincide well with the observations.

However, for the higher rainfall rates ERA-40 starts

to diverge from the observations, while ALR40 and

ALD40 still approach the observations. Both 40-km

models are able to reproduce rainfall rates up to

108mm day21, while the reanalysis does not capture the

higher precipitation amounts due to the low spatial

resolution of the ERA-40 data. To provide a measure of

similarity between observed and modeled frequencies,

the Perkins skill score (PSS) has been calculated

(Perkins et al. 2007):

PSS5�
n

1

min(Z1,Z2) , (7)

where n is the number of bins andZ1,2 is the frequency of

values in a given bin from the observation and model

data, respectively. This metric measures how well the

observations and modeled frequencies coincide, with a

PSS ranging from zero for no overlap to a skill score of

one for a perfect overlap. Similar to Boberg et al. (2010)

and Dom�ınguez et al. (2013), the PSS has been calcu-

lated for daily precipitation amounts going from

0mmday21 up to the 0.95th quantile of the observations

(PSS , q0.95) and for precipitation amounts above the

0.95th quantile of the observations (PSS. q0.95). In this

way, the skill score is to a larger extent influenced by the

more extreme precipitation values (Boberg et al. 2010).

The skill scores are calculated for each station sepa-

rately. The final PSS is then simply themean value of the

average of PSS , q0.95 and PSS . q0.95 over the 93

stations. The 0.95th quantile of the observations, which

is used as a threshold for the calculation of the modified

PSS, is also shown in Fig. 4. The Perkins skill scores for

ERA-40 are relatively low, and for the higher pre-

cipitation amounts ERA-40 has a much lower PSS

(PSS . q0.95: 0.62) than ALR40 and ALD40 (PSS .
q0.95: 0.75). ALR40 and ALD40 perform very similar

with respect to the observations and have relatively high

PSS, which are close to one. To summarize, the

downscaling with the ALARO-0 and ALADIN

models is significantly different from the driving ERA-

40 and is closer to the observations. In particular,

ALR40 and ALD40 produce more extreme precip-

itation than their driving ERA-40.

b. Multiscale performance of ALARO-0

To investigate themultiscale performanceofALARO-0,

40-, 10-, and 4-km horizontal resolution simulations of

ALARO-0 together with 40- and 10-km horizontal

resolution simulations of ALADIN are comparedwith

respect to station observations.

1) SPATIAL AND TEMPORAL DISTRIBUTION

Figure 5 shows the observed and simulated spatial

distribution of the 30-yr-averaged summer precipitation.

On top of each subfigure average values over the 93

stations for the cumulated summer precipitation are

given. On average all models except for CNRM over-

predict the observed cumulated summer precipitation.

Both observation and simulation fields show a clear to-

pographical dependency, with a gradual increase in

precipitation going from the northwest (low altitudes) to

the southeast (high altitudes) of the country. The

ALARO-0 and ALADIN simulation at 40 km show

a very similar distribution. Obviously, the precipitation

fields for the simulations with low spatial resolution are

less heterogeneous than the ones with high spatial res-

olution. However, the 25-km spatial resolution CNRM

plot illustrates less variability than the 40-km simula-

tions: also, the local maximum in the southeast cannot

been seen on the CNRM plot. For the higher-resolution

simulations ALARO-0 approaches much better the

observations than ALADIN. For instance, ALD10

overpredicts cumulated summer precipitation with

values that are, on average, over all stations almost

100mm higher than observed. On the contrary, the av-

erage values for ALR10 and ALR04 differ only slightly

from the observations, and the observed local maximum

at the higher altitudes is very well simulated by both

models.

The scatterplots presented in Fig. 6 are consistent with

the spatial distributions shown in Fig. 5. Each point in

the scatterplots represents the summer cumulated pre-

cipitation for each year in the 30-yr period averaged for

the 93 stations. The linear regression line (solid line) and

its determination coefficient (R2) is also presented for

each of the five models. Except for ALD10, summer

precipitation is relatively well simulated by all models.

The ALD10 model shows again a clear overestimation

of observed summer precipitation. This is an indirect

confirmation that, with 10-kmmesh sizes, the syndromes

linked to the gray-zone performance are already present

(see section 2a).

