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weather prediction and general circulation models that is both essential and
computationally very expensive, and is therefore subject to never-ending com-
promises between accuracy and computational cost. The present thesis offers an
improvement to the existing broadband radiation scheme by revising its critical
components – gaseous transmissions, cloud optical properties, and calculation of
internal longwave exchanges. The accuracy of the full-spectrum broadband ap-
proach is thus raised to the level required for the short range numerical weather
forecast. The intermittent update of broadband gaseous transmissions is intro-
duced as a new component, reducing computational cost while preserving the full
cloud-radiation interaction. The scalability of longwave computations is ensured
by adopting the net exchanged rate decomposition with bracketing, improved by
an intermittently applied self-learning algorithm determining the interpolation
weights. It has been demonstrated that under conditions of operational weather
forecasting, this developed scheme is fully competitive with the mainstream ap-
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Introduction

It is unquestionable that radiative forcing is one of the key factors determining
the Earth’s weather and climate. As noted e.g. by Fouquart et al. [1991], a
change in radiative forcing of only few W m−2 can affect the climate substantially.
This imposes strict demands on the accuracy of the radiative transfer schemes
employed in GCMs (General Circulation Models), without which the reliability
of climate simulations would be compromised. However, the computational cost
of highly accurate line-by-line radiation codes restricts their use to delivering
reliable reference solutions for a limited set of benchmark cases. Oreopoulos
et al. [2012] explain that such results are used as a basis for the development of
the much faster codes used to perform efficient radiative transfer in GCMs. The
question of computational cost is especially critical in NWP (Numerical Weather
Prediction), where real computational time must not amount to more than a
few per cent of the forecast length. This constitutes a severe limitation on the
complexity of the schemes used, such that a proper balance between cost and
accuracy must be sought.

The short range NWP, characterized by a forecast length of up to three days
as well as high spatial and temporal resolutions, shifts its primary focus within
radiative transfer from the unbiased radiation budget to the full interaction of
radiation with clouds. The latter issue is crucial for the internal consistency of
NWP model feedbacks, and is necessary for a realistic description of the local
weather phenomena and of the diurnal cycle. Unlike in climate modelling, the
eventual bias in the radiation budget is much less harmful to short range forecast-
ing, where each forecast starts from an actual analysis and there is not enough
time for a drift to develop.

The main goal of the work described in this thesis was to improve the accu-
racy of the radiative transfer scheme ACRANEB (Actif Calcul de RAyonnement
et NÉBulosité), the first version of which was developed in the 1990s in Météo-
France as part of the short range NWP model ALADIN (Aire Limitée Adapta-
tion dynamique Développement InterNational). The efficiency of the ACRANEB
scheme is achieved via a broadband approach with single shortwave and single
longwave spectral intervals, and the relatively simple parameterization of gaseous
transmissions. The scalability of the longwave calculations is ensured by the use
of NER (Net Exchanged Rate) decomposition, further improved by the so-called
bracketing technique with statistically fitted interpolation weights. The low com-
putational cost of the ACRANEB scheme allows it to be called at every model
grid-point and time-step, which is a highly desirable feature in high resolution
NWP.

The strategy decided upon was to preserve the fundamental ACRANEB choic-
es that ensure efficiency (broadband approach, delta-two-stream approximation,
adding method, NER decomposition), and to redevelop the weakest components
(gaseous transmissions, cloud optical properties, bracketing technique). The in-
termittent update of new gaseous transmissions was seen as a way to reduce their
high anticipated cost. The update of cloud optical properties at every model grid-
point and time-step together with the subsequent solving of the radiative transfer
equation was retained as an absolute necessity. Work along these sketched lines re-
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sulted in a substantially improved radiative transfer scheme dubbed ACRANEB2,
which became a key component of the so-called ALARO-1 (ALadin to AROme)
configuration, used operationally within the model ALADIN/CHMI.

The present thesis describes the author’s contribution to the ACRANEB2
developments in which he took part during the years 2011–2016. It does not
provide a comprehensive overview of the ACRANEB2 scheme, which can be found
in Mašek et al. [2016] and Geleyn et al. [2017], with regard to its shortwave
and longwave aspects respectively. These two articles (attached to the printed
version of this thesis) describe the achievements made since the early 2000s by
a group of people under the leadership of Jean-François Geleyn, who invented
the ACRANEB and ACRANEB2 concepts and systematically pushed forward
their NWP implementation. The author contributed to this endeavour with the
following ACRANEB2 developments:

• creating tools for handling various optical datasets

• constructing fitting references for broadband gaseous transmissions, Ray-
leigh scattering, and cloud optical properties

• developing a robust minimization procedure, used for all sorts of non-linear
fits

• constructing a 1D narrowband radiative transfer model, used as a refer-
ence for evaluating the accuracy of the broadband approach and bracketing
technique

• proposing a new functional shape for broadband gaseous transmissions, re-
specting their asymptotic behaviour resulting from secondary saturation

• addressing the double temperature dependence of longwave gaseous trans-
missions and accommodating it in NER decomposition

• parameterizing the non-random spectral overlap between gaseous pairs in
absorptivity space

• parameterizing the broadband optical saturation of the water vapour e-type
continuum and its spectral overlap with line absorption

• parameterizing the optical saturation of broadband Rayleigh scattering as
an analogue to the secondary saturation of gaseous absorption

• proposing a new functional shape for fits providing unsaturated broadband
cloud optical properties; refitting against modern datasets

• parameterizing the optical saturation of shortwave cloud absorption, taking
into account its non-local nature and vertical variation across the cloud

• parameterizing the non-random spectral overlap between shortwave gaseous
and cloud absorptions

• contributing to the design of shortwave and longwave intermittency strate-
gies
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• developing an improved bracketing technique based on self-calibrated inter-
polation weights

• implementing a generalized cloud overlap

• improving the diagnostics of direct solar flux and sunshine duration

• creating the ACRANEB2 code and its stand-alone single column version

• performing extensive ACRANEB2 validation ranging from 1D idealized
cases to 3D real cases

The focus of the thesis is on four components crucial to ACRANEB2 suc-
cess: broadband gaseous transmissions, shortwave cloud optical saturation, the
bracketing technique, and selective intermittency. The structure of the thesis is
as follows:

Chapter 1 gives a general overview of the radiative transfer problem in the
NWP environment. It starts from the radiative transfer equation and in-
troduces a set of approximations leading to the final delta-two-stream and
adding system. Then it describes the two main approaches to the compu-
tationally challenging problem of spectral integration, comparing their pros
and cons. Finally it outlines the embedding of the radiative transfer scheme
in the NWP model.

Chapter 2 constitutes the core of the work, presenting the key improve-
ments leading to the ACRANEB2 scheme. These include the new param-
eterizations of the broadband gaseous transmissions and of the shortwave
cloud optical saturation that are necessary for obtaining sufficient accuracy.
These parameterizations are complemented by the revised bracketing tech-
nique, increasing the accuracy of longwave atmospheric exchanges; and by
selective intermittency, making the cost of the new gaseous transmissions
affordable.

The Conclusion summarizes the main achievements that have led to an
efficient yet accurate broadband radiation scheme. It also lists the scheme’s
known limitations and future challenges.
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1. Radiative transfer in the
NWP context

1.1 Radiative transfer equation

Radiative transfer in any medium is described by the microscopic Maxwell’s equa-
tions. Their direct solution is however not tractable for the systems containing
high number of elementary electric charges, since every charge responds to elec-
tromagnetic fields generated by all other charges. For this reason, the problem
has to be simplified before it can be solved mathematically. In an important case
of the randomly placed and well separated particles, this can be done in several
steps described at the very beginning of Mishchenko et al. [2002].

For an isolated particle, such as air molecule, aerosol or cloud droplet, sin-
gle scattering properties (absorption and scattering cross sections, the scattering
phase function) can be determined using macroscopic Maxwell’s theory. It ex-
presses bound charges and bound currents via polarization and magnetization
fields, which are in turn given by constitutive relations. In the simplest case of a
spherical particle with constant refractive index, analytical answer is provided by
the Lorenz-Mie theory, covering the full range of size parameters including the
geometrical optics and Rayleigh scattering limits. For more complicated particle
shapes (e.g. ice crystals or their aggregates), single scattering properties can be
calculated numerically.

The next step assumes a volume element containing the small number of well
separated particles with known single scattering properties. When the volume
element is exposed to incident electromagnetic wave, each particle responds to
the total electromagnetic field composed of the incident wave and the secondary
waves generated by all other particles. Wide particle separation combined with
their small number ensures validity of the single scattering approximation, where
the action of secondary waves on particles can be neglected. This is because each
particle is in the far-field zones of all other particles, so that secondary waves
reaching the particle are much weaker than the incident wave. So is their super-
position, since the number of particles in the volume element is small. Resulting
scattered wave is thus given by the superposition of secondary waves generated
by particles individually responding to the incident wave.

Additional simplification applies when the particles in the volume element are
randomly positioned and oriented. In a generic situation it leads to the incoherent
scattering, when the intensity of scattered wave (represented by time averaged
Poynting vector) is a simple sum of the intensities of secondary waves generated
by the individual particles, regardless of their phase differences.

Single scattering approximation does not hold in the atmosphere, where the
number of particles is huge. Even if the particles remain well separated and ran-
domly placed, another step must be taken. It explicitly accounts for the fact that
the particles are now exposed to the total electromagnetic field significantly con-
tributed by the multiple scattering, thus very different from the incident wave.1

1Please note that the scattered radiation exists also in a purely absorbing case, attenuating
the incident wave behind particle.
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dΩ

n

Figure 1.1: Explanation of spectral radiance Iν(n): Radiant energy dE passing
through the surface with area dA into the solid angle dΩ oriented in the direction
n, cumulated through the spectral interval [ν, ν+ dν] during the time dt, is given
as dE = Iν(n) cosω dA dΩ dν dt. Unit vector n is at angle ω to normal of the
surface dA, so that quantity cosω dA is the area projected to direction n.

Basic quantity of interest becomes spectral radiance Iν , explained on figure 1.1.
Its spatial and directional distributions are determined by the radiative transfer
equation with appropriate boundary conditions. In the simplest case not consid-
ering polarization, the radiative transfer equation takes the shape:

n ·∇Iν(n, r) =

absorption︷ ︸︸ ︷
−kabs

ν (r)ρ(r)Iν(n, r) +

emission︷ ︸︸ ︷
kabs
ν (r)ρ(r)Bν(T (r))

+ kscat
ν (r)ρ(r)

[
−Iν(n, r) +

1

4π

∮
4π

Pν(n · n′, r)Iν(n′, r) dΩ′
]

︸ ︷︷ ︸
scattering

(1.1)

1

4π

∮
4π

Pν(n · n′, r) dΩ′ =
1

2

∫ 1

−1

Pν(µ, r) dµ = 1 µ ≡ n · n′ = cos Θ (1.2)

The left hand side of equation (1.1) is the derivative of spectral radiance Iν(n)
in direction n, evaluated at location r (see figure 1.2). It is contributed by three
processes represented by the corresponding terms on the right hand side – absorp-
tion, emission and scattering. Symbols kabs

ν and kscat
ν denote the mass absorption

and mass scattering coefficients of the medium, while ρ and T are its density
and thermodynamic temperature. Bν(T ) is the blackbody radiance given by the
Planck’s law, Pν is the scattering phase function respecting normalization (1.2),
and dΩ′ is the infinitesimal solid angle in direction n′. The absorption term de-
creases radiance along optical path, while the emission term increases it. The
scattering term can have either sign since it consists of two counter-acting con-
tributions – radiance Iν(n) is decreased by scattering from direction n into other
directions (first term in the square bracket), while it is increased by scattering
from all directions into direction n (second term in the square bracket).

There are still several implicit assumptions behind the radiative transfer equa-
tion 1.1. First of all, it is supposed that emission coefficient kemis

ν equals to ab-
sorption coefficient kabs

ν , which is the consequence of Kirchhoff’s law, valid in the
local thermodynamic equilibrium. It restricts applicability of the radiative trans-
fer equation to the troposphere and stratosphere, since the local thermodynamic
equilibrium breaks down in the mesosphere around 60–70 km altitude. Here the
inelastic collisions between air molecules become not frequent enough to dissipate
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n

n′

Θ

ρ, T

Figure 1.2: Geometry applied in a derivation of the radiative transfer equation.
Change of the radiance Iν(n, r) is evaluated along an infinitesimal cylinder of
height |dr|, oriented in the direction of unit vector n = dr/|dr|. The cylinder
contains a radiatively active substance with the density ρ and temperature T . It
can be illuminated from any direction n′.

radiant energy absorbed by a molecule, so that it can be reemitted without being
related to the kinetic temperature of the surrounding gas. Second, it is assumed
that the radiation field adjusts to the forcings immediately. This is justified since
the light-crossing time of the atmosphere is less than a millisecond, while the
forcings evolve on the time scales of minutes or longer. Third, no interaction be-
tween different frequencies implies elastic scattering, excluding meteorologically
insignificant phenomena such as Raman scattering or fluorescence. These can,
however, be important in remote sensing employing lidars. Fourth, atmospheric
refraction is neglected. In reality, it makes our day few minutes longer. Fifth,
dependence of the scattering phase function on the cosine of scattering angle
n ·n′ instead of separate incident and scattered directions (n,n′) means that any
non-spherical particles must be randomly oriented. It excludes an impressive op-
tical phenomenon of sun pillars, which is however too rare to be meteorologically
significant. Random orientation of the air molecules results from their thermal
motion, while for the small aerosol and cloud particles dispersed in the air it is
ensured by turbulence. Only in the situations with very weak turbulence, larger
ice particles of suitable shape can align due to the action of aerodynamic forces,
associated with their non-negligible fall speed.

Radiative transfer equation (1.1) is a linear integro-differential equation for
the spectral radiance Iν(n, r). In order to determine its solution uniquely, proper
boundary conditions must be specified. A common way is to prescribe incoming
radiance on open boundaries and to specify reflection(-emission) condition on
material boundaries. In the physically realistic situations, such formulation leads
to a well-posed problem. Perfectly reflecting boundary enclosing a non-absorbing
cavity would allow for the existence of infinitely many solutions, but such highly
idealized situation never occurs in practice.

