

Latest updates of the cloud- and condensation parametrizations (ICE3) in HARMONIE/AROME (hirlam/metcoop)

Karl-Ivar Ivarsson ASM, Lisbon, April 2016

Outline:

- Graupel
- Supercooled rain
- Reducing fog
- Bug fix cy-40 (OCND2)
- Other issues

Graupel

- Graupel: www code 77 (Small white balls falling from stratus, not bouncing) and ww = 87 (a little larger white balls mostly falling from convective clouds, bouncing) Hail and hail like precipation: ww=79,88-90
- According to those definitions, there seems to be too much graupel compared to ordinary snow with ICE3

Assume a possibility for small graupels to become snowflakes in case of high ice supersaturation (LGRSN option)

- When graupel mixing ratio ~ 0 and relative humidity with respect to ice >= 115 %: turn all graupel to snow since the graupels are assumed to be very small. With high supersaturation, snow-flake-like crystal growth on those graupels is likely.
- If relative humidity with respect to ice <=100 % OR mixing ratio >= 1.0 e-7, assume no conversion to snow.
- Bilinear transition graupel --> snow

Intense snowfall over southern Sweden. Integrated graupel.

November 2010. Left: original. Right: test.

| Stean | Ste

Same for integrated snow

Verification summary (LGRSN=T)

- Tested 20 November-10 December 2010 (cy 38)
- Marginally better regarding cloudiness parameters and T2m
- Marginally worse precipitation.
- Somewhat more moisture in lower troposphere, leading to marginally more clouds and a little less long wave radiation from the ground
- Tested also for a summer period, (cy 38) and a winter period (cy 40), small impact, but not clean tests

Supercooled rain

- Not forecast properly in AROME
- Reason : too quick refreezing of supercooled rain
- Solution tested: When there is only small amounts of snow,graupel,cloud ice and ice nucelus, do not refreeze.

Explaination of 'PMP'-like maps

- Yellow: low clouds
- Brown: middle level clouds
- Blue: high clouds
- Green lines: rain
- Green lines with light blue stars: Snow or rain+snow
- Filled circels / triangles : Observed overcast
- Partly filled circels / triangles : partly overcast
- Unfilled circels / triangles : clear sky or undected clouds

Left: original right: test (southern Sweden 2016-01-01 UTC)

valid Fri 1 Jan 2016 00Z

valid Fri 1 Jan 2016 00Z

Verification result

 Very small impact except for the supercooled rain, but only tested in winter

Reducing fog

Method:

- Assume lower cloud condensation nuclies (CCN) at the lowest levels.(reducing factors: 0.15 at lowest level, 0.4 a second lowest-)
- This gives both faster transition of cloud liquid to rain and a faster sedimentation of cloud liquid.

Left: original, right test (winter case, Baltic states)

valid Thu 31 Dec 2015 00%

Verification result (only a short winter period)

 Very small impact except for cloud base near ground (red=original, green =test)

> Freq bias for Cloud base (m) Selection: ALL 44 stations Period: 20151230-20160114 Used {00,12} + 12 15 ... 36

Bug fix (OCND2)

Problem :

cy40 found to be considerably drier than cy38 in case of temperatures below freezing, also if all know differences between c38-c40 are taken into account (HARATU on/off etc.)

Tendencies from ice physics (aro_rain_ice) MUSC run, level 20,Upper plot: cloud ice, below: snow) cy38,cy40

The same figures after correction of do-loop for model height calculation

Verification summary, bug fix:

• The differences between cy 38 and 40 become much smaller. More low clouds in winter and less- or no negative bias for 2m-temperature. This is especially beneficial when HARATU set to true.

19 stations Selection: ALL Specific humidity Period: 20151230-20160129 Used {00,12} + 36 42 48

g/Kg

MetCoOp Other issues

- Crashes in AROME Arctic. Reason: Sudden stratospheric warming, leading to occations when saturation pressure > air pressure. Solved. Verification shows a marginally increased amount of low cloud cover in winter (Expected and OK)
- Better coupling radiation cloud physics: Use the different subgrid fractions for cloud water/ice used in microphysisc also for radiation instead of cloudcover. Tested in 1D.
- Make the IN-concentration dependent on PBL layer height. A way to improve the partition of cloudcondensate into water/ice Tested in 1D.
- Locally very high precipitation amount (graupel) in one or a few grid points. Weather conditions: weak winds and moist unstable. Not solved