2) ERROR STATISTICS

The previous analysis showed the ability of themodels

to represent the spatial and temporal pattern of mean

annual summer precipitation. To quantify this ability we

have computed some important error statistics. Figure 7

shows the spatial distribution of the 30-yr average

summer biases of the daily cumulated precipitation, as

well as the mean bias over the 93 climatological stations.
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Average values over the 93 stations of other 30-yr mean

summer statistics are also given: the RMSE and the

mean absolute error (MAE). The statistics are calcu-

lated with daily values for each station separately.

Both 40-km simulations ALR40 and ALD40 again

perform similar. Overall, the biases are remarkably

lower for ALARO-0 than for ALADIN. The bias over

the 93 climatological stations between model simula-

tions and observations is 0.25mmday21 for ALR40,

0.43mmday21 for ALD40, 20.06mmday21 for CNRM,

0.33mmday21 for ALR10, 1.06mmday21 for ALD10,

and 0.06mmday21 for ALR04. The error statistics for all

three ALARO-0 simulations show a similar improve-

ment, suggesting amultiscale performance ofALARO-0.

However, one should also keep in mind that error sta-

tistics are not entirely fair when validating models with

different spatial resolution. Small displacements of pre-

cipitationmaxima andminima in higher-resolutionmodels

are highly penalized by error statistics because of the so-

called double penalty effect (Soares et al. 2012a).

The aforementioned underestimation by CNRM is

confirmed by the spatial distribution of its bias. Fur-

thermore, the coastal precipitation is by all other models

generally better simulated than the inland precipitation

(Fig. 7). The larger and positive differences at the higher

elevations can partly be assigned to higher uncertainties

in the measurements of the observations due to rain

gauge undercatchment (Buonomo et al. 2007). However,

this overestimation, which is pronounced more strongly

for ALD10 (Fig. 7), can also be attributed to themodel or

the driving ERA-40 data. All three ALARO-0 simula-

tions (40-, 10-, and 4-km horizontal resolution) produce

the lowest deviations from the observations, with a ten-

dency to slightly overestimate (underestimate) in the

southern (northern) part of the country. ALARO-0 values

for RMSE and MAE lie in the same range as those for

FIG. 5. Spatial distribution of 30-yr (1961–90) mean cumulated summer precipitation from

observations andmodel simulations: (left) ALR40,ALR10, andALR04; (center)ALD40 and

ALD10; (right) CNRM. Themean summer precipitation over the 93 climatological stations is

given above each subfigure.
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ALADIN, indicating that the low mean biases of

ALARO-0 are possible owing to cancellation effects

arising from the bias computation. Nevertheless, the

overall errors of the ALARO-0 simulations are still

smaller than those of ALD10.

To get an understanding of the trend of frequency and

intensity of extreme precipitation, density curves and

frequency and quantile distributions of all six simula-

tions have been created (Figs. 8–10). The densities in

Fig. 8 have been calculated with the square root of the

daily precipitation since themajority of the precipitation

rates are less than 10mmday21. All models tend to

overestimate the amount of ‘‘drizzle’’ and low pre-

cipitation (i.e., ,1mmday21). In the 1–2mmday21

range, both ALADIN simulations as well as CNRM

overestimate the observed density almost by 2 times,

while ALARO-0 starts to approach closely the observed

density (Fig. 8, center). The latter continues to do this up

to the right-end tail of the observed density curve (Fig. 8,

right). Perkins et al. (2007) use probability density

functions (PDFs) for the evaluation of simulated daily

precipitation over Australia from 14 different climate

models. Similarly to the density curves of ALADIN and

CNRM, the PDFs in Perkins et al. show for all models an

overestimation of ‘‘drizzle,’’ with most models over-

estimating the observed density of rainfall in the 1–

2mmday21 range by 2–3 times.

The relative frequencies, shown in Fig. 9, are again

calculated for daily precipitation amounts of the obser-

vations and model data, which are binned into bins of

1mmday21. For the low precipitation rates all models

manage to reproduce the observed frequencies rela-

tively well. Once the 0.95th quantile of the observations

(indicated by the vertical black line) is exceeded, CNRM

shows an increasing departure from the observations

with frequencies left shifted from the observations.