Despite all underlying simplifications, radiative transfer equation (1.1) is ad-
equate for evaluating the radiative fluxes and related energy budget in the tropo-
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sphere and stratosphere. It is therefore fully sufficient in the short range NWP
models, whose tops are not too far in the mesosphere. For example, current oper-
ational model ALADIN/CHMI has the highest level at 1.1 hPa, corresponding to
altitude around 48 km, which is still in the stratosphere. Unfortunately, detailed
numerical solution of equation (1.1) is beyond the reach of NWP. Additional
simplifications must be done in order to cut the computational cost of spatial,
angular and spectral integrations to the acceptable level.

1.2 Spatial and angular integrations

Spatial and angular integrations of equation (1.1) are closely interconnected. In
the contemporary NWP models, they involve almost exclusively so-called plane-
parallel and delta-two-stream approximations, combined with adding method. Al-
together, they reduce the problem to the solution of independent linear algebraic
systems for fluxes.

a) Plane-parallel approximation

First step, significantly reducing the computational cost and enabling parallel
computing, replaces the 3D spatial problem with the set of independent 1D prob-
lems, where the lateral radiative exchanges between neighbouring model columns
are neglected. Atmosphere in each model column is assumed plane-parallel and
horizontally homogeneous, extending to infinity so that lateral boundaries are
suppressed. As a consequence, all spatial fields in the given column depend on
the vertical coordinate only. This is the plane-parallel approximation, enabling to
collapse radiative transfer equation (1.1) into the shape involving only azimuthally
integrated radiance Iν(µ) and azimuthally averaged phase function Pν(µ, µ

′):

µ
dIν
dδν

(µ) = −Iν(µ) + 2π(1−$ν)Bν(T ) +
$ν

2

∫ 1

−1

Pν(µ, µ
′)Iν(µ

′) dµ′ (1.3)

δν(z) ≡
∫ ∞
z

[kabs
ν (z′) + kscat

ν (z′)]ρ(z′) dz′ (1.4)

$ν ≡
kscat
ν

kabs
ν + kscat

ν

(1.5)

Iν(µ) ≡
∫ 2π

0

Iν(µ, φ) dφ (1.6)

Pν(µ, µ
′) ≡ 1

2π

∫ 2π

0

Pν(cos Θ) dφ (1.7)

cos Θ ≡ n · n′ =
√

(1− µ2)(1− µ′2) cos(φ− φ′) + µµ′ (1.8)

Equation (1.3) is formulated using the optical depth (1.4) in place of vertical
coordinate. It is measured from the TOA (Top Of the Atmosphere), formally
put at z = ∞, down to current level. Vertical dependence of radiance Iν , phase
function Pν , single scattering albedo $ν and temperature T is not explicitly indi-
cated. Symbols µ and φ denote cosine of zenith angle and azimuth. Equation (1.3)
uses convention where downward propagating rays have positive µ, as shown on
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θ

µ ≡ cos θ

Figure 1.3: Convention for zenith angle θ of the incident ray and its cosine µ.
Downward propagating rays have µ > 0, while upward propagating rays have
µ < 0.

figure 1.3. Independence of azimuthally averaged phase function Pν(µ, µ
′) on

angle φ′ follows from periodicity of the argument cos Θ in difference φ− φ′.
In the solar spectrum, it is convenient to split the radiance into bounded

diffuse component Idiff
ν and singular direct component Idir

ν , representing perfectly
collimated unscattered solar radiation:

Iν(n) ≡ Idiff
ν (n) + Idir

ν (n) ≡ Idiff
ν (n) + F dir

ν · δ(n,n0) (1.9)

Symbol δ(n,n0) denotes the Dirac delta function on the sphere2, and n0 is the unit
vector along unscattered beam having DNI (Direct Normal Irradiance) F dir

ν . Red-
eriving the plane-parallel approximation with decomposition (1.9) yields equa-
tions for azimuthally integrated diffuse radiance Idiff

ν (µ) and for direct normal
irradiance F dir

ν :

µ
dIdiff

ν

dδν
(µ) = −Idiff

ν (µ) + 2π(1−$ν)Bν(T )

+
$ν

2

∫ 1

−1

Pν(µ, µ
′)Idiff

ν (µ′) dµ′ +
$ν

2
F dir
ν Pν(µ, µ0) (1.10)

µ0
dF dir

ν

dδν
= −F dir

ν (1.11)

Splitting single radiative transfer equation into separate equations (1.10) and
(1.11) was possible thanks to the boundedness of diffuse radiance. Equation (1.11)
is autonomous and can be integrated trivially, giving solution

F dir
ν = F�ν exp

(
− δν
µ0

)
, (1.12)

where µ0 is the cosine of solar zenith angle, and F�ν is DNI at the TOA. This
solution can be inserted into equation (1.10), where it occurs in the source term
converting direct radiation into diffuse one.

Applicability of the plane-parallel approximation becomes problematic at high
horizontal resolutions, where the cumuliform clouds become resolved and their

2Mathematically, δ(n,n′) is a generalized bidirectional function or distribution, acting on
arbitrary function h on the sphere as

∮
4π
δ(n,n′)h(n′) dΩ′ = h(n). It thus fulfils normalization

condition
∮
4π
δ(n,n′) dΩ′ = 1. Coordinate expression for the Dirac delta function on the sphere

is δ(n,n′) = δ(µ− µ′)δ(φ− φ′).
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eventual 3D radiative effects can no longer be parameterized, since they start
to produce non-negligible lateral radiative exchanges with neighbouring model
columns. On the other hand, plane-parallel approximation is well justified at
low horizontal resolutions, where the resolved horizontal gradients of the cloud
and temperature fields are much smaller than the vertical ones, so that lateral
exchanges can be safely ignored. Another criterion illustrating applicability of the
plane-parallel approximation in the shortwave spectrum is the horizontal shift of
the cloud shadows. For low and medium clouds it typically reaches several km,
which is still acceptable for horizontal mesh sizes around 10 km, but becomes
questionable for horizontal mesh sizes 1 km and finer. When the cloud field on
resolved horizontal scales is homogeneous, lateral radiative effects cancel when
evaluating gridbox energy budget. However, on the edges of cloudy regions such
cancellation does not occur, and it breaks down completely when the model starts
to resolve horizontal non-homogeneities of the cloud field.

b) Two-stream approximation

Second step, addressing the angular integration, makes additional assumptions
transforming equation (1.10) into a linear system of ordinary differential equa-
tions. Most natural way is to evaluate azimuthally integrated diffuse radiance
Idiff
ν (µ) only for a discrete set of directions µ and to replace scattering integral

with the quadrature rule. In the simplest case, only two directions are used. In-
tegral on interval [−1, 1] can then be replaced by the sum of one-node Gaussian
quadratures on intervals [−1, 0] and [0, 1]:∫ 1

−1

Pν(µ, µ
′)Idiff

ν (µ′) dµ′ ≈ Pν(µ,−1
2
)Idiff
ν (−1

2
) + Pν(µ,

1
2
)Idiff
ν (1

2
) (1.13)

The same Gaussian quadratures can be applied to definitions of upward diffuse
flux F ↑ν and downward diffuse flux F ↓ν , relating them to diffuse radiances Idiff

ν (−1
2
)

and Idiff
ν (1

2
):

F ↑ν ≡ −
∫ 0

−1

Idiff
ν (µ)µ dµ ≈ 1

2
Idiff
ν (−1

2
) (1.14)

F ↓ν ≡
∫ 1

0

Idiff
ν (µ)µ dµ ≈ 1

2
Idiff
ν (1

2
) (1.15)

Total upward flux has only diffuse component, since in most circumstances un-
derlying surface is rough, converting direct solar ray into diffuse reflected light.
Total downward flux alias GHI (Global Horizontal Irradiance) is given by the
sum of diffuse and direct components, where the latter is DNI multiplied by the
cosine of solar zenith angle in order to get direct flux Sν across horizontal surface:

GHIν ≡ F ↓ν + µ0F
dir
ν ≡ F ↓ν + Sν (1.16)

Assuming further that the scattering phase function is linear in its argument
µ = cos Θ, full information about it is contained in the first-order moment alias
asymmetry factor gν :

Pν(µ) = 1 + 3gνµ (1.17)

gν ≡
1

2

∫ 1

−1

Pν(µ)µ dµ (1.18)
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Azimuthally averaged phase function (1.17) is:

Pν(µ, µ
′) = 1 + 3gνµµ

′ (1.19)

Quadrature rules (1.13)–(1.15) are exact as long as integrand is at most first-
order polynomial in µ on intervals [−1, 0) and (0, 1], with possible discontinuity
at µ = 0. With the scattering phase function (1.17) they would be exact if the
azimuthally integrated diffuse radiance Idiff

ν (µ) had constant values for µ < 0
and for µ > 0. This is the case when the diffuse radiance Idiff

ν (n) is hemispheric
constant.

Sampling the azimuthally integrated diffuse radiance Idiff
ν (µ) in only one up-

ward and one downward directions leads to the so-called two-stream approxima-
tion. Its final formulation replaces diffuse radiances with upward and downward
diffuse fluxes and can be written in a general shape

dF ↑ν
dδν

= α1νF
↑
ν − α2νF

↓
ν − (α1ν − α2ν)πBν(T )− α3νF

�
ν exp

(
− δν
µ0

)
(1.20)

dF ↓ν
dδν

= α2νF
↑
ν − α1νF

↓
ν + (α1ν − α2ν)πBν(T ) + α4νF

�
ν exp

(
− δν
µ0

)
(1.21)

α1ν = U [1−$ν(1− β̄ν)] α3ν = $νβν(µ0) (1.22)

α2ν = U$ν β̄ν α4ν = $ν [1− βν(µ0)], (1.23)

where U is a diffusivity factor (see section 2.4 of Mašek et al. [2016]), $ν is the
single scattering albedo, βν(µ0) is the upscatter fraction for direct solar ray, and
β̄ν is the backscatter fraction for the incident radiation isotropic over hemisphere.

Choice of the quadrature rules (1.13)–(1.15), combined with the scattering
phase function (1.17), leads to formulas:

βν(µ0) =
1

2
− 3

4
gνµ0 (1.24)

β̄ν =
1

2
− 3

8
gν (1.25)

These, together with specification of the diffusivity factor U , select a particular
two-stream formulation from all the possibilities covered by the general equa-
tions (1.20)–(1.23). It should be noted that the phase function (1.17) is physi-
cally meaningful (non-negative) only for asymmetry factor gν ∈ [−1

3
, 1

3
]. Still, the

above derived two-stream formulation can be used as long as the upscatter frac-
tion (1.24) remains in the physical range [0, 1], which yields weaker constraint
gν ∈ [−2

3
, 2

3
]. This limitation can be removed completely by so-called delta-

scaling, described in the next subsection.
The upscatter and backscatter fractions (1.24)–(1.25) can be expressed as

integrals

βν(µ0) ≡ 1

2

∫ 0

−1

Pν(µ0, µ) dµ µ0 ≥ 0 (1.26)

β̄ν ≡
∫ 1

0

βν(µ0) dµ0, (1.27)
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where the azimuthally averaged phase function is given by formula (1.19). One
might be tempted to use the true phase function in integral (1.26), in order to get
accurate upscatter and backscatter fractions. However, such effort does not make
much sense in the two-stream framework, where the assumed two-parametric
angular distribution of diffuse radiation is another accuracy limitation. Stated
differently, backscatter fraction (1.27) is exact only for hemispheric constant inci-
dent radiation, while for different angular distributions it becomes approximate.
Substantial improvement of accuracy is thus not possible without going to the
higher angular resolution alias more streams.

It can be concluded that the two-stream approximation reduces the radiative
transfer problem to the linear system of ordinary differential equations (1.20)–
(1.21) for upward and downward diffuse fluxes. The system is non-homogeneous,
with thermal emission and scattering of direct solar radiation acting as the source
terms. For a homogeneous layer, the system can be integrated analytically, giving
linear relation between incoming and outgoing fluxes:3

SBν = a1νSTν (1.28)[
F ↓Bν

F ↑Tν

]
=

[
a4ν a5ν

a5ν a4ν

]
·

[
F ↓Tν

F ↑Bν

]
+

[
1− a4ν − a5ν

1− a4ν − a5ν

]
·Bν(T ) +

[
a2ν

a3ν

]
·STν (1.29)

Subscripts ‘T’ and ‘B’ denote fluxes at the top and bottom interfaces of the
layer, a1ν is the direct transmission, a2ν is the direct-diffuse transmission (sum
a1ν + a2ν is the total transmission), a3ν is the direct-diffuse reflectivity or plane
albedo, a4ν is the diffuse or global transmission, and finally a5ν is the diffuse
reflectivity or spherical albedo. Quantity (1− a4ν − a5ν) is the global absorption,
and by Kirchhoff’s law it is equal to the layer emissivity. Transmissions and
reflectivities a1ν to a5ν fully specify optical properties of the layer, depending on
the two-stream coefficients α1ν to α4ν and on the layer optical depth ∆δν . Their
analytical formulations are listed in appendix C of Mašek et al. [2016].

c) Delta-scaling

In the meteorological context, backward scattering never prevails. It is therefore
sufficient to assume asymmetry factors gν ≥ 0. However, scattering by aerosol
and cloud particles is strongly anisotropic, dominated by near-forward directions.
The phase function (1.17) cannot represent it realistically enough, especially if
there is a restriction gν ≤ 2

3
, necessary for getting meaningful upscatter frac-

tion (1.24). Still, performance of the two-stream approximation for the strongly
forward-scattering phase functions can be improved significantly by delta-scaling.
As explained by McKellar and Box [1981], the idea is to exploit scaling invari-
ance of the radiative transfer equation in order to transform the problem with
highly asymmetric phase function into an equivalent problem with more isotropic
one. This equivalent problem can be solved more accurately by the two-stream
approximation, since it better fits its assumptions.

