Deep convection and downdraught in Alaro-1

Luc Gerard

Royal Meteorological Institute of Belgium

13 April 2015

Why downdraught is subsaturated

Air parcel in precipitation: Evaporation of condensate

Evaporative cooling

- increases ω_d
- reduced by $\omega_d >$

Adiabatic heating rate

- increased by $\omega_d >$
- reduces ω_d
- ▶ increases q_{sat}

Why downdraught is subsaturated

The downdraught buoyancy results from a balance between evaporative cooling limited by ω_d and adiabatic heating increased by ω_d . Saturation requires the parcel to move very slowly ($\omega_d \sim 0$). Prognostic vertical velocity ω_d computed together with the descent (3rd degree equation) (tentrd, tddfr, gddfp[1:2]).
 Braking towards surface (gddbeta, gdddp).
 Evaporation enhanced where downdraught detrains (gddfp[3]).

- Prognostic vertical velocity ω_d computed together with the descent (3rd degree equation) (tentrd, tddfr, gddfp[1:2]).
 Braking towards surface (gddbeta, gdddp).
 Evaporation enhanced where downdraught detrains (gddfp[3]).
- Compatibility with CSD approach when $\overline{\omega} > 0$ (lcddcsd=T);

Non saturated downdraught profile LNSDO=T, Icddevpro=F

- Prognostic vertical velocity ω_d computed together with the descent (3rd degree equation) (tentrd, tddfr, gddfp[1:2]).
 Braking towards surface (gddbeta, gdddp).
 Evaporation enhanced where downdraught detrains (gddfp[3]).
- Compatibility with CSD approach when $\overline{\omega} > 0$ (lcddcsd=T);
- Starting level: minimum of θ_{eq} below 500hPa.

- Prognostic vertical velocity ω_d computed together with the descent (3rd degree equation) (tentrd, tddfr, gddfp[1:2]).
 Braking towards surface (gddbeta, gdddp).
 Evaporation enhanced where downdraught detrains (gddfp[3]).
- Compatibility with CSD approach when $\overline{\omega} > 0$ (lcddcsd=T);
- Starting level: minimum of θ_{eq} below 500hPa.
- Account for precipitation inhomogeneity: effects of evaporation and melting computed in microphysics are larger over the downdraught area than in the rest of σ_P (gddsde=2).

$$\delta T_d = G \delta T_e = \frac{G}{1 + \sigma_d(G - 1)} \Big[-\frac{g \triangle t}{c_p} \frac{\triangle F_{h\mathcal{P}}}{\triangle p} \Big], \qquad G = G_0(1 - \sigma_d) + 1$$

Either diagnostic σ_d or evolving in time.

- Guess fraction at the top $\sigma_{d0} = \min\{\sigma_{\mathcal{P}}, \max[\sigma_d^-, \kappa \sigma_{\mathcal{P}}]\};$
- Along the descent, estimate maximum viable fraction σ_{dx} for evaporating
 - ▶ less than $\frac{1}{3}$ of remaining precipitation flux in the higher part, less than 99% in the detraining part, and
 - ▶ less than $\frac{1}{2}$ to 1x the evaporation produced in the microphysical scheme (gddevf ~ 0.8).
- Iimit σ_{d0} = min(σ_d, σ_{dx}) ⇒ precipitation never exhausted, single downdraught along the vertical.
- Evolution by relaxation: $\sigma_d^+ = \sigma_{d0} e^{\frac{-\Delta t}{\tau_d}} + \sigma_{dx} (1 e^{\frac{-\Delta t}{\tau_d}})$

 $\kappa = \text{gddfrac:} 0.33 (\text{diagnostic}) \text{ or } 0.02 (\text{prognostic}), \tau_d = \text{gddtausig} \sim 20 \text{ min.}$

Downdraught mean vertical profiles

Mass flux and relative humidity

Average DD DD_REL_HUM : D038+5

DD SIGxOMEGA

DD REL HUM

Downdraught mean vertical profiles

Additional cooling/moistening by inhomogeneity

Average DD DD T XS : D038+5

0 ò ò ò 15 15 ò ò ò 0 ò ò ò 20 20 0 Ó ò model level 25 nodel level 25 8 8 . 0 ċ 35 35 0.0 o ò . 0 4 ò 4 ò 0 -0.12 0.00 -0.10 -0.020.0e+005.0 2 0e 2 5e

Average DD DD QV XS : D038+5

DD_T_XS

DD_QV_XS

Acci: initial TR tests

ATR2: Last adaptations in RAD, QSMODC=1 et QSSUSV=500

ATR1: Retuning QSMODC=4,QSSUSV=250

D036: ATR1 + NS downdraught

DDH components

pressure (hPa)

tend CTA (K/day)

tend QVA (g/kg/day)

DDH components

pressure (hPa)

tend CTA (K/day)

tend QVA (g/kg/day)

DDH components

Handles complementarity, evolution and mesh fraction

- Sequential organization of parameterizations, one single microphysics.
- Cloud scheme prevented to affect condensates in convective part.
- Evolution in time with prognostic variables
- Direct expression of DC effects through convective condensation and transport fluxes.