ALARO-0 and ALADIN at 40-km horizontal resolu-

tion reveal again a similar result, while for the higher

FIG. 6. Each point in the scatterplots represents

summer cumulated precipitation for each year in the

30-yr period (1961–90) averaged for the 93 stations.

The dotted (solid) black line is the diagonal (linear re-

gression) line. The number in each scatterplot corre-

sponds to the determination coefficient (R2) of the

linear regression.
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10-km resolution a clear difference between both

models is apparent. The small overestimation of ALD10

for the low precipitation rates persists and becomes

larger for the higher rates. The model clearly rains too

often, both with very small and very high quantities of

rainfall. On the other hand, the frequencies of ALR04

and ALR10 nicely follow the observations, showing

their ability to capture the occurrence of extreme and

rare precipitation events, with values around 100mm,

quite well. As a measure for similarity between the ob-

served and modeled frequencies, the PSS [Eq. (7)] are

also given in Fig. 9. The overall PSS, as well as PSS for

precipitation amounts below and above the 0.95th quantile

of the observations, is higher for ALARO-0 than for

ALADIN and CNRM.

The quantile distributions confirm the ability ofALR04,

ALR10, and even ALR40 to reproduce extreme rainfall

rates (Fig. 10). Only the highest 99.9 quantile (i.e.,

strongest events) is slightly overestimated by ALARO-0.

It is evident that such events, which are situated in

the very end of the distribution, might correspond to

outliers. Consistently with the frequency plots, the higher

quantiles are over- and underestimated by ALD10 and

CNRM, respectively.

Previous results can be qualified in the context of

other regional downscaling studies; however, a direct

comparison is difficult because of differences in study

area and model design. Soares et al. (2012a) performed

a dynamical downscaling of 20 years of the ECMWF

Interim Re-Analysis (ERA-Interim) (1989–2008) for

Portugal using the Weather Research and Forecasting

(WRF)model. TwoWRFhigh-resolution simulations (9

and 27 km) and ERA-Interim are compared with station

observations. For summer precipitation, their results

show a different frequency distribution for the 9- and

27-km simulation. The 9-km frequencies of summer

precipitation follow well the observed frequencies and

show a clear improvement compared to the driving

reanalysis. Our results show a coherent performance

of the ALARO-0 model across all resolutions and the

good model performances as displayed in Figs. 8–10 can

be practically attributed to the quality of the physics

FIG. 7. Spatial distribution of the 30-yr (1961–90) average summer biases (model minus

observed) of the daily cumulated precipitation. The numbers correspond to the spatial

mean of the bias, the RMSE, and the mean absolute error (MAE).
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parameterizations unrelated to the increase of the res-

olution. Finally, the persistent positive biases of the

ALADIN model ALD10 are in accordance with other

studies where recent past (1961–90) ALADIN simula-

tions at 10-km horizontal resolution, driven by ERA-40

data, are validated against gridded observations (see

Csima andHor�anyi 2008; Skal�ak et al. 2008). According to

Skal�ak et al. (2008), these positive (summer) precipitation

biases can be linked with the tendency of the model ‘‘to

precipitate more often than in the station observations.’’

3) EXTREME VALUE ANALYSIS

The extreme value analysis has been performed for

each station separately, using the 30-yr daily summer

data. The use of a generalized Pareto distribution as a

model for threshold excesses assumes independent ex-

cesses (Coles 2001). In practice this is rarely the case.

Exceedances over a certain threshold often occur in

clusters. To account for these clusters of POT events, the

data have been declustered by selecting the maximum

value within each cluster. The independence of two

clusters of POT events is determined by a combination

of the threshold and the separation time between both

clusters. However, the choice of a suitable threshold and

separation time is relatively arbitrary. The threshold has

to be high enough in order to ensure extreme events and

to avoid dependency between the events, but a thresh-

old that is too high prevents statistical significance owing

to a loss of information (Kyselý and Beranov�a 2009;

Heikkil€a et al. 2011). Similar to the study of Heikkil€a

et al., the threshold has been defined for each station

separately as the 0.95th quantile of daily summer pre-

cipitation so that spatial differences in the precipitation

amount (see Fig. 5) are taken into account.