3Linear relation between incoming and outgoing fluxes would be obtained also for a non-
homogeneous layer, but in such case reflectivities for upward and downward diffuse radiation
can be different.
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Delta-scaling is based on the fact that when the two scattering phase functions
Pν and P ′ν are related by

Pν(n · n′) = 4πfνδ(n,n
′) + (1− fν)P ′ν(n · n′), 4 (1.30)

radiative transfer equation (1.3) with the phase function Pν(µ), single scattering
albedo $ν and optical depth δν has the same solution as for the scaled phase
function P ′ν(µ), formulated in the scaled variables $′ν and δ′ν :

$′ν =
(1− fν)$ν

1− fν$ν

(1.31)

dδ′ν = (1− fν$ν) dδν ⇒ δ′ν =

∫ δν

0

(1− fν$ν) dδν (1.32)

It means that radiances of the two solutions correspond as:

Iν(µ, δν) = I ′ν(µ, δ
′
ν) (1.33)

When the scaled phase function P ′ν(µ) is assumed continuous, unscaled phase
function Pν(µ) has a Dirac peak sending proportion fν of scattered radiation in
the forward direction. Factor 4π in equation (1.30) comes from the requirement
that both Pν(µ) and P ′ν(µ) are normalized. Realizing that asymmetry factor can
be expressed as the spherical integral

gν =
1

4π

∮
4π

Pν(n · n′)n · n′ dΩ′, (1.34)

relation between scaled and unscaled asymmetry factors can be readily obtained
from equation (1.30):

g′ν =
gν − fν
1− fν

(1.35)

Supposing 0 ≤ fν ≤ gν , delta-scaling (1.30)–(1.32) implies inequalities:

0 ≤ g′ν ≤ gν $′ν ≤ $ν δ′ν ≤ δν (1.36)

It means that the delta-scaled system is more isotropic and optically thinner than
the unscaled one. It also has lower relative importance of scattering.

Scaling invariance (1.30)–(1.32) holds also for the radiative transfer equation
in the shape (1.10)–(1.11), i.e. when the diffuse and direct radiances are separated
according to equation (1.9). In such case, however, boundedness of the diffuse
radiance implies that the direct radiation scattered via forward Dirac peak is not
converted to diffuse radiation, but it is retained in the direct beam. It can be
seen from equation (1.12), whose scaled variant increases DNI, so that it does not
represent unscattered solar radiation any longer:

F dir
ν

′
= F�ν exp

(
− δ
′
ν

µ0

)
≥ F�ν exp

(
− δν
µ0

)
= F dir

ν (1.37)

4In the literature, equation (1.30) is usually written as Pν(µ) = 2fνδ(1−µ) + (1− fν)P ′
ν(µ),

which can be obtained from the azimuthally averaged phase function Pν(µ, µ′) = 2fνδ(µ−µ′)+
(1− fν)P ′

ν(µ, µ′) by setting µ′ = 1. For more details see Wiscombe [1977].
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This is not a problem at all, since the unscattered solar radiation can still be
obtained from unscaled equation (1.12). Downward flux of the scattered radiation
can then be retrieved as:

F ↓ν = F ↓ν
′
+ µ0F

dir
ν

′ − µ0F
dir
ν = F ↓ν

′
+ S ′ν − Sν (1.38)

In any case, the truly unscattered solar flux is of little practical importance, since
the measuring instruments always deliver higher value, collecting all radiation
(both unscattered and scattered) coming from a circumsolar region covering the
solar disk and its near neighbourhood. Should the model DNI be verified against
measurements, this effect must be accounted for at least approximately, following
e.g. Mauno et al. [2011].

In order to use delta-scaling, proportion of forward Dirac scattering fν must
be specified. The most common choice in the two-stream case is:

fν = g2
ν ⇒ g′ =

g

1 + g
(1.39)

It ensures that with the scaled phase function

P ′ν(µ) = 1 + 3g′νµ, (1.40)

the first and second-order moments of the unscaled phase function Pν(µ) are
equal to those of Henyey and Greenstein [1941] phase function. According to
Hansen [1969], the latter phase function is a good approximation for Lorenz-Mie
scattering in optically thick atmospheres. Moreover, choice (1.39) ensures g′ν ≤ 1

2
,

so that the scaled upscatter and backscatter fractions having the shape

β′ν(µ0) =
1

2
− 3

4
g′νµ0 (1.41)

β̄ =
1

2
− 3

8
g′ν , (1.42)

are always from the physical range [0, 1].
There exist many (delta-)two-stream formulations, the most common ones be-

ing compared e.g. by Meador and Weaver [1980], King and Harshvardhan [1986],
and Harshvardhan and King [1993]. None of them is accurate for all combi-
nations of optical depths, single scattering albedos, asymmetry factors and sun
elevations, so that compromises must be made when picking formulation suit-
able for NWP usage. One frequent choice is the delta-Eddington approximation
(Joseph et al. [1976]), employing the scaled phase function (1.40) with the pro-
portion of forward Dirac scattering (1.39), and assuming azimuthally integrated
diffuse radiance Iν(µ) linear in µ in the whole range [−1, 1]. The choice of the
ACRANEB and ACRANEB2 schemes, characterized by equations (1.39)–(1.42),
is different. It was first introduced by Zdunkowski and Korb [1985] as a vari-
ant of PIFM (Practical Improved Flux Method). Here it will be referred to as
the delta-two-stream formulation of Ritter and Geleyn [1992], who derived it in
a more straightforward and conceptually cleaner way.5 It can be viewed as a
special case of Stamnes and Swanson [1981] discrete ordinate method with only
two streams, approximating the Henyey-Greenstein scattering phase function by

5Equivalence of the two formulations is proven in appendix A of Mašek et al. [2016].
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Wiscombe [1977] delta-M method with the order of approximation M = 1. Key
ingredient is the approximation of scattering integral by the separate Gaussian
quadratures on intervals [−1, 0] and [0, 1], leading to formula (1.13). Advantages
of this ‘double-Gauss’ approach are explained in section C of Stamnes et al. [1988].

It is instructive to compare accuracy of the delta-Eddington and Ritter-Geleyn
delta-two-stream formulations. On figure 1.4 this is done for a non-absorbing ho-
mogeneous layer, illuminated from the top by the collimated beam and having
non-reflective bottom boundary. Case of conservative scattering $ν = 1 was
taken intentionally, since it is most sensitive to the treatment of angular inte-
gration. Error of the total transmission a1ν + a2ν is shown for the range of sun
elevations (represented by the cosine µ0 of solar zenith angle) and layer opti-
cal depths δν . Reference solution was obtained by the Monte Carlo simulation,
using the Henyey-Greenstein phase function with asymmetry factor gν = 0.843.
Such phase function roughly approximates scattering by the fair weather cumulus
clouds at wavelength λ = 754 nm, corresponding to frequency ν = 398 THz (for
detailed phase function see King and Harshvardhan [1986]). It can be seen that
in absolute terms, the delta-Eddington approximation is most accurate for high
sun elevations and also for optically thick layers. The total transmission error is
mostly positive, reaching maximum around µ0 = 0.05 and δν = 0.1. Error struc-
ture of the Ritter-Geleyn formulation is more dipole-like, with positive error for
optically thin layers at low sun (similar to delta-Eddington), and with negative
error for optically thick layers at high sun. Maximum negative error is observed
around µ0 = 1 and δν = 15. The best accuracy is obtained roughly along diagonal
going from optically thick layers at low sun towards optically thin layers at high
sun.

Figure 1.4 demonstrates also beneficial impact of delta-scaling. Without it,
the Ritter-Geleyn formulation would strongly underestimate the total transmis-
sion in a substantial part of the (µ0, δν) domain. It should be noted that in this
case, the total transmission of optically thin layers at high sun exceeds the phys-
ical limit 1. This is because asymmetry factor gν exceeds 2

3
, which is the limit for

physically meaningful unscaled upscatter fraction βν(µ0).

In case of conservative scattering investigated above, accuracy of the delta-
Eddington and Ritter-Geleyn formulations is comparable. This is confirmed also
by the left panel on figure 1.5, comparing their diffuse reflectivities with Monte-
Carlo reference (red). Ritter-Geleyn formulation (green) is superior for optical
depths below 1, but for higher optical depths it overestimates the diffuse re-
flectivity, reaching maximum absolute error around 0.10. On the other hand,
the delta-Eddington approximation (yellow) slightly underestimates the diffuse
reflectivity for optical depths below 10, but for deeper layers it becomes nearly
perfect. The Ritter-Geleyn formulation without delta-scaling (cyan) would be un-
usable, suffering from positive bias in the whole range of optical depths, reaching
maximum absolute error around 0.25. This again demonstrates beneficial impact
of delta-scaling. For the Eddington approximation, however, diffuse transmission
and reflectivity are not influenced by delta-scaling. This is sometimes source of
confusion, leading to the false belief that, in the absence of direct flux, delta-
scaling is useless. It is only true when α1ν dδν and α2ν dδν are scaling invariants,

17



0.1

1

10

100

o
p
ti
c
a
l 
d
e
p
th

 δ
 [
1
]

0.0 0.2 0.4 0.6 0.8 1.0

cosine of solar zenith angle µ0 [1]

−0.15 −0.10 −0.08 −0.06 −0.04 −0.02 −0.01 0.01 0.02 0.04 0.06 0.08 0.10 0.15

Error of total transmission [1], Ritter−Geleyn 1992

(reference using Henyey−Greenstein phase function)

g = 0.843 ω0 = 1.00

0.1

1

10

100

o
p
ti
c
a
l 
d
e
p
th

 δ
 [
1
]

0.0 0.2 0.4 0.6 0.8 1.0

cosine of solar zenith angle µ0 [1]

−0.15 −0.10 −0.08 −0.06 −0.04 −0.02 −0.01 0.01 0.02 0.04 0.06 0.08 0.10 0.15

Error of total transmission [1], Ritter−Geleyn 1992, unscaled

(reference using Henyey−Greenstein phase function)

g = 0.843 ω0 = 1.00

0.1

1

10

100

o
p
ti
c
a
l 
d
e
p
th

 δ
 [
1
]

0.0 0.2 0.4 0.6 0.8 1.0

cosine of solar zenith angle µ0 [1]

−0.15 −0.10 −0.08 −0.06 −0.04 −0.02 −0.01 0.01 0.02 0.04 0.06 0.08 0.10 0.15

Error of total transmission [1], delta−Eddington

(reference using Henyey−Greenstein phase function)

g = 0.843 ω0 = 1.00

0.1

1

10

100

o
p
ti
c
a
l 
d
e
p
th

 δ
 [
1
]

0.0 0.2 0.4 0.6 0.8 1.0

cosine of solar zenith angle µ0 [1]

−0.15 −0.10 −0.08 −0.06 −0.04 −0.02 −0.01 0.01 0.02 0.04 0.06 0.08 0.10 0.15

Error of total transmission [1], delta−Eddington

(reference using Henyey−Greenstein phase function)

g = 0.843 ω0 = 1.00

0.1

1

10

100

o
p
ti
c
a
l 
d
e
p
th

 δ
 [
1
]

0.0 0.2 0.4 0.6 0.8 1.0

cosine of solar zenith angle µ0 [1]

0.05

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.95

0.98

0.99

0.995

Total transmission t(δ, µ0) for Monte Carlo reference

(using Henyey−Greenstein phase function)

g = 0.843 ω0 = 1.00

Figure 1.4: Accuracy of various (delta-)two-stream formulations demonstrated
for a homogeneous layer with single scattering albedo $ν = 1 and asymmetry
factor gν = 0.843. Error of the total transmission (a1ν +a2ν) is shown as the func-
tion of sun elevation and optical depth. Top left: Error of the Ritter-Geleyn
formulation. Top right: Error of the Ritter-Geleyn formulation, but without
delta-scaling. Bottom left: Error of the delta-Eddington approximation. Bot-
tom right: Reference solution obtained by the Monte Carlo simulation, using
the Henyey-Greenstein phase function.
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Figure 1.5: Dependence of spherical albedo a5ν on the optical depth δν for a
homogeneous layer with asymmetry factor gν = 0.843. Reference Monte Carlo
simulation used the Henyey-Greenstein phase function. Same (delta-)two-stream
formulations as on figure 1.4 are shown. Left: Non-absorbing case with single
scattering albedo $ν = 1. Right: Strongly absorbing case with single scattering
albedo $ν = 0.5.

which is the case if and only if the backscatter fraction scales as:

β̄′ν =
β̄ν

1− fν
(1.43)

It can be verified easily that the scaling relation (1.43) holds for the Edding-
ton approximation with β̄ν = 1

8
(4 − 3gν − 1/$ν), but not for the Ritter-Geleyn

formulation with β̄ν = 1
8
(4− 3gν).

So far it seems that the delta-Eddington and Ritter-Geleyn formulations are
of similar quality. What makes distinction between them are cases with strong
absorption and sufficiently asymmetric phase function. One such case is shown
on the right panel of figure 1.5, having the same phase function as on the left
panel, but with single scattering albedo $ν = 0.5. In such conditions, the delta-
Eddington approximation yields negative spherical albedo a5ν for any optical
depth δν . This is because in the delta-Eddington approximation, the backscatter
fraction β̄′ν contains extra term −1/(8$′ν), that can eventually make it negative.
The Ritter-Geleyn formula 1.42 is free of such term, always delivering physically
meaningful backscatter fraction β̄′ν . Resulting spherical albedo a5ν is overesti-
mated especially for higher optical depths, but this is a minor problem compared
to the negative delta-Eddington values.

The delta-two-stream formulation suitable for NWP usage should be reliable
for all relevant combinations of sun elevation, single scattering albedo, asymme-
try factor and optical depth. The Ritter-Geleyn formulation was therefore found
superior to the widely used delta-Eddington approximation, since it can be mean-
ingfully used in a wider range of conditions. The delta-Eddington approximation
is more accurate for optically thick nearly conservative layers, but the accuracy of
the Ritter-Geleyn formulation, preventing unphysical behaviour, should be more
uniform across parameter space.
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Finally, it should be noted that for reference solution, the global transmis-
sion a4ν and spherical albedo a5ν are related to the total transmission (a1ν + a2ν)
and plane albedo a3ν by integral relations

a4ν = 2

∫ 1

0

(a1ν + a2ν)µ0 dµ0 (1.44)

a5ν = 2

∫ 1

0

a3νµ0 dµ0, (1.45)

while for the examined (delta-)two-stream approximations these relations do not
hold. Harshvardhan and King [1993] used relations (1.44)–(1.45) to construct
integrated two-stream approximations, rederiving the global transmission a4ν and
spherical albedo a5ν by evaluating the angular integrals numerically. They have
shown that integrated delta-Eddington approximation employing the two-node
Gaussian quadrature is free from unphysical behaviour. Such approach implies
computational overhead, since the total transmission and plane albedo must be
evaluated not only for actual sun elevation, but also at the two quadrature nodes.
Moreover, it points to the internal inconsistency of the original schemes, which
is more severe for the delta-Eddington approximation than for the Ritter-Geleyn
formulation.

d) Adding method

For a homogeneous layer, the delta-two-stream approximation yields the linear
relations (1.28)–(1.29) between incoming and outgoing fluxes. To accomplish the
vertical integration, one must deal with the non-homogeneous atmosphere. The
most natural way is to slice the assumed atmospheric column into homogeneous
layers, and to apply relations (1.28)–(1.29) in each layer, using its actual opti-
cal properties. Fluxes leaving one layer enter the next layer and the solution
is made unique by prescribing the top and bottom boundary conditions. This
approach is known as adding method, since it builds up non-homogeneous optical
path by adding smaller homogeneous pieces. Resulting system for fluxes at the
layer interfaces remains linear, with fixed number of non-zero diagonals. Adding
method also enables to extend the plane-parallel approximation by incorporat-
ing the non-trivial cloud geometry, following Geleyn and Hollingsworth [1979].
This is the first step beyond purely 1D radiative transfer, but its impact remains
limited to the assumed atmospheric column.