Handles complementarity, evolution and mesh fraction

Ignores direct effects of resolved updraught

- DC scheme ignores $\overline{\omega}$, assumes $\omega_e \equiv 0$.
- DC scheme pretends to represent the absolute updraught.

Handles complementarity, evolution and mesh fraction

Ignores direct effects of resolved updraught

Moisture convergence closure, no explicit triggering

- Extremely cheap.
- ► A CAPE closure cannot be used.
- Reducing the forcing at small mesh fraction appears to improve the diurnal cycle (slowing down the onset of convection, hence leaving more CAPE accumulate).

- Handles complementarity, evolution and mesh fraction
- Ignores direct effects of resolved updraught
- Moisture convergence closure, no explicit triggering
- Complementarity seems realized, down to 2km resolution...

- Handles complementarity, evolution and mesh fraction
- Ignores direct effects of resolved updraught
- Moisture convergence closure, no explicit triggering
- Complementarity seems realized, down to 2km resolution... but not in a way that the subgrid part would fade out.

Perturbation approach: provide a complement to the partly explicit representation.

Perturbation draught is a *closed circulation* in the grid column

- Perturbation approach: provide a complement to the partly explicit representation.
 - Perturbation draught is a *closed circulation* in the grid column
 - Formal derivation from anelastic equation
 - Perturbation updraught properties account for mesh fraction, for grid-column environment vertical lapse rate.
 - Distinction between organized entrainment and turbulent mixing.

Perturbation approach: provide a complement to the partly explicit representation.

- Perturbation draught is a *closed circulation* in the grid column
- Formal derivation from anelastic equation
- ► Closure relations: extrapolated steady state + evolution towards it.
 - grid-column CAPE \neq environmental CAPE
 - Expression of a moisture-convergence closure
 - A mixed closure appears adequate, CAPE at small mesh fraction, moisture convergence at large fractions.

Perturbation approach: provide a complement to the partly explicit representation.

- Perturbation draught is a *closed circulation* in the grid column
- Formal derivation from anelastic equation
- ► Closure relations: extrapolated steady state + evolution towards it.
- Evolution in time: geometrical and inertial

Perturbation approach: provide a complement to the partly explicit representation.

- Perturbation draught is a *closed circulation* in the grid column
- Formal derivation from anelastic equation
- ► Closure relations: extrapolated steady state + evolution towards it.
- Evolution in time: geometrical and inertial
- Triggering
 - Compulsory with CAPE closure
 - ► Specific: triggering of subgrid scheme ≠ triggering of convective updraught

24-hour accumulated precipitation shares

CSD

riangle x = 16 km

24-hour accumulated precipitation shares

CSD

 $\triangle x = 8 \text{ km}$

24-hour accumulated precipitation shares

CSD

 $\triangle x = 4 \text{ km}$

24-hour accumulated precipitation shares

CSD

riangle x = 2 km

24-hour accumulated precipitation shares

CSD

 $\triangle x = 1 \text{ km}$

Prospects

- Diurnal cycle mysteries impel further investigation.
 - ► Delayed cycle of Alaro-1-TR is uncommon feature.
 - Cold pool dynamics and downdraught tunings are important
 - But beware of compensating errors

Prospects

- Diurnal cycle mysteries impel further investigation.
 - Delayed cycle of Alaro-1-TR is uncommon feature.
 - Cold pool dynamics and downdraught tunings are important
 - But beware of compensating errors
- Downdraught:
 - New features: increased exchanges at detrainment levels, simple approach of precipitation inhomogeneity and mesh fraction effect.
 - Relaxation in time covers (replaces) gradual descent along several time steps and gradual extension of cold pools.

Prospects

- Diurnal cycle mysteries impel further investigation.
 - Delayed cycle of Alaro-1-TR is uncommon feature.
 - Cold pool dynamics and downdraught tunings are important
 - But beware of compensating errors
- Downdraught:
 - New features: increased exchanges at detrainment levels, simple approach of precipitation inhomogeneity and mesh fraction effect.
 - Relaxation in time covers (replaces) gradual descent along several time steps and gradual extension of cold pools.
- Updraught:
 - CSD scheme was shown to improve scores in Alaro-0 but required to retune the critical relative humidity profile.
 - Complete tuning waiting after shallow convection and radiative cloud condensates have been finalized.
 - Multi-resolution tuning becomes an issue.
 - Cost appears reasonable.