The results obtained by using cluster maxima defined

with different separation times (e.g., 1, 2, or 4 days) do

not differ much from the results when the original non-

declustered data have been used (not shown). Hence, in

accordance with another study on extreme precipitation

of Kyselý and Beranov�a (2009), two POT events are

considered to be independent when the minimum sepa-

ration time between both events is one day.

To investigate if the underlying probability dis-

tribution of the (declustered) peak-over-threshold

FIG. 8. Density curves of (top) observations, ALR40, ALD40, and CNRM and (bottom) observations, ALR10, ALD10, and ALR04.

Densities are computed with the 30-yr (1961–90) daily cumulated summer precipitation given for each station separately. The x axes

represent the square root of the daily precipitation since the majority of the precipitation rates are less than 10mmday21.
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events of the observations and models significantly

differs, a Kolmogorov–Smirnov test has been applied.

The Kolmogorov–Smirnov test statistic is defined as the

maximum absolute difference between two distribution

functions:

Dn1,n25maxjFn1(x)2Fn2(x)j , (8)

where Fn1(x) and Fn2(x) are the empirical distribution

functions of the observations and themodel, respectively,

and ni refers to the number of samples. The null hy-

pothesis (H0) that the distribution of the observed POT

events equals the distribution of themodeled POT events

is rejected at significance level a 5 0.05 if

K5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 � n2
n11 n2

s
Dn1,n2.Ka , (9)

where Ka is the critical a level of the Kolmogorov dis-

tribution:

Pr(K#Ka)5 12a . (10)

Figure 11 shows for each station the K statistic of

the observations and models. In general, the K values for

the ALARO-0 model at all three spatial resolutions are

much smaller thanALADINandCNRM.H0 is accepted at

the 95% level at 35 and 16 stations forALD40 andALD10,

respectively. For ALARO-0 at 40, 10, and 4km, H0 is ac-

cepted at 46, 47, and 38 locations, respectively. Compared

to ALD10, there are for ALARO-0 more stations at the

high altitudes for which the distribution of the POT events

equals the observed distribution of the POT events. This

indicates that an increase in resolution does not neces-

sarily contribute to a better representation of orographic

precipitations. In the case of CNRM, H0 is rejected for

all stations. Thus, consistent with the results from the

frequency and quantile distributions, the Kolmogorov–

Smirnov test confirms that the ALARO-0 simulations

yield more reliable statistics of the extreme events.

The GPD equation [Eq. (2)] is then fitted through the

selected cluster maxima of the observations and the six

model simulations ALR40, ALD40, CNRM, ALR10,

ALD10, and ALR04. The 5- and 20-yr return levels of

FIG. 9. As in Fig. 4, but for observations and model simulations: (left) ALR40, ALR10,

and ALR04; (center) ALD40 and ALD10; (right) CNRM.
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the POT models for the observations and six simula-

tions are shown in Figs. 12 and 13. The return levels

xm are calculated by Eq. (6) using the declustered data

with 1-day separation time and a threshold u, defined as

the 0.95th quantile. Since the return levels xm are cal-

culated on an annual basis, the value for m equals 92

observations, corresponding to the number of summer

days within one year of the study period. The return

levels for both return periods are generally larger at the

higher elevations. The 95% confidence levels of the

observed return levels are also indicated. It appears that

for most stations the return levels of ALARO-0 lie

FIG. 10. Quantiles (2.5, 10, 20, 25, 30, 40, 50, 60, 70, 75, 80, 90, 95, 97.5, 99, and 99.9) of observations vs (left) the

ALR40, ALD40, and CNRMmodels and (right) ALR10, ALD10 and ALR04 models. Quantiles are computed with

the 30-yr (1961–90) daily cumulated summer precipitation given for each station separately.

FIG. 11. TheK statistic from aKolmogorov–Smirnov test [Eq. (9)]. The 93 stations (abscissa)

are shown by ascending altitude (from left to right). The test is performed on the POT events of

the observations vs the (top) ALR40, ALD40, and CNRM and (bottom) ALR10, ALD10, and

ALR04 model simulations. The horizontal dotted line represents the critical K level with

significance a 5 0.05.
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within the 95% confidence range of the observed return

levels. In contrast to ALARO-0, ALD10 and CNRM

are not able to produce the observed 5- and 20-yr return

events. Their estimated return levels lie for a great

number of stations outside the observed confidence

interval.