In order to include partial cloud cover, each layer of assumed model column
is divided into the clearsky part containing gases and aerosols, and the cloudy
part containing gases, aerosols, cloud droplets and ice particles. Cloud in the
layer l occupies fraction nl of the gridbox, as depicted on figure 1.6 (atmospheric
layers are indexed from the top to bottom, ranging from 1 to L). Since the optical
properties of the homogeneous clearsky and cloudy parts of the layer are different,
delta-two-stream system (1.29) must be applied separately in each part. For the
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layer l

layer l + 1

nl

1− nl − nl+1 + ql,l+1 nl+1 − ql,l+1 ql,l+1 nl − ql,l+1

nl+1

(F ↓Bν)
clear
l (F ↓Bν)

cloudy
l

(F ↓Tν)
clear
l+1 (F ↓Tν)

cloudy
l+1 (F ↓Tν)

clear
l+1

Figure 1.6: Cloud overlap geometry of adjacent layers l and l + 1, having cloud
fractions nl and nl+1. Cloudy parts of the layers are grey, and they overlap on
the fraction of gridbox ql,l+1. For clarity, the layers on diagram are detached. In
reality they are touching.

model level l it reads:[
F ↓Bν

F ↑Tν

]clear

l

=

[
a4ν a5ν

a5ν a4ν

]clear

l

·

[
F ↓Tν

F ↑Bν

]clear

l

+

[
J↓Bν

J↑Tν

]clear

l

(1.46)

[
F ↓Bν

F ↑Tν

]cloudy

l

=

[
a4ν a5ν

a5ν a4ν

]cloudy

l

·

[
F ↓Tν

F ↑Bν

]cloudy

l

+

[
J↓Bν

J↑Tν

]cloudy

l

(1.47)

Symbols J↓Bν and J↑Tν are shorthand notations for the source term, containing
contributions from thermal emission and scattering of the direct solar radiation.

Equations (1.46)–(1.47) suppose no lateral exchanges between the clearsky
and cloudy parts of the layer. On the layer interfaces, however, clearsky and
cloudy fluxes are redistributed according to cloud geometry shown on figure 1.6.
If the adjacent cloud layers l and l+1 overlap on fraction ql,l+1 of the gridbox, then
the fluxes leaving the bottom of layer l should be redistributed before entering
the top of layer l + 1 according to relation:

[
F clear

Tν

F cloudy
Tν

]↓
l+1

=


1− nl − nl+1 + ql,l+1

1− nl+1

nl − ql,l+1

1− nl+1

nl+1 − ql,l+1

nl+1

ql,l+1

nl+1

·
[
F clear

Bν

F cloudy
Bν

]↓
l

(1.48)

Analogously, the fluxes leaving the top of layer l+1 should be redistributed before
entering the bottom of layer l:

[
F clear

Bν

F cloudy
Bν

]↑
l

=


1− nl − nl+1 + ql,l+1

1− nl
nl+1 − ql,l+1

1− nl
nl − ql,l+1

nl

ql,l+1

nl

·
[
F clear

Tν

F cloudy
Tν

]↑
l+1

(1.49)
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Matrix rows in equations (1.48)–(1.49) contain redistribution weights, sum-
ming up to one. It must be stressed that these equations are formulated for the
flux densities, while in the literature they are often given for the flux densities
multiplied by the corresponding gridbox fractions.6 When cloud fraction in the
target layer is one or zero, redistribution weights giving the flux density entering
its clearsky or cloudy part, respectively, are undetermined. This is not a problem,
since the flux density in the given part is of no interest when this part occupies
zero area.

Several hypotheses can be made about overlap between the adjacent cloud
layers. Two limit cases are random overlap with ql,l+1 = nlnl+1, and maximum
overlap with ql,l+1 = min(nl, nl+1). In principle, less than random overlap can
occur, but it is rarely observed. When maximum overlap between the adjacent
cloud layers is used for a multi-layer cloud, it is referred to as maximum-random
overlap. This is because geometry of distant cloud layers not restricted by the
adjacent overlaps is random. As remarked by Geleyn and Hollingsworth [1979],
positions of cloudy parts separated by cloud free air become totally independent
when maximum-random overlap is applied.

In the NWP models, simplest choice was to use random cloud overlap. This
is because it can be collapsed into the shape where the layer transmissions and
reflectivities are averaged between clearsky and cloudy parts, and the delta-two-
stream and adding system is solved without considering cloud geometry. However,
random cloud overlap becomes insufficient for higher vertical resolutions, since it
ignores correlations between positions of the cloudy parts once the cloud is sliced
finely enough. Much more realistic is maximum-random cloud overlap, that is
still widely used. Its drawback are overestimated overlaps between distant cloudy
parts of the contiguous cloud, while Hogan and Illingworth [2000] found that the
cloud layers separated by more than 4 km overlap randomly, regardless the cloud
is contiguous or not. For this reason they proposed a generalized cloud overlap
in the shape

ql,l+1 = (1− α)nlnl+1 + αmin(nl, nl+1), (1.50)

where α is the weight placing the adjacent overlap between random (α = 0) and
maximum (α = 1). Analyzing experimental data, Hogan and Illingworth [2000]
concluded that the weight α can be well approximated by a decaying exponential
of the geometric distance between the layer centres. Using this shape of α leads
to so-called exponential-random cloud overlap, variant of which is used also in a
recent version of the ACRANEB2 scheme.

Delta-two-stream and adding system with L atmospheric layers contains 8L
unknown fluxes (2 incoming and 2 outgoing fluxes for the clearsky part, 2 in-
coming and 2 outgoing fluxes for the cloudy part of each layer). There are 4L
two-stream equations (2 for the clearsky part and 2 for the cloudy part of each
layer). These are complemented by 4L− 4 redistribution relations (4 at each in-
ternal layer interface). In order to close the system, 4 boundary conditions must
be prescribed. At the TOA (top of the layer 1), incoming diffuse fluxes are zero:

(F ↓Tν)
clear
1 = 0 (1.51)

(F ↓Tν)
cloudy
1 = 0 (1.52)

6The reason is that the latter quantities from the clearsky and cloudy parts can be added
to get overall gridbox value, while the flux densities must be averaged.
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At the Earth’s surface (bottom of the layer L), both emission and reflection can
take place, so that the boundary condition has a general shape:

(F ↑Bν)
clear
L = εSνπBν(TS) + ᾱSν(F

↓
Bν)

clear
L + αSν(µ0)(SBν)

clear
L (1.53)

(F ↑Bν)
cloudy
L = εSνπBν(TS) + ᾱSν(F

↓
Bν)

cloudy
L + αSν(µ0)(SBν)

cloudy
L (1.54)

In the equations above, εSν and TS are surface emissivity and temperature, while
αSν(µ0) and ᾱSν are surface plane and spherical albedos, respectively. They are
related by integral formula analogous to equation (1.45):

ᾱSν = 2

∫ 1

0

αSν(µ0)µ0 dµ0 (1.55)

Since the surface is non-transparent, its emissivity is related to spherical albedo
by formula:

εSν = 1− ᾱSν (1.56)

Cloud geometry influences also the source term, namely its part representing
scattering of the direct solar radiation. At the TOA, direct solar flux across
horizontal plane is given as DNI scaled by cosine of solar zenith angle:

(STν)
clear
1 = (STν)

cloudy
1 = µ0F

�
ν (1.57)

It is propagated across the clearsky and cloudy parts of the layer l by applying
equation (1.28):

(SBν)
clear
l = (a1ν)

clear
l (STν)

clear
l (1.58)

(SBν)
cloudy
l = (a1ν)

cloudy
l (STν)

cloudy
l (1.59)

On the layer interfaces, it must be redistributed in the same way as downward
diffuse flux, i.e. using the weights from equation (1.48).

Approximations dealing with spatial and angular integrations of the radiative
transfer equation lead to the final delta-two-stream and adding system, repre-
sented by equations (1.46)–(1.49) and closed by the boundary conditions (1.51)–
(1.54). Solution of the system involves inversion of matrix 8L × 8L with 11
non-zero diagonals. Thanks to this, computational cost of the solver is linear in
the number of layers L.

1.3 Spectral integration

So far, the delta-two-stream and adding system was formulated for the monochro-
matic radiation. In order to get the total energy budget driving temperature
evolution, integration over relevant part of the spectrum must be carried on. It
would be trivial if the world was grey, having the optical properties spectrally
flat. This is not the case in the Earth’s atmosphere, where the major complication
comes from the gaseous absorption spectra. These are very complex, containing
myriads of absorption lines having different strengths and half-widths, typically
structured into the absorption bands separated by the weakly absorbing window
regions. Absorption coefficient can vary very abruptly, falling many orders of
magnitude as one moves from the center of a strong line to the nearby wing
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region. Even worse, dependence of absorption coefficient on pressure and tem-
perature complicates the treatment of non-homogeneous optical paths. And the
atmosphere is non-homogeneous.

a) Line-by-line approach

The radiative transfer equation (1.1) and its delta-two-stream approximation
(1.20)–(1.21) treat the different frequencies ν independently. The most straight-
forward approach to spectral integration would be to solve the monochromatic
radiative transfer repeatedly for a set of frequencies being dense enough to re-
solve the individual spectral lines. Resulting flux over spectral interval ∆ν is then
given by the integral

F =

∫
∆ν

Fν dν, (1.60)

evaluated using suitable quadrature rule. Such line-by-line approach is indeed
used in order to construct very accurate reference solutions. Its cost, however,
makes it completely unusable in the NWP environment, where the calculation of
radiative transfer can take microseconds per model column, but not minutes or
even hours. In order to make the radiative transfer calculations feasible, signifi-
cant shortcuts in the treatment of spectral integration must be sought, facing the
additional complications coming from the presence of stratification and scattering.
As will be seen later, the main difficulty of the parameterized radiative transfer
comes from the interaction of spectral integration with spatial and angular ones.

Main techniques addressing an efficient spectral integration are the band ap-
proach and the correlated k-distribution method. They are briefly outlined in
subsections b) and c).

b) Band approach

The idea behind band approach is to find such transmissions and reflectivities,
with which the single solving of the delta-two-stream and adding system will
give fluxes reasonably close or identical to the spectrally integrated reference
results. In other words, the problem with spectrally varying optical properties
is replaced by the grey problem, where the optical properties are spectrally flat.
The mean difficulty lies in the parameterization of the band optical properties,
which must take into account the non-local phenomenon of optical saturation.
When the assumed spectral band is sufficiently wide, additional complications
arise from the spectrally correlated optical properties of various radiatively active
components, as well as from the non-negligible variation of Planck function (for
more details see section 2.3 of Geleyn et al. [2017]).

In an idealized case with the single source and no scattering, the grey system
equivalent to the original one exists, enabling to evaluate band absorption coef-
ficient. Here it will be demonstrated in the simplest case, where the collimated
beam with incident spectral flux Fν undergoes a homogeneous path with absorber
amount u. Transmitted flux integrated over spectral interval ∆ν then reads:∫

∆ν

Fν exp(−kabs
ν u) dν ≡ exp(−kabsu)

∫
∆ν

Fν dν (1.61)
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Equation (1.61) can be inverted to express band absorption coefficient kabs as

kabs = −1

u
ln

∫
∆ν

exp(−kabs
ν u)wν dν

= k̄abs − 1

u
ln

∫
∆ν

exp[−(kabs
ν − k̄abs)u]wν dν, (1.62)

where wν is the spectral weight proportional to the incident spectral flux Fν ,
meeting the normalization condition∫

∆ν

wν dν = 1, (1.63)

and k̄abs is the linear average of absorption coefficient kabs
ν :

k̄abs =

∫
∆ν

kabs
ν wν dν (1.64)

Band absorption coefficient (1.62) generally depends on absorber amount u.
This dependence cancels out in a grey case kabs

ν = k̄abs, which is trivial, or for
absorber amount u so small that |kabs

ν − k̄abs|u � 1 for each frequency ν. In
the latter case, known as the weak-line limit, exponential at the second line of
equation (1.62) can be linearized, yielding unit value of the integral. For bigger
absorber amount u and positive spectral weights wν , equation (1.62) gives band
absorption coefficient kabs < k̄abs. This phenomenon, following from the convex
shape of exponential function, is known as optical saturation. It has dramatic im-
pact on the strong-line limit, where the growth of band optical depth δ ≡ kabsu is
controlled by absorption in the far line wings, since in the vicinity of the line cen-
tres all radiation has already been absorbed. The lower limit for band absorption
coefficient kabs is its minimum kabs

min over given spectral interval. Growth of band
optical depth δ with absorber amount u is thus restricted by the linear envelope:

kabs
minu ≤ δ(u) ≤ k̄absu (1.65)

Equations (1.61) and (1.62) are valid also for slanted beam, provided that
vertical absorber amount u is replaced by u/µ0, where µ0 is the cosine of beam
zenith angle. In case of diffuse incident radiation, vertical absorber amount u
must be multiplied by diffusivity factor U , taking into account lengthened mean
path.

The aim of band models is to provide explicit formulas relating the band
gaseous optical depth δ to the mean line parameters. In few idealized situa-
tions, these can be obtained analytically. Two important cases, suitable for the
water vapour and other asymmetric-top molecules, assume randomly positioned
Lorentz lines with either exponential (Goody [1952]), or exponential-tailed S−1

distribution of line strengths S (Malkmus [1967]). Lorentz profile is a good ap-
proximation for the impact line shape when the collision time is negligible.7 It is

7This is true in the ultraviolet, visible and infrared regions. In the microwave region, however,
asymmetric Van Vleck and Weisskopf [1945] profile must be used, ensuring zero limit of kν
for ν → 0.
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popular due to its simple analytical formulation

kabs
ν =

S

π
· αL

(ν − ν0)2 + α2
L

(1.66)

∫ +∞

−∞
kabs
ν dν = S,

where S is the line strength, αL is the line-half width, and ν0 is the position of
line centre.

