

Perturbation experiments with MetCoOp EPS (MEPS)

Andrew Singleton, Inger-Lise Frogner, Ole Vignes, Ulf Andrae

MEPS

- HarmonEPS on the MetCoOp domain
- 2.5 km grid spacing, 64 levels
- 750 x 960 grid points
- 10 members
 - 1 Arome control, 1 Alaro control
 - 8 perturbed Arome members
- Pre-operational daily runs imminent
- Aim to be operational by autumn 2016
- See Ulf Andrae et al's poster for more

Available perturbation strategies

- ICs and LBCs from IFS-ENS
 - First N_{MFPS} members
 - Selection of N_{MFPS} members from $N_{JFS-FNS}$ members
- ICs and LBCs from IFS-HIRES using SLAF
 - Scaled Lagged Average Forecast
 - $Y_{T+0} = X_{T+0} \pm k(X_{T+0} (X-HH_i)_{T+HH_i}), (HH_i = 6,12,18,24...)$
- EDA
- Surface perturbations (currently being tested)
- Multiphysics (poster by Björn Stensen, SMHI)
- SPPT

Common HarmonEPS setup

- MetCoOp domain
- Harmonie-h1.1.beta.5
- 00:00 20 July 2015 06:00 10 August 2015
- 1 control + 8 perturbed members (all Arome)
- 3DVAR for control conventional observations only
- Surface assimilation for all members
- 3-hour cycling for control
- 6-hour cycling for perturbed members
- 1 long-run to 36 hours each day for 06 cycle

First Experiments

- SLAF_MetCoOp
 - ICs + LBCs from weighted time lagged IFS HiRes taken from MARS.

LAG:	0	6	12	18	24
K:	0	±1.75	±1.5	±1.25	±1.0

- ECLBC_MetCoOp
 - ICs + LBCs from control + members 1-8 of IFS-ENS.

BUT....

- SLAF perturbations do not appear to be consistent between members
- Rescale SLAFK: SLAF_rescale

LAG:	0	6	12	18	24
K:	0	±1.75	±1.35	±1.0	±0.8

- IFS-ENS perturbations smaller than those from SLAF
- Inflate ECLBC_SLAF perturbations by a factor of 1.4:

LAG:	0	6	12	18	24
K:	0	±1.75	±1.5	±1.25	±1.0
K:	0	±1.75	±1.35	±1.0	±0.8

AND....

- Individual members cluster together depending on the sign of the perturbation...
- This is undesireable...
 - leads to "gaps" in the ensemble forecast between clusters of members,
 - in a stochastic system, individual members should have similar statiscal properties.

-

6h SLAF perturbations

 Instead of computing perturbations relative to current analysis time, compute from differences relative to consecutive forecasts:

$$Y_{T+0} = X_{T+0} \pm k((X-HH_i)_{T+HHi} - (X-HH_{(i+1)})_{T+HH(i+1)})$$
SLAF_6hpert

10.0

Threshold (mm)

15.0

20.0

00035.0 2.0

Summary

- SLAF gives superior verification scores
 - Requires both rescaling and using consecutive forecasts to compute perturbations
- Inflation of IFS-ENS LBCs improves spread with no adverse effects on skill.
- Open questions
 - Will member selection improve IFS-ENS IC + LBC perturbation scores?
 - How do SLAF and EPS boundary perturbation methods compare for individual forecasts, especially for extreme events?
 - Is better performance of SLAF simply due to resolution of boundary data?