In line with what Hamdi et al. (2012) found for sum-

mer maximum temperature, previous results from the

FIG. 12. The 5-yr return levels of the POT models for the observations and model simula-

tions: (top) ALR40, ALD40, and CNRM and (bottom) ALR10, ALD10, and ALR04. The 93

stations (abscissa) are shown by ascending altitude (from left to right), and the shaded area

represents the 95% confidence interval of observed return levels.

FIG. 13. As in Fig. 12, but for 20-yr return levels.
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extreme value analysis show for ALARO-0 at the

high resolutions of 4 and 10 km, as well as at 40-km

horizontal resolution, a clear improvement in simu-

lating extreme summer precipitation. Extreme events

are also often investigated by means of climate in-

dices (e.g., Herrera et al. 2010; Dom�ınguez et al. 2013;
Duli�ere et al. 2011; Soares et al. 2012b). To complete

the extreme value analysis, two main precipitation

indices have been calculated: the number of wet days

and the number of very heavy precipitation days.

Both indices are explained below and are calculated

for each year (i.e., summer season) and each clima-

tological station.

4) NUMBER OF WET DAYS

The number of wet days (WD) for the observations

andmodels are defined as the annual count of days when

precipitation is.1mm. Figure 14 shows the ratio ofWD

in models to observations. As the model values repre-

sent a whole grid box, we could assume that the models,

and especially the lower resolution models, will poorly

reproduce the indices at the station points. However,

the low-resolution ALR40 model (left) reproduces

relatively well the observed WD. On the other hand,

ALADIN and CNRM show an overestimation for WD.

This can be explained by the fact that precipitation may

occur more systematically at the model grid box level,

which gives rise to aWD even when no precipitation has

been observed at the station location. Compared to

ALADIN and CNRM, the ALARO-0 model (at 4-, 10-,

and 40-km horizontal resolution) is able to better re-

produce the number of wet days.

5) NUMBER OF VERY HEAVY

PRECIPITATION DAYS

The number of very heavy precipitation days is de-

rived by an annual counting of days with precipitation

rates .20mm. The temporal and spatial means of the

number of very heavy precipitation days are consistent

with the results from foregoing extreme value analysis.

Overall, ALR04, ALR10, and ALR40 can reproduce

the number of days with precipitation .20mmday21

very well (Fig. 15). ALR04 and ALR10 have the highest

correlations, and for three out of the 93 stations ALR10

predicts exactly the same number of days with heavy

precipitation rates as have been observed.

FIG. 14. (top) Spatial mean of ratio of number of days above 1mmday21 (i.e., WD) in models to observations.

(bottom) Temporal mean of ratio of number of days above 1mmday21 (i.e., WD) in models to observations. Station

sequence as in Fig. 12.
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5. Conclusions

Extreme value analysis, using the peak-over-threshold

method and generalized Pareto distribution, was per-

formed in order to explore the relative importance of

resolution versus parameterization formulation on the

simulation of extreme daily summer precipitation. The

results show that dynamical downscaling of the ERA-40

reanalysis using the ALARO-0 model adds value to the

prediction of extreme daily summer precipitation when

compared to the ERA-40 results. Hence, running a lim-

ited area model with the adapted parameterization,

which was originally motivated to perform in the

convection-permitting resolutions, statistically outper-

forms the global data in the output of extreme precip-

itation events of the ERA-40 reanalysis. The main

strength of these tests is that, by the choice of the setup, we

are considering the pure effect of the downscaling, with-

out being obliterated by issues such as spectral nudging.

Moreover, the model regenerates the precipitation in-

stead of letting it evolve from its initial state. The re-

gional nature keeps the computing cost within reach of

a typical small center, like the RMI, while reproducing

the correct statistics of the extreme precipitation events

consistently with the large-scale forcing imposed by the

initial conditions and lateral boundaries. Furthermore, it

should be stressed that the present model version has

been developed and tuned in a context of NWP, is used

as a 12-member component of the Grand Limited Area

Model Ensemble Prediction System (GLAMEPS), and

has been taken as such to downscale ERA-40 data. This

can be seen as an extra indirect validation of the NWP

applications running ALARO-0, in the sense that the

model has amore correct climatology of convective rain.