To get analytical formulations, further simplifications must be employed:
N Lorentz lines having the same half-width αL, distributed in the interval of
width ∆ν = Nd, where the spectral weights are assumed constant. Finally, the
limit N → ∞ is made, keeping the constant mean line spacing d. It means
that the results are strictly valid in the artificial spectral interval (−∞,+∞).
Nevertheless, they can be applied also in the finite spectral interval, provided its
width ∆ν is large enough to contain many lines, but small enough to assume their
random positioning and to neglect variation of spectral weights. In order to sup-
press contribution of lines centred outside the finite spectral interval, width ∆ν
must be much larger than the line half-width αL.8

The Malkmus band model is preferable to the Goody one, because it assumes
more realistic distribution of weak lines. It provides very simple formula for band
optical depth

δmalkmus(u) =
παL

2d

√1 +
4S̄u

παL

− 1

 , (1.67)

where S̄ is the mean line strength. Application of the Malkmus formula (1.67) still
requires replacement of the line half-width αL with the mean value ᾱL, since in re-
ality the band contains lines of different half-widths. Averaging formula for ᾱL is
most commonly obtained from the optically thick, non-overlapping limit. Warner
and Ellingson [2000] explained that determining the band model parameters by
matching the asymptotic limits is not optimal, since these are rarely reached in
practice. They have obtained remarkably better accuracy by fitting the Malkmus
formula directly against line-by-line results, using a relevant range of absorber
amounts.9 Residual error is then almost purely due to the band model assump-
tions.

Applicability of random band models is further restricted by the fact that
for big absorber amount u they give band optical depth δ(u) ∝

√
u, which at

some point falls below linear envelope (1.65). Validity range of the square-root
approximation is analyzed in section VIII.3 of Plass [1958], where it is shown
that there is also upper limit on absorber amount u. Here it should be noted that
the asymptotic behaviour violating lower constraint (1.65) is an artefact coming
from limit N →∞ at constant line spacing d. This is because 2N spectral lines
positioned randomly in interval of width 2Nd overlap more efficiently than N lines
scattered in interval of width Nd. Bigger line overlap results in more transparent

8This ensures that spectral lines centred outside the assumed interval will affect absorption
only near its boundaries, while deeper inside contribution of their far wings can be neglected.

9Such approach requires use of the non-linear least-squares fitting.
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band alias lower band optical depth. Overlap effect acts only for bigger absorber
amounts, so that the weak-line limit remains unaffected.

There is a simple possibility how to achieve the correct asymptotic behaviour
of the random band model for big absorber amount u. It is sufficient to extend the
band optical depth by the term kabs

minu, representing the background continuum
absorption. At the same time, mean line strength S̄ have to be replaced by
S̄−kabs

mind, in order to preserve the weak-line limit S̄u/d. Figure 1.8, comparing the
band approach with the k-distribution method, demonstrates beneficial impact
of the continuum correction for the Goody band model.

Regardless of the way how the band model parameters were derived, their link
to the mean line parameters S̄ and ᾱL is crucial for the treatment of the non-
homogeneous optical paths. The problem is traditionally solved by the Curtis-
Godson scaling approximation (Curtis [1952], Godson [1953]). It assumes a single
Lorentz line absorbing along the non-homogeneous optical path, and constructs
the homogeneous path yielding the same weak and strong-line limits. The pro-
cedure results in the path averaging rules

〈S〉 =
1

u

∫ u

0

S(u) du (1.68)

〈αL〉 =
1

〈S〉u

∫ u

0

αL(u)S(u) du, (1.69)

where the absorber amount u is used as the vertical coordinate, and the vertical
variation of the line parameters S and αL follows from their pressure and tem-
perature dependences.10 The path averaging rules (1.68) and (1.69) are finally
applied to the mean line parameters S̄ and ᾱL, and the Malkmus formula (1.67)
is evaluated.

As explained above, applicability of the Malkmus band model is restricted to
the narrow spectral intervals11, where its assumptions roughly hold. However,
use of hundred or more such intervals would be prohibitive from the computa-
tional point of view. For this reason, band approach in the NWP models must be
applied in much broader spectral intervals. This is only possible if the variation of
spectral weights is taken into account, together with the non-random distribution
of absorption lines on larger scales. Both effects can be included by an empirical
correction of the Malkmus formula. Key element, necessary for the treatment
of the non-homogeneous optical paths, is keeping the Malkmus core and apply-
ing the additional corrections that are small. Like this, link of the fundamental
band model parameters to the mean line parameters is preserved. Yet another
complication arises from the fact that on larger scales, spectral transmissions of
different gases can be correlated, resulting in non-additivity of their broadband
optical depths. Spectral correlations can appear also between various radiatively
active species. They must be parameterized whenever found significant, result-
ing in the broadband scheme resembling Matryoshka. Still, Mašek et al. [2016]
and Geleyn et al. [2017] proved that such approach is feasible, guaranteeing suf-
ficient accuracy of the ACRANEB2 scheme even with the single shortwave and
single longwave spectral intervals. Moreover, the broad spectral intervals make

10The line strength S depends on temperature, while the Lorentzian line half-width αL de-
pends also on pressure (via the frequency of molecular collisions).

11Spectral interval can be assumed narrow, when it has ∆ν/ν . 0.01.
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the cost of the full cloud-radiation interaction feasible, via the use of selective
intermittency described in section 2.7.

Application of the band approach to aerosols and clouds is straightforward in
the narrow spectral intervals, where they can be safely treated as the grey bodies.
This is because their optical properties are much smoother than gaseous absorp-
tion. Grey treatment of aerosols is justified also in the broad spectral intervals,
provided their optical depth is small, so that linear averaging can be applied.
Situation for clouds is different. Mašek et al. [2016] showed that in the full short-
wave spectrum, optical saturation of cloud absorption must be parameterized,
taking scattering into account. On the other hand, Geleyn et al. [2017] proved
that in the full longwave spectrum, grey treatment of clouds is justified.

Phenomenon of optical saturation is caused by the changing spectral compo-
sition of radiation passing through the atmosphere. The band approach param-
eterizes this effect without going to spectrally detailed calculations. The main
complication in doing so is the presence of scattering, altering the optical paths
in a non-trivial way. Possible solution for gaseous absorption and Rayleigh scat-
tering is to evaluate optical saturation along the idealized optical paths, described
in section 2.5 of Mašek et al. [2016], and in sections 6.3 and 6.4 of Geleyn et al.
[2017]. These provide accurate results in the important limit cases dominated by
gases. In the situations dominated by clouds, shortwave cloud optical saturation
must be evaluated by the more sophisticated method introduced in section 6.3 of
Mašek et al. [2016], taking multiple scattering into account. Here the idealized
optical paths become less relevant, but their use for gaseous optical saturation
still gives reasonable results. This is because cruder approximations can be af-
forded for the less influential processes (gaseous absorption and scattering in this
case).

c) Correlated k-distribution method

There are three main limitations of the band approach – simplifying assumptions
on the distribution of line strengths and positions, necessity to use the scaling
approximation when treating non-homogeneous optical paths, and evaluation of
the optical saturation in scattering environment. The first limitation can be
avoided elegantly by the so-called k-distribution method, for the homogeneous
atmosphere introduced to meteorology by Arking and Grossman [1972]. The
idea is simple. In a sufficiently narrow spectral interval, such that variation of
spectral weights can be neglected, the band transmission is given by spectral
integral that can be transformed into integral over k-values:

τ ≡ 1

∆ν

∫
∆ν

exp(−kabs
ν u) dν =

∫ ∞
0

exp(−ku)g′(k) dk

=

∫ 1

0

exp[−k(g)u] dg ≈
∑
i

exp[−k(gi)u] ∆gi (1.70)

Function g(k) gives the proportion of spectral interval ∆ν where the absorption
coefficient kabs

ν < k. In other words, g(k) is the cumulative probability function
of k-values, and its derivative g′(k) is the corresponding probability density func-
tion. The last step, changing integration in k-space to integration in g-space,
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Figure 1.7: The synthetic absorption spectrum consisting of 100 randomly placed
Lorentz lines with exponential distribution of line strengths, plotted for three line
half-width to mean line spacing ratios αL/d: magenta – 0.1; dark blue – 0.2; blue
– 0.5. Horizontal sampling uses 2000 regular intervals. Left: Original spectrum.
Right: Reordered spectrum.

introduces k(g) as the inverse function of g(k).12

The last integral in equation (1.70) can be approximated by the sum, using
quadrature points gi and weights ∆gi, where the latter sum up to one:∑

i

∆gi = 1 (1.71)

Equation (1.70) thus approximates the band transmission by the weighted sum
of decaying exponentials, providing the band optical depth:

δ(u) = − ln

{∑
i

exp[−k(gi)u] ∆gi

}
(1.72)

For the given choice of quadrature points and weights, values k(gi) must be cal-
culated from underlying spectroscopic data, and this calculation must be done
for the set of temperatures and pressures. In practice it is sufficient to use .10
quadrature points for a gas, which is enormous compression of information, given
the fact that dependence of the gaseous absorption coefficient kabs

ν on frequency ν
is very complicated, containing thousands of spectral lines. By the reordering
of kabs

ν values, much smoother and monotonically increasing function k(g) is
obtained, still containing full information necessary for determining the band
transmission, including the effects of line shape, spacing, overlap and intensity
distribution. Figure 1.7 illustrates reordering for the synthetic spectrum consist-
ing of 100 Lorentz lines. From the shape of log(k) versus g curves it follows that
g-points should be clustered around 0 and 1, where the slope is steepest.

It is instructive to compare the curves of growth for different methods of
spectral integration. Figure 1.8 does this for a homogeneous case, using the same

12Mathematically, going from the frequency integration to the integration over g-values cor-
responds to the move from Riemann to Lebesgue integral.
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Figure 1.8: The band optical depth δ(u) of magenta spectrum on figure 1.7: red
dots – the reference line-by-line calculation (spectral sampling with 2000 regular
intervals); yellow squares – the Goody band model (2 parameters); yellow dashed
line – the Goody band model extended by continuum term (3 parameters); green
triangles – the k-distribution method (10 g-intervals 0–0.001–0.005–0.02–0.2–0.5–
0.8–0.98–0.995–0.999–1). Left: The curves of growth alias log(δ) versus log(u).
Straight lines denote slopes of linear and square-root regions, with δ(u) ∝ u and
δ(u) ∝

√
u respectively. Grey shade is the linear envelope (1.65). Right: Ratios

δ/δref versus log(u).

synthetic spectrum as on figure 1.7, having ratio αL/d = 0.1. Underlying distri-
bution of spectral lines meets assumptions of the Goody [1952] band model. Red
curve shows results of the line-by-line calculation performed for 2000 frequencies,
and it serves as the reference. Yellow curve is the Goody band model, which has
only two independent parameters related to the mean line intensity, half-width
and spacing. It can be seen that for small absorber amounts it is very close to the
reference, and even for intermediate ones the error remains within 20%. For large
absorber amounts, however, its applicability limit is broken. This is because it
continues to follow the square-root growth also when the continuum background
starts to dominate the reference solution, bringing it back to linear growth. The
correct asymptotic behaviour for big absorber amounts can nevertheless be re-
stored by incorporating the continuum term, as was discussed in subsection b).
This possibility is indicated by yellow dashed curve, which captures the continuum
dominated region, but it suffers from considerable overestimation between inter-
mediate and large absorber amounts. Green curve is the k-distribution method
with 10 g-intervals. It is able to follow the reference closely, with the error staying
within 5% in the full range of absorber amounts. Additional advantage of the
k-distribution method is its applicability for any line distribution and arbitrary
line shape.

Thanks to the limited width of spectral interval ∆ν, necessary for neglecting
the variation of spectral weights, it can be assumed that band transmissions of
gases 1 and 2 are multiplicative. Application of the k-distribution method than
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gives the band transmission of the mixture as

τ12 = τ1τ2 =
∑
i

exp[−k1(gi)u1] ∆gi
∑
j

exp[−k2(gj)u2] ∆gj

=
∑
i,j

exp[−k1(gi)u1 − k2(gj)u2] ∆gi∆gj =
∑
i,j

exp[−kij(q)u] ∆gi∆gj, (1.73)

where the following notations were introduced:

u ≡ u1 + u2 (1.74)

q ≡ u2

u1 + u2

(1.75)

kij(q) ≡ (1− q)k1(gi) + qk2(gj) (1.76)

Equation (1.73) enables to get the k-distribution of the mixture from the k-
distributions of its individual components. The only annoying fact is that the
number of k-values alias g-points increases from N to N2, because of the double
sum in equation (1.73). Lacis and Oinas [1991] prevented the added computa-
tional burden by ordering the values of kij(q), and then reblocking them back to
N intervals. Fu and Liou [1992] developed an alternative approach, making the
k-distribution dependent also on mixture composition q. It means that k-values
in each g-interval have to be determined and tabulated not only for the range of
pressures and temperatures, but also for the desired set of mixture compositions.
By the careful choice of spectral intervals it can be achieved that there are no
more than two dominant absorbing gases in each.13

The k-distribution method can deal also with the non-homogeneous atmo-
sphere. Here the correlated assumption comes to play, introduced rigorously by
Fu and Liou [1992]. The band transmission along the non-homogeneous optical
path is given by double integral

τ =
1

∆ν

∫
∆ν

exp

[
−
∫

∆z

kabs
ν (p(z), T (z))ρ(z) dz

]
dν, (1.77)

where the absorption coefficient kabs
ν varies in vertical via its pressure and temper-

ature dependences, and ρ(z) is the density profile of absorbing gas, so that ρ(z) dz
is the increment of absorber amount. In the k-distribution method, however, it
is desirable to express the band transmission as:

τ =

∫ 1

0

exp

[
−
∫

∆z

k(g, p(z), T (z))ρ(z) dz

]
dg (1.78)

Equation (1.78) is equivalent to (1.77), provided that ordering of k-values at each
point of the optical path is the same. In other words, g-value associated with
given frequency ν should be pressure and temperature independent:

g(kν(p, T ), p, T ) = h(ν) (1.79)

Constraint (1.79) is the so-called correlated assumption, with h being arbi-
trary function of frequency ν only. It holds exactly e.g. for an isolated Lorentz

13The band approach is more advantageous in this respect, since it can apply multiplicativity
of the band transmissions directly, without restricting the number of absorbing gases.
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Figure 1.9: Scatterplot showing correlation of g-values at different pressures p1

and p2: dark blue – p2/p1 = 2; blue – p2/p1 = 5. Data points are obtained from
the synthetic spectra shown on figure 1.7, using spectral sampling with 2000
regular intervals. On horizontal axis there are g-values of magenta spectrum
with αL/d = 0.1, while on vertical axis there are corresponding g-values of dark
blue and blue spectra with αL/d = 0.2 and 0.5 respectively. Proportionality of
Lorentz line-half width αL to pressure is exploited.

line, or when the line overlaps can be neglected. This is not the case in the
atmosphere, where the correlation of g-values is disturbed by vertical variation
of pressure, temperature, and also gaseous composition. All these effects result
in blurring of g-values, for pressure variation alone illustrated on figure 1.9. It
can be seen that even for pressure ratio 5, representing the vertical variation
across the troposphere, correlation of g-values for a single gas is considerable.
Realism of the correlated assumption comes from the fact that the line positions
are independent of pressure and temperature. So even if the line strengths and
half-widths change, regions of high and low absorption remain the same.

Full strength of the correlated k-distribution method becomes apparent when
it is applied in the scattering environment. Involved spectral intervals are suffi-
ciently narrow to assume Rayleigh scattering, aerosols, clouds and the Earth’s sur-
face as grey bodies in each. In the presence of scattering, k-distribution method
never evaluates the band transmissions according to equation (1.70). Instead,
it performs radiative transfer calculations in each g-interval, where the gaseous
absorption can be assumed quasi-monochromatic. As a consequence, the optical
saturation becomes a resolved phenomenon, and its interaction with scattering
does not have to be addressed. At the very end, fluxes from each g-interval are
summed up to get final flux for given spectral interval. This is enormous sim-
plification of the scattering problem, faced in the broadband schemes. The main
accuracy limitation, that cannot be escaped, is the correlated assumption.

The price paid for reordering of k-values is the need to solve the radiative
transfer equation many times. In the widely used RRTMG (Rapid Radiative
Transfer Model, optimized for use in GCMs) scheme of Iacono et al. [2008], there
are 14 shortwave intervals with the total of 112 g-points, plus 16 longwave in-
tervals with the total of 140 g-points. Altogether, radiative transfer equation

32



have to be solved 252 times in order to get broadband fluxes. On the contrary,
ACRANEB2 scheme needs only nine solvings of the delta-two-stream and adding
system – one shortwave and eight longwave, the latter because of the NER de-
composition with bracketing.

Computational cost of the RRTMG scheme is still too high for the NWP mod-
els, where it is typically used with reduced spatial and/or temporal resolutions.
This is still the mainstream approach, despite the serious structural deficiency
compromising an outstanding accuracy of the correlated k-distribution method
by infrequent calls of the radiation scheme, unable to exploit the available high
resolution information. The problem is inspected in section 2.7, describing an
interesting alternative offered by the ACRANEB2 scheme. Efforts are ongoing
also on the RRTMG side. If the cost of the correlated k-distribution method was
further reduced, the scheme could be called more frequently in space and/or time.
Recent line of attack aims at developing the FSCK (Full-Spectrum Correlated-k)
method, extending applicability of the reordering idea to wide spectral intervals.
The ambition is to reduce the number of necessary g-points and of related quasi-
monochromatic solvings of the radiative transfer equation, without significant de-
terioration of accuracy. Works of Pawlak et al. [2004] and Hogan [2010] explore
this possibility in the shortwave and longwave spectra respectively, addressing
some of the associated problems.

d) Basic spectral split

Many NWP radiative transfer codes are greatly simplified by the fact that emis-
sion spectra of the Sun and Earth practically do not overlap14, since their tem-
peratures are very different (5770 K versus 200 to 300 K). Thanks to this, relevant
part of the electromagnetic spectrum spanning from the ultraviolet to far-infrared
regions, can be split to disjoint solar and thermal bands.15 In the solar band
(shortwave spectrum), Earth’s atmosphere and surface do not emit, and the only
source of diffuse radiation is the scattering of direct solar beam. In the thermal
band (longwave spectrum), there is no direct solar beam, so that the only source
of diffuse radiation is the emission by the Earth’s atmosphere and surface. As
long as the overlap between solar and terrestrial spectra is neglected, the source
term contains either the scattering of direct solar beam or the terrestrial emission,
but not both.

1.4 General outline of the radiative transfer

scheme

Aim of radiative transfer parameterization in the NWP model is to provide short-
wave and longwave radiative fluxes at all layer interfaces of each model column,
including the TOA and the Earth’s surface. Inputs to radiation scheme are 3D

14They overlap for wavelengths from 3 to 5µm, but this region is insignificant for atmospheric
energy budget, being on the tail of both solar and terrestrial emission spectra. Solar-terrestrial
overlap has to be taken into account by the remote sensing applications working at these
wavelengths.

15In case of the ACRANEB2 scheme, wavelengths from 0.245 to 105µm are covered, with
the boundary between solar and thermal bands placed at 4.642µm.

33



fields describing thermodynamic state and composition of the atmosphere (tem-
perature, pressure, specific humidity, concentrations of ozone and greenhouse
gases, aerosol load, cloud fraction, liquid and ice cloud condensates), 2D fields
specifying surface properties (direct and diffuse albedos, emissivity and temper-
ature), and astronomical parameters (incoming solar radiation at the TOA and
actual sun elevation in each model column). For more advanced schemes, ad-
ditional information may be needed. Surface albedos, emissivity and incoming
solar radiation at the TOA must be specified in the spectral division used by the
radiation scheme.

Having all necessary inputs, radiative transfer is calculated in two steps. In the
first step, radiation scheme evaluates transmissions and reflectivities of model lay-
ers, combining the contributions of radiatively active gases, aerosols and clouds.
Optical properties are calculated separately for clearsky and cloudy parts of the
layers. In the second step, approximated radiative transfer equation with corre-
sponding boundary conditions is solved in each spectral band, delivering fluxes
at layer interfaces. For shortwave fluxes, distinction between direct and diffuse
components is kept.

For evaluating radiative energy budget only the net fluxes F integrated over
whole spectrum are of interest, but from the implementation point of view as well
as for applications and verification it is advantageous to keep the fluxes split into
shortwave and longwave parts. At the TOA and at the surface, the net fluxes are
complemented by the upward and downward fluxes F ↑ and F ↓, following from
boundary conditions.

In the NWP model, sum of the shortwave and longwave net radiative fluxes
contributes to the total energy budget, determining evolution of the temperature
field. If the radiative transfer was the only assumed process, atmospheric heating
rate at pressure level p would be given by the vertical divergence of the net flux

∂T

∂t
= −ag

cp

· ∂F
∂p

(1.80)

F ≡ F ↓ − F ↑, (1.81)

where T is temperature, t is time, ag is gravity acceleration and cp is specific
heat of air at constant pressure. Convention (1.81) defines the net flux F as
positive when the downward energy transfer prevails. Equation 1.80 evaluated
separately for shortwave and longwave net fluxes is an important indicator of
radiative heating or cooling.
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2. Key improvements leading to
the ACRANEB2 scheme

As was mentioned in the introduction, this chapter presents the most important
author’s contributions leading to the ACRANEB2 scheme. Four components are
described: broadband gaseous transmissions (sections 2.1–2.4), shortwave cloud
optical saturation (section 2.5), bracketing technique for internal longwave atmo-
spheric exchanges (section 2.6), and intermittent update of gaseous transmissions
and bracketing weights (section 2.7). First three components improve accuracy of
the ACRANEB2 scheme in a stand-alone mode, while the last component reduces
the computational cost and ensures reasonable error balance in the NWP envi-
ronment, keeping the full cloud-radiation interaction. All results presented in this
chapter were obtained without aerosols, so that meaning of clearsky conditions is
restricted to situations with atmospheric gases only.1 Aerosols were not addressed
in this thesis mostly because of their grey treatment in the ACRANEB2 scheme,
uninteresting from the spectral integration point of view. Anyway, omission of
aerosols should not affect relevance of the obtained results.

2.1 Broadband corrected Malkmus formula

First task of the band approach is to deliver band optical depth δ(u, p, T ) of a
considered gas along the homogeneous optical path with the absorber amount u,
pressure p and temperature T . This is achieved by fitting desired functional
dependence against the reference detailed in section 3.1 of Mašek et al. [2016],
using the minimization procedure described in section 3.5 therein. In the solar
band, reference gaseous transmissions are averaged by the solar spectrum at the
TOA, where the idealized optical paths start. In the thermal band, transmissions
averaged with the Planck weights at temperature of the emitting body are needed,
as explained in section 3.1 of Geleyn et al. [2017].

The Malkmus formula (1.67) cannot be applied in broad spectral intervals,
where the underlying assumptions are not met. Additional corrections are thus
needed. First of all, these should take into account secondary saturation, leading
to the slower than

√
u strong-line growth of band optical depth δ(u). They should

also improve accuracy of δ(u, p, T ) fits by including peculiarities coming e.g. from
continuum absorption.

An uncorrected broadband Malkmus formula can be written in the shape

δmalkmus(u, p, T ) =
a(T )

2b(p, T )
·
[√

1 + 4b(p, T )u− 1
]

(2.1)

a(T ) = a0 ·
1 + a1T

1 + a2T
b(p, T ) =

b0

p
· 1 + b1T

1 + b2T

a0, b0 > 0 a1, a2, b1, b2 ≥ 0,

containing 6 fitting parameters a0, a1, a2, b0, b1 and b2. Independence of co-
efficient a(T ) on pressure and proportionality of coefficient b(p, T ) to 1/p are

1In the literature, conditions without clouds and aerosols are sometimes called pristine, while
the term clearsky is reserved for those without clouds.
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adopted from the narrowband case2, while their temperature dependences are
fitted by simple hyperbolic formulas, ensuring positive results. The broadband
formula (2.1) retains weak-line limit independent of pressure alias line shape. In
the strong-line limit, pressure still enters only via product pu. Secondary sat-
uration, following from the non-linear averaging of many narrowband Malkmus
formulas, is then parameterized by the rescaling

δI(u, p, T ) =
δcrit

α

{[
1 +

δmalkmus(u, p, T )

δcrit

]α
− 1

}
(2.2)

0 < α < 1 δcrit > 0,

which introduces two new fitting parameters α and δcrit, ensuring the u
α
2 strong-

line growth of band optical depth δI(u). The rescaling (2.2) is designed in such
way that it starts to act for optical depths δmalkmus ∼ δcrit, not affecting the
weak-line limit.

Correction (2.2) makes the Malkmus formula usable in the full solar and ther-
mal bands. Further improvement, needed to get sufficiently accurate heating
rates, can be achieved by the temperature and pressure dependent secondary
corrective fits

δaux(u, p, T ) = δI(u, p, T )

×

[
P00(T ) +

δI(u, p, T )

δI(u, p, T ) +D

5∑
j=0

Pj(T ) · lnj δI(u, p, T )

]
+

(2.3)

δII(u, p, T ) = δaux(u, p, T )

[
1 +

Q(p)

1 + δaux(u, p, T )

]
+

, (2.4)

bringing additional 25 fitting parameters: scalar D > 0, second order polynomi-
als P00(T ), P0(T ), . . . , P5(T ), and second order polynomial Q(p). Shape of the
corrective fits (2.3)–(2.4) was motivated by the error behaviour of band optical
depth δI(u, p, T ), with some simplifications done in order to achieve computa-
tionally cheap formulas. Equations (2.3)–(2.4) do not guarantee non-negative
results. For safety, eventual negative values are truncated to zero, as indicated
by subscript ‘+’.

Accuracy of the homogeneous solar fits for the water vapour and ozone is
demonstrated on figure 2.1. Individual panels show contours in the (p, T ) plane
of the error function

ε(p, T ) =

√√√√ 1

K

K∑
k=1

ln2 δ(uk, p, T )

δref(uk, p, T )
, (2.5)

where the sum goes through 33 absorber amounts used in the fitting procedure.
The reason for choosing the root-mean-square error of ln δ is the considerable
variation of band optical depth δ in the region of interest, spanning many orders
of magnitude. The error function (2.5) is consistent with the least-squares fitting
procedure, which minimizes the sum of ε2(p, T ) over 15 values of pressure and

2In the narrowband case there is a(T ) = S̄(T )/d and b(p, T ) = S̄(T )/[πᾱL(p, T )], with
ᾱL(p, T ) ∝ p.
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5 values of temperature.3 Error of the uncorrected Malkmus formula (2.1) (top
row) is definitely too large to be used in the full solar band. Reasonable values of
the error function (2.5) are below 0.1, indicated by the shades of grey, meaning
the average relative error of band optical depth δ up to ∼10%. The rescaling (2.2)
improves the accuracy dramatically (middle row), reducing the maximum error
below 0.15. The error distribution across the (p, T ) plane becomes smoother,
especially for ozone. Finally, the secondary corrective fits (2.3)–(2.4) (bottom
row) reduce the error slightly for water vapour, pushing it below 0.1 except for
insignificant low pressure region.4 In case of ozone, they lead to almost perfect
fit, with the maximum error deeply below 0.01. It should be stressed that the
fitting of band optical depth δII(u, p, T ) was not done in steps, but simultaneously
for all 33 fitting parameters occurring in formulas (2.1)–(2.4). Globally optimal
results are thus ensured.

Accuracy of the fits with respect to absorber amount u can be inspected
on figure 2.2, showing reference and fitted δ(u) curves for two meteorologically
important error-prone regions, represented by the lower left and upper right cor-
ners of the error maps on figure 2.1. For convenience, the absorber amount u
is expressed in pressure units, obtained by multiplying the value in kg m−2 by
standard gravity acceleration ag = 9.80665 m s−2. It is now obvious why the
uncorrected Malkmus formula with

√
u strong-line growth cannot capture the

reference band optical depth well. Addition of the rescaling (2.2) restores correct
strong-line growth for the water vapour (top row), leaving little space for further
improvement. Situation is more complicated for ozone (bottom row), where for
big absorber amounts u the δ(u) growth increases again. This can be attributed
to a strong ozone continuum absorption in the solar wavelengths, which starts
to dominate once the absorption near the line centres becomes depleted. This
effect cannot be described by the simple rescaling (2.2), on the other hand the
secondary corrective fits (2.3)–(2.4) include it very accurately.