It is clear that there are several components, such as the

physics–dynamics interaction, the interaction between

model physics, and the numerics, that may influence the

climatology of the precipitation. However, it is difficult

to isolate the importance of these components, and it

is beyond the scope of this study to address the relative

impact of the different parameterization updates within

ALARO-0. It should be kept in mind, though, that all of

these factors play a crucial role in the model perfor-

mance at gray-zone resolutions.

FIG. 15. (top) Spatial mean of number of days above 20mmday21. (bottom) Temporal mean of number of days

above 20mmday21. The numbers correspond to Pearson correlation coefficients. Significant correlation coefficients

at significance level 0.05 based on t statistics are indicated with an asterisk. Station sequence as in Fig. 12.
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ALARO-0 simulations at 40-, 10-, and 4-kmhorizontal

resolution with a new parameterization scheme of deep

convection and microphysics and 40- and 10-km hori-

zontal resolution output from the ALADIN model

with an old parameterization scheme were compared

with respect to station observation data. We find for

ALARO-0 at high spatial resolutions of 10 and 4 km an

improvement in the spatial distribution of summer

precipitation, such that the distinct local maximum at

the highest elevations is well resolved by the model,

a feature strongly overestimated by the ALADIN

model at 10-km resolution. Furthermore, the results

from the extreme value analysis suggest that the new

parameterization scheme of ALARO-0 contributes to

the improvement in the modeling of extreme pre-

cipitation events at varying horizontal resolutions,

rather than the increase in spatial resolution. Thus, the

nature of the parameterization is more important than

the resolution, which confirms the previous findings of

Lynn et al. (2010) andHamdi et al. (2012). As an outlook,

the ALARO-0 model will be used to compute IPCC

scenarios.
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Figure B.1: Frequencies of (a) hourly summer precipitation, and (b) low values of hourly
summer precipitation (i.e. [0-2] mm hour−1) of observations and ERAINT-ALR04. Fre-
quencies are computed with the 30-yr (1961-90) hourly summer precipitation given for the
station of Uccle and its nearest model grid box. Frequencies are displayed on a logarithmic
scale.
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Figure B.2: Estimates of (a) GEV location parameter (µ), (b) GEV scale parameter (σ),
and (c) GEV shape parameter (γ). GEV estimates (colored dots) are obtained by the
L-moments method for different durations d of observed (black) and modeled (green for
ERA40-ALR04, red for ERA40-ALR10, and blue for ERA40-ALR40) summer annual max-
ima precipitation intensities for the upscaled 4-km and 10-km simulations, and 40-km sim-
ulation, across all 40-km grid boxes of the common 8 × 7 subdomain. The error bars show
the 95% confidence interval around the location and scale parameter estimates based on
1000 parametric bootstrap iterations and solid lines correspond to the linear regression
lines between the logarithm of GEV parameter estimates and the logarithm of the different
durations d, with the values of the slope given between parentheses in the legend. GEV
location and scale parameter estimates and durations are displayed on a logarithmic scale.
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Figure B.3: JJA IDF-relationships with the intensities (return levels) calculated with (i)
[Eq. (4.8)] using the GEV-estimated parameters (circles), and with (ii) [Eq. (4.23)] us-
ing the location- and scale parameter derived from the power law given by [Eqs. (4.21)
to (4.22)] (solid lines). For both intensity calculations (i) and (ii) one and the same mean
value over all durations for the shape parameter (γ) has been used. Intensities are given
as a function of return period (T ) for observations (black) and models (green for ERA4O-
ALR04, red for ERA40-ALR10, and blue for ERA40-ALR40), and plotted on log-log graphs.
Intensities are computed for the upscaled 4-km and 10-km simulations, and 40-km simula-
tion, across all 40-km grid boxes of the common 8 × 7 subdomain. The different panels
represent different durations (1, 2, 3, 6, 12, and 24 h).
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Figure B.4: Dependencies of different extreme percentiles (90th-99.9th) of the distribution
of modeled (ERAINT-ALR04) (a) hourly and (b) daily maximum of hourly precipitation on
temperature, for a region of 5 × 5 (25) grid points surrounding the closest model grid point
to Uccle. Exponential relations given by a 7% and a 14% increase per degree are given by
the black and red dotted lines, respectively. Percentiles are displayed on a logarithmic y
axis.
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Figure B.5: (a) Variation of the modeled (ERAINT-ALR04, green) scaling exponent with
(a) percentile of hourly precipitation, and (b) 99th percentile scaling exponent with pre-
cipitation duration. The scaling exponents are calculated for the whole temperature range
up to 22◦C, as well as for temperatures below and equal to 12◦C and for temperatures
above 12◦C. The horizontal black dotted line corresponds to the theoretical 7% Clausius-
Clapeyron (CC) increase per degree.
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Figure B.6: Dependency of hourly precipitation extremes on temperature computed from
model data (ERAINT-ALR04) of a region of 5 × 5 (25) grid points surrounding the closest
model grid point to Uccle of (a) the summer season JJA, and (b) the winter season DJF.
Lines and axes are similar to Fig. 4.14.