Evaluation of band optical depth along the non-homogeneous optical path
is done via the Curtis-Godson approximation (1.68)–(1.69) translated to coeffi-
cients a(T ) and b(p, T ), complemented by explicit averaging rules for pressure and
temperature required by the secondary corrective fits (2.3)–(2.4) (for details see
section 3.6 of Mašek et al. [2016]). Since the monotonicity of resulting band op-
tical depth δ(u) is not assured, incremental gaseous optical depth must be safely
evaluated as

∆δ = [δ(u+ ∆u)− δ(u)]+, (2.6)

where again subscript ‘+’ denotes truncation of negative values to zero. Never-
theless, the ill behaved cases, where this truncation takes part, are rare within
the fitting ranges of absorber amount, pressure and temperature. In principle,
one could use explicitly averaged pressure and temperature also for evaluating
Malkmus coefficients a(T ) and b(p, T ) along the non-homogeneous optical path.
Such approach, however, would give less accurate results than the Curtis-Godson
approximation.

3Fitting range is 5–1000 hPa for pressure, and 204.0–307.6 K for temperature. Fitting range
of the absorber amount is chosen individually for each gas, so that it covers both the weak-line
limit and the maximum value likely to be encountered in the scattering atmosphere.

4Low pressure region is insignificant for water vapour, due to its negligible stratospheric
abundances, but not for ozone.
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Figure 2.1: Error of the Malkmus formula, applied in the full solar spectrum, with
respect to the narrowband reference. For each pressure and temperature, error
over relevant range of absorber amounts is evaluated using equation (2.5). Left:
Error maps for water vapour. Right: Error maps for ozone. Top: The uncor-
rected Malkmus formula. Middle: The Malkmus formula with the broadband
correction I. Bottom: The Malkmus formula with the broadband corrections I
and II.
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Figure 2.2: Dependence of band optical depth in the full solar spectrum, given
by different versions of the Malkmus formula, on the absorber amount. The
narrowband reference is plotted in red. Top: Water vapour. Bottom: Ozone.
Left: Low pressure and temperature (p = 5 hPa, T = 204.0 K). Right: High
pressure and temperature (p = 1000 hPa, T = 307.6 K).

39



It must be admitted that while the rescaling (2.2) is conceptually simple, deal-
ing with secondary saturation by introducing only two extra fitting parameters,
the secondary corrective fits (2.3)–(2.4) go against this simplicity. They cannot
be avoided when the high accuracy of heating rates is required (see figure 2 of
Mašek et al. [2016]).

2.2 Double temperature dependence of the

longwave gaseous transmissions

Broadband approach in the thermal spectrum brings an additional complication
related to emission: band transmission τ depends not only on path temperature T ,
via the line strengths and line half-widths, but also on temperature of the emitting
body Te, via the Planck weights wν(Te) whose variation in the wide spectral
interval cannot be neglected. Longwave gaseous transmissions are thus functions
of the absorber amount, pressure, and two temperatures. This double temperature
dependence was first consistently addressed by Ramanathan and Downey [1986] in
the absorptivity-emissivity framework. It was ignored in the original ACRANEB
scheme, despite the fact that in the atmosphere temperatures T and Te can differ
by several tens of K. The cure was implemented only in the ACRANEB2 scheme,
where the assumption T = Te was relaxed in the NER framework. The idea, put
forward by Geleyn et al. [2017], is to linearize Planck weights around suitably
chosen temperature T0, so that for any temperature Te they can be expressed via
fixed weights w̃ν and ˜̃wν , proportional to the blackbody radiance Bν(T0) and its
derivative dBν/dT (T0):

wν(Te) ≡
πBν(Te)

σT 4
e

≈ wν(T0) +
dwν
dT

(T0)(Te − T0)

= w̃ν + 4

(
Te

T0

− 1

)
( ˜̃wν − w̃ν) (2.7)

w̃ν ≡
πBν(T0)

σT 4
0

(2.8)

˜̃wν ≡
π

4σT 3
0

· dBν

dT
(T0) (2.9)∫ ∞

0

wν(Te) dν =

∫ ∞
0

w̃ν dν =

∫ ∞
0

˜̃wν dν = 1 (2.10)

Band transmission τ
∣∣
Te

, averaged with Planck weights wν(Te), is then approxi-

mated as

τ
∣∣
Te
≡
∫ ∞

0

τνwν(Te) dν ≈ τ̃ + 4

(
Te

T0

− 1

)
(˜̃τ − τ̃) (2.11)

τ̃ ≡
∫ ∞

0

τνw̃ν dν (2.12)

˜̃τ ≡
∫ ∞

0

τν ˜̃wν dν, (2.13)

where the transmissions τ̃ and ˜̃τ are evaluated with fixed spectral weights w̃ν
and ˜̃wν respectively.
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Linearization (2.7) preserves normalization of Planck weights, but it does
not guarantee their positive values. This can be seen from figure 2.3, where
linearized weights at the lowest temperature (dashed dark blue) become slightly
negative for wavenumbers 1/λ exceeding 1600 cm−1. It can also be seen that
linearization of Planck weights with respect to temperature damps their wings
and shifts the maximum towards higher wavenumbers. Nevertheless, figure 2.5
demonstrates that linearization (2.7) is acceptable for the meteorological range
of temperatures. Here it must be stressed that linearization of Planck function
around temperature T0 would violate normalization of Planck weights. Even if
renormalized, there would be severe problem with their negative values at low
temperatures. Moreover, renormalization breaks down at temperature T = 3

4
T0,

where the integral becomes zero. Proposed linearization of Planck weights escapes
this problem completely.

Strength of equation (2.11) lies in the fact that it enables to replace 4D fit of
the longwave gaseous optical depth δ(u, p, T, Te) with the two 3D fits δ̃(u, p, T ) and
˜̃δ(u, p, T ), taking the shape (2.1)–(2.4). Since the correction to temperature Te is
applied on band transmissions, these must be diagnosed from the corresponding

band optical depths as τ̃ = exp(−δ̃) and ˜̃τ = exp(−˜̃δ). Resulting transmission
is eventually transformed back to band optical depth δ

∣∣
Te

= − ln τ
∣∣
Te

. Further

usage of Te-corrected transmissions and optical depths in the NER framework is
explained in sections 6.3, 6.4 and 6.6 of Geleyn et al. [2017]. The ACRANEB2
scheme chooses linearization temperature T0 = 255.8 K, which is in the middle of
the temperature fitting range.

Importance of discrimination between temperatures T and Te can be demon-
strated using the CIRC (Continual Intercomparison of Radiation Codes; see Ore-
opoulos et al. [2012]) case 2. In order to exclude gas overlap issues, only wa-
ter vapour was kept and its e-type continuum was neglected. Strong impact
was achieved by selecting the case with the highest precipitable water vapour
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Figure 2.4: Profiles of temperature (solid red; lower scale) and specific humid-
ity (dashed blue; upper scale) for CIRC case 2. Thin vertical line denotes lin-
earization temperature T0 = 255.8 K. Left: Linear pressure and humidity scales.
Right: Logarithmic pressure and humidity scales. Height scale is approximate,
obtained from pressure using characteristic height H = 7.5 km.

(48.5 kg m−2). Vertical profiles of temperature and humidity are shown on fig-
ure 2.4. There are 54 atmospheric layers.

Figure 2.5 shows the longwave heating rates obtained by the narrowband
model. Three different treatments of temperature Te are compared. Red curve
is an unapproximated reference calculation using Planck weights at temperature
of the emitting body. Yellow curve uses Planck weights fixed at temperature
T0 = 255.8 K. Its absolute error remains below 0.2 K/day across most of the
troposphere, reaching 0.4 K/day near 200 hPa level, and maximum 0.7 K/day at
the top of the model domain. Apart from few isolated regions, this zeroth-order
approximation works remarkably well in the troposphere and stratosphere. It
differs from the isothermal emissivity method, criticized by Ramanathan and
Downey [1986], by setting Te in Planck weights to constant value T0 instead of
local value T . Green curve further improves the accuracy by linearizing Planck
weights around temperature T0 = 255.8 K. This first-order approximation is in-
deed superior to the zeroth-order one, having absolute error below 0.2 K/day
across the whole model domain.

Performance of linearization (2.11) in the broadband scheme is demonstrated
on the left panel of figure 2.6. Calculation is still of absorptivity-emissivity type,
compared against unapproximated narrowband reference. Apart from the model
top, absolute error of green curve is below 0.2 K/day, confirming outstanding
accuracy of the linearization (2.11), and of the broadband fits (2.1)–(2.4). Yellow
curve corresponds to old ACRANEB scheme, using isothermal emissivity method
alias assumption Te = T . Its error is positive across most of the troposphere,
reaching unacceptable value 0.5 K/day between 500 and 600 hPa levels. Right
panel shows the results obtained in isothermal case with T = T0 = 255.8 K.
Here the error of green and yellow curves is comparable, coming solely from the
broadband fits. Their difference comes from the fact that the green curve uses 3D
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Figure 2.5: Longwave heating rates for CIRC case 2, containing only water vapour
without e-type continuum, calculated by the narrowband model: red dots – true
Planck weights (reference); yellow squares – Planck weights taken at temperature
T0 = 255.8 K; green triangles – Planck weights linearized around temperature
T0 = 255.8 K. Dashed lines denote deviation from reference (upper scale). Left:
Vertical scale linear in pressure. Right: Vertical scale logarithmic in pressure.
Height scale is approximate, obtained from pressure using characteristic height
H = 7.5 km.

fit of δ̃(u, p, T ) alias δ(u, p, T, T0), while the yellow curve uses 3D fit of δ(u, p, T, T ),
which can be different from the former fit even for T = T0.

Relaxing the Te = T assumption, used by the isothermal emissivity method,
is a critical factor for the success of the broadband scheme with single longwave
interval. It is necessitated by the considerable temperature variation across the
depth of atmosphere.

2.3 Broadband treatment of water vapour

e-type continuum

Infrared spectrum of water vapour consists of strong absorption bands, separated
by window regions dominated by weaker continuum absorption. Still, the water
vapour continuum plays an important role in controlling the longwave radia-
tion budget, since it is 8–12µm window where the most of terrestrial radiation
escapes to space. The water vapour continuum consists of two components –
the self continuum generated by collisions between the water vapour molecules,
and the foreign continuum due to collisions of the water vapour molecules with
molecules of other gases (for more details see Ptashnik et al. [2011a] and Ptash-
nik et al. [2012]). Origin of the foreign continuum is the accumulated far-wing
absorption by spectral lines centred in the surrounding absorption bands. The
self continuum is characterized by proportionality of its absorption cross section
to partial water vapour pressure e, discovered in 1960s and first separated from
the foreign continuum by Bignell [1970]. Origin of the self continuum is still
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Figure 2.6: Longwave heating rates for CIRC case 2, containing only water vapour
without e-type continuum: red dots – narrowband reference; yellow squares –
broadband scheme with Te = T assumption; green triangles – broadband scheme
with linearization (2.7) and T0 = 255.8 K. Dashed lines denote deviation from
reference (upper scale). Left: Unmodified temperature profile. Right: Temper-
ature profile reset to constant value T = T0.

a matter of debate (for historical overview and recent developments see Shine
et al. [2012]). Two competing theories assume the generating mechanism to be
either absorption by water dimers, or far-wing absorption by water monomer
lines, differing significantly from Lorentzian profile. The main complication for
verifying these theories, especially in the near-infrared region, is the lack of lab-
oratory measurements in conditions representing the Earth’s atmosphere (Shine
et al. [2016]). Moreover, different mechanisms can dominate water vapour contin-
uum in different spectral regions. According to critical review of Ptashnik et al.
[2011b], 20–40% of observed mid-infrared and far-infrared self continuum can be
explained by true-bound water dimers, plus there can be comparable contribu-
tion from quasi-bound dimers. They also claim that in the near-infrared region,
modern continuum models can underestimate water vapour self continuum by
around an order of magnitude.

Nevertheless, for the practical purpose a semi-empirical model of the wa-
ter vapour continuum was created by Clough et al. [1989], later significantly
improved by Mlawer et al. [2012] and referred to as MT CKD (Mlawer-Tobin-
Clough-Kneizys-Davies). It combines the effect of collisionally broadened water
monomer lines, having exponentially decaying far wings, with the effect of weak
interactions involving water vapour molecules, resulting in a broader continuum.
The first mechanism is responsible for stronger continuum observed inside absorp-
tion bands, while the second dominates in window regions. Empirical parameters
of the MT CKD model were determined from the fit to available observations.
The model itself then enables to extrapolate results from data-rich to data-sparse
regions, but according to Ptashnik et al. [2011a] such extrapolation is questionable
in the near-infrared and visible regions. This can be a problem for remote sensing
but not so much for the ACRANEB2 scheme, which assumes water vapour self
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continuum only in the longwave spectrum, relying on the fact that in the short-
wave spectrum it is much weaker and masked by water vapour line absorption
and by the foreign continuum.

Absorption coefficient of the water vapour continuum can be written as

kcont
ν = cself

ν (T )e+ cforeign
ν (T )(p− e)

= [cself
ν (T )− cforeign

ν (T )]e+ cforeign
ν (T )p ≡ ce−type

ν (T )e+ cforeign
ν (T )p, (2.14)

where cself
ν and cforeign

ν are the self and foreign continuum coefficients depending
only on temperature T , e is partial pressure of water vapour, p is total pressure,
so that p− e is partial pressure of dry air. Difference cself

ν − cforeign
ν ≡ ce−type

ν will
be referred to as the e-type continuum coefficient. It is always positive, since in
the MT CKD version 2.5.2 the foreign continuum coefficient is at least about one
order of magnitude smaller than the self continuum coefficient.

Using equation (2.14), optical depth due to the water vapour continuum can
be expressed as

δcont
ν ≡ kcont

ν u = ce−type
ν (T )eu+ cforeign

ν (T )pu, (2.15)

where u is water vapour amount along the optical path. For a homogeneous path
it is proportional to specific humidity q, which is up to the first order proportional
to partial pressure of water vapour e:

q =
Rde

Rvp− (Rv −Rd)e
≈ Rd

Rv

· e
p

(2.16)

Symbols Rd and Rv denote gas constant of dry air and of water vapour, respec-
tively. From equation (2.16) it follows that the product eu is proportional to e2,
and this quadratic dependence is a signature characterizing the e-type absorption.
Even though definition of the continuum absorption is somewhat arbitrary, de-
pending both on the line cut-off procedure (see figure 3 of Ptashnik et al. [2011a])
and on the assumed line shape, equation (2.15) enables to isolate the e-type part
uniquely. This is because doubling the water vapour amount at the given pres-
sure and temperature doubles the line and foreign continuum absorptions, but
quadruples the e-type continuum absorption.

In the old ACRANEB scheme, the e-type continuum was derived using the
idea of Bignell et al. [1963], supposing that the half-widths of self broadened
water vapour lines are an empirical multiple of their foreign broadened values.
Ritter and Geleyn [1992] compared values calculated by this method with the
experimental data of Burch [1981], finding factor 50 as a reasonable compro-
mise.5 However, since the measurements in the 8–12µm window were available
only at single temperature of 296 K, at the time it was not recognized that the
method gives too steep negative temperature dependence, leading to overesti-
mated e-type absorption at low temperatures. The ACRANEB2 scheme removes
this deficiency by importing the water vapour e-type continuum from the recent
MT CKD continuum model (Mlawer et al. [2012]), using its version 2.5.2. Spec-
tral profile and temperature dependence of these reference data is depicted on
figure 2.7. It shows rather smooth spectral variation and strong decrease of the
e-type continuum coefficient with temperature.

5Bignell et al. [1963] found this factor to be around 30 in the mid-infrared region, while
according to Shine et al. [2012], the modern value is only around 5.
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Figure 2.7: Spectral profiles of water vapour e-type continuum coefficient
ce−type
ν (T ), taken from MT CKD model version 2.5.2, plotted for five different

temperatures. Wavenumber 1/λ is used as horizontal coordinate. Thin vertical
lines denote boundaries of ACRANEB2 longwave spectral interval. Grey belt is
the 8–12µm window.

Broadband parameterization of the e-type continuum has to deal with its
strong spectral overlap with water vapour line absorption, as well as with the
optical saturation. In order to accommodate both effects, Malkmus formula (2.1)
was extended by the non-linear function of argument c(T )eu, which is the broad-
band analogue of monochromatic optical depth ce−type

ν (T )eu:

δe−type
malkmus(u, p, e, T ) = δmalkmus(u, p, T ) +

c(T )eu

1 + c3c(T )eu
+ c4[c(T )eu]c5 (2.17)

c(T ) = c1 exp(−c2T )

c1, c2, c3, c4, c5 > 0

Extended broadband Malkmus formula (2.17) is still the subject to corrections
(2.2)–(2.4). It introduces five additional fitting parameters c1 to c5. For small
absorber amounts u the second term linearizes to c(T )eu, while for big absorber
amounts it saturates at value 1/c3. The slope is then controlled by the third
term, which continues to grow and adjusts asymptotic behaviour given by rescal-
ing (2.2). Formula (2.17) is designed in such way that in the limit e → 0 it
reduces back to original formula (2.1).

Parameters c1 to c5 were fitted using the same set of homogeneous optical
paths as before, with the (u, p, T ) fitting domain extended by specific humidities
q = 10−7, 10−6, 10−5, . . . , 10−2. These were needed for diagnosing partial water
vapour pressure:

e =
Rvq

Rd + (Rv −Rd)q
· p (2.18)

Cost function was still based on the root-mean-square error of ln δ(u, p, e, T ) with
respect to the narrowband reference. In order to obtain maximum accuracy in
the meteorologically relevant region, supersaturated states were excluded. Fitting
procedure did not touch previously found values of 33 parameters occurring in
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Figure 2.8: Longwave heating rates for CIRC case 2, containing only water
vapour: red dots – e-type continuum excluded (reference); yellow squares – e-type
continuum included. Dashed lines denote deviation from reference (upper scale).
Left: The narrowband reference. Right: The ACRANEB2 scheme.

equations (2.1)–(2.4). These were simply reused in the evaluation of water vapour
optical depths based on equations (2.1), (2.17) and (2.2)–(2.4). Consistently with
section 2.2, two fits had to be performed – one with spectral weights w̃ν , other
with spectral weights ˜̃wν . Success of the proposed treatment is indicated by the
fact that an inclusion of the e-type continuum did not increase overall root-mean-
square error of the broadband fits by more than 2%.

Final quality of the broadband e-type continuum treatment can be judged
from figure 2.8. It compares longwave heating rates for CIRC case 2, again con-
taining only water vapour. Two things are apparent. First, significance of the
water vapour e-type continuum in warm and humid lower troposphere, result-
ing in stronger cooling below 500 hPa level – yellow curves including the e-type
continuum give up to 1.5 K/day more cooling than the red curves excluding it.
Difference starts to be visible around level where specific humidity q quickly rises
above value 1 g/kg. Second, responses of the narrowband reference (left panel)
and the broadband scheme (right panel) to inclusion of the e-type continuum,
indicated by dashed yellow lines, are in excellent agreement. It means that the
broadband methodology works fine, and it should not be invalidated by the future
updates of the reference continuum model.

Values of the broadband fitting coefficients are not listed here. They can be
found in appendix D of Mašek et al. [2016] for the shortwave gaseous optical
depths, and in appendix B of Geleyn et al. [2017] for the longwave ones.

2.4 Non-random spectral overlaps

between gases

The ACRANEB2 scheme considers absorption by three gases – H2O, CO2+
and O3. Atmospheric abundances of H2O and O3 vary in space and time, and
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these variations must be taken into account in the NWP models.6 Situation with
remaining radiatively active gases is different. These are well mixed across the
troposphere and stratosphere, and their dry air mixing ratios can be assumed
constant in the time scales of weather forecast. This enables to create CO2+ as
a fixed composition mixture of CO2, N2O, CH4 and O2,7 and to fit broadband
optical depth of the mixture as a whole, not component by component. Advan-
tage of such approach is not only reduced computational cost of the scheme, but
also an automatic inclusion of spectral overlaps between individual components,
treated explicitly in the fitting reference. Remaining challenge for the broadband
scheme is to parameterize non-random spectral overlaps between H2O, CO2+,
and O3. While in the shortwave spectrum they can be neglected without doing
much harm (see figure 3 of Mašek et al. [2016]), in the longwave spectrum they
must definitely be accounted for (see figure 15 of Geleyn et al. [2017]).

Results given in sections 2.1–2.3 were purposely presented only for one gas at
a time, in order to avoid the overlap problem, which is addressed here. Starting
point is the fact that if the transmissions of gases 1 and 2 are spectrally un-
correlated, band transmission of the mixture is the product of individual band
transmissions, while band optical depth of the mixture is the sum of individual
band optical depths:

τ rand
12 = τ1τ2 (2.19)

δrand
12 = δ1 + δ2 (2.20)

Superscript ‘rand’ is just another way of saying that there is no spectral cor-
relation. In other words, absorptions of the two gases overlap randomly in the
considered spectral interval.

In the parameterization it is more convenient to work with band absorptivity
a ≡ 1− τ , for which the condition (2.19) translates to:

arand
12 = a1 + a2 − a1a2 (2.21)

Random assumption usually holds well in the narrow spectral intervals, but not
necessarily in the broader ones. Here the resulting band absorption a12 can differ
from random value (2.21) by non-negligible departure ∆a12:

a12 = arand
12 + ∆a12 (2.22)

Aim of the parameterization is to fit departure ∆a12 as the function of suit-
able variables. First attempt assumed 4D dependence ∆a12(u1, u2, p, T ), with
u1 and u2 being absorber amounts. Later it was found that replacing absorber
amounts by absorptivities a1 and a2 enables to omit explicit dependence of ∆a12

on pressure and temperature, reducing the problem to 2D fit.
Second simplification, reducing the problem further to 1D fit, arises from

the fact that relative departure ∆a12/arand
12 becomes small when the individual

absorptivities have very different values. This can be understood by assuming

6Water vapour is a prognostic quantity, while for ozone monthly climatology is sufficient
when considering broadband energy budget. Near real-time ozone data are however needed for
applications such as calculation of UV index.

7Old ACRANEB scheme considered also CO, but it has negligible impact on energy budget
since its absorption band is located near the shortwave-longwave boundary.
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a2/a1 � 1. In such case arand
12 ∼ a1, while the gas 2 cannot shift absorptivity of

the mixture by more than ∼a2 from random value. Mathematically it means:

|∆a12|
arand

12

.
a2

a1

= min

(
a1

a2

,
a2

a1

)
=

1

max

(
a1

a2

,
a2

a1

) ≈ 1
a1

a2

+
a2

a1

(2.23)

Final formulation of inequality (2.23) is symmetric, so that it applies also for
a1/a2 � 1. It is then natural to express departure ∆a12 for any values of a1 and
a2 as:

∆a12(a1, a2) = f(a1, a2) · g(arand
12 ) (2.24)

f(a1, a2) ≡
2a1a2

a12 + a22 + εd
(2.25)

g(0) = 0 g(1) = 0, (2.26)

Modulation factor f(a1, a2) is normalized so that it is one for a1 = a2, and the
small number εd = 10−20 was added in denominator to prevent division by zero
when a1 = a2 = 0. Constraints (2.26) reflect the fact that when both gases are
completely transparent or completely absorbing in the considered band, so is their
mixture.

The last missing bit is the function g(arand
12 ). Its shape was motivated by the

scatterplots shown on figure 2.9. These were obtained by running the narrowband
reference on the set of optical paths extracted from five standard ICRCCM (In-
terComparison of Radiation Codes in Climate Models) atmospheres defined by
Ellingson and Fouquart [1991]. In order to increase the number of data points,
gaseous optical depths between each pair of levels were calculated. Plotting the
ratio ∆a12(a1, a2)/f(a1, a2) against random absorptivity arand

12 revealed rather sharp
dependences, especially striking for the most important (H2O, CO2+) overlap.
For gaseous pairs containing O3 the scatter is bigger, contributed by less impor-
tant cases with strongly asymmetric absorptivities a1 and a2, indicated by lighter
shades of grey. Anyway, scatterplots confirm plausibility of equations (2.24)–
(2.26), indicating rather simple shape of function g(arand

12 ). It was proposed with
only four fitting parameters A, B, C and D, reducing the risk of overfitting:

g(arand
12 ) = A(1− arand

12 )B(arand
12 )C(1− Darand

12 ) (2.27)

B,C > 0

Positive values of B and C are needed in order to ensure constraints (2.26). In
the fitting procedure, more strict requirements B,C ≥ 0.5 were applied. On the
contrary to Geleyn et al. [2017], restriction D ≥ 1 was relaxed, in order to improve
quality of the fits in cases where the function g(arand

12 ) does not change sign.
Values of fitting coefficients are given in table 2.1, corresponding to green

curves on figure 2.9. Two sets of values must be delivered – one obtained with
spectral weights w̃ν , other with spectral weights ˜̃wν . It should be stressed that the
fitting was not done on the function g(arand

12 ) directly, but the minimized quantity
was the sum of squared differences [a12−(a12)ref ], more representative of the overall
error. This explains why fitted curves tend to pass through darker data points –
these have bigger influence, thanks to higher modulation factor f(a1, a2). Linear
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Figure 2.9: Fits of pair gaseous overlaps in the longwave spectrum. Shown is the
ratio ∆a12(a1, a2)/f(a1, a2), plotted against random absorptivity arand

12 . Fitted de-
pendence g(arand

12 ) is green, data points are grey. Shades of grey from the darkest

to lightest correspond to modulation factor f(a1, a2) from the intervals 1–10−
1
2 –

10−1–10−
3
2 –10−2. Corresponding linear envelopes ensuring the final absorptiv-

ity a12 from the physical range [0, 1] are also shown. Left: Results obtained with
spectral weights w̃ν . Right: Results obtained with spectral weights ˜̃wν . Top:
Pair (H2O, CO2+). Middle: Pair (H2O, O3). Bottom: Pair (CO2+, O3).
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spectral weights w̃ν
gaseous pair (H2O, CO2+) (H2O, O3) (CO2+, O3)

parameter
A 3.394E+00 8.811E−01 −6.600E−01
B 8.659E−01 7.989E−01 1.237E+00
C 3.514E+00 2.468E+00 2.538E+00
D 1.229E+00 −2.366E−01 3.119E+00

spectral weights ˜̃wν
gaseous pair (H2O, CO2+) (H2O, O3) (CO2+, O3)

parameter
A 3.564E+00 1.111E+00 4.406E−02
B 1.238E+00 8.129E−01 5.042E−01
C 3.407E+00 2.600E+00 3.117E+00
D 1.455E+00 2.352E−01 −2.327E+01

Table 2.1: Dimensionless fitting parameters for the longwave pair gaseous over-
laps. The CO2+ mixture corresponds to atmospheric composition of year
2010, taken from WDCGG (World Data Centre for Greenhouse Gases) report:
389 ppmv of CO2, 0.323 ppmv of N2O, 1.808 ppmv of CH4 and 209 460 ppmv of O2.

envelopes on figure 2.1 mark forbidden regions where the fitted result would
have to be truncated in order to ensure final absorptivity from the interval [0, 1],
provided that modulation factor reaches the value corresponding to given shade
of grey. Practically it should not happen, since the problematic portions of green
curves, visible for gaseous pairs containing O3, are not supported by data points of
given shade. They are therefore extrapolated beyond underlying ICRCCM cases,
and it is very unlikely that they will be entered in a meteorologically relevant
situations. For gaseous pairs containing H2O, random longwave absorptivity does
not exceed ∼0.9, while for pair (CO2+, O3) it remains below ∼0.3. Non-random
spectral overlap of the last gaseous pair is clearly the least important one, and
could eventually be neglected.

Final step deals with the non-random gaseous overlaps when H2O, CO2+ and
O3 are present simultaneously. In such case, pair absorptivities a12, a13 and a23

are calculated first, based on equations (2.21), (2.22), (2.24), (2.25) and (2.27).
Then they are converted to pair optical depths δ12, δ13 and δ23, and the final
broadband optical depth is determined from the formula:

δ = (δ1 + δ2 + δ3) + (δ12 − δ1 − δ2) + (δ13 − δ1 − δ3) + (δ23 − δ2 − δ3)

= δ12 + δ13 + δ23 − δ1 