C
SUPPLEMENTARY FIGURES TO

CHAPTER 5



C-2 APPENDIX C

1

2

3

4

5

6

7

8

9

 
 

σERA40

JJA

(a)

1

2

3

4

5

6

7

8

9

 
 

σCTL

JJA

(b)

−5

−4

−3

−2

−1

 0

 1

 2

 3

 4

5

 
 

σ

● ●

●

●

● ●

●

●

●

● ● ●

●

●

● ● ● ●

●

●

● ●

● ● ●

● ●

● ● ●

● ●

● ●

●

●

●

● ●

●

●

●

● ●

● ●

CTL − ERA40

JJA

(c)

−5

−4

−3

−2

−1

 0

 1

 2

 3

 4

5

 
 

σ

● ●

● ● ●

●

●

● ●

●

●

● ●

●

●

●

● ●

● ● ●

● ● ●

● ● ● ● ●

● ● ●

● ● ●

● ●

●

●

●

● ● ●

● ● ● ●

●

●

● ● ●

● ●

●

●

●

●

● ●

●

●

SCN − CTL

JJA

(d)

Figure C.1: Spatial distributions of the estimated scale parameter σ from the GEV fit of
1-hour precipitation in summer (JJA, 1961-1990 and 2071-2100) for (a) the ERA-40 driven
simulation (ERA40), and (b) the control simulation (CTL), and (c-d) absolute differences
between CTL and ERA40, and SCN and CTL, giving the bias and projected change, respec-
tively. Dotted areas indicate regions where the bias or change is statistically significant at
the 5% significance level for which the 95% confidence intervals of CTL and ERA40, and
SCN and CTL, as inferred from 1000 bootstrap samples, do not overlap.
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Figure C.2: Spatial distributions of the estimated shape parameter γ from the GEV fit of
1-hour precipitation in summer (JJA, 1961-1990 and 2071-2100) for (a) the ERA-40 driven
simulation (ERA40), and (b) the control simulation (CTL), and (c-d) absolute differences
between CTL and ERA40, and SCN and CTL, giving the bias and projected change, respec-
tively. Dotted areas indicate regions where the bias or change is statistically significant at
the 5% significance level for which the 95% confidence intervals of CTL and ERA40, and
SCN and CTL, as inferred from 1000 bootstrap samples, do not overlap.
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Figure D.1: Frequency distribution of cloudiness (okta) for the 29-yr DJF period 1981/82-
2009/10. Frequencies are calculated for observed (OBS) values in Uccle and modeled
(ERAINT) values for the closest model grid point to Uccle, by binning the hourly cloudiness
values into bins of 1 okta.
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Figure D.2: Frequency distribution of (a) wind speed at 10 m (m s−1), (b) global solar ra-
diation (W m−2), and (c) cloudiness (okta) for the 9-yr DJF control (CTL) period 1990/91-
1998/99 and scenario (SCN) period 2046/47-2054/55. Frequencies are calculated for CTL
and SCN values for the closest model grid point to Uccle, according to the thresholds given
by the stability scheme that is used to determine the Pasquill indices (Table 6.2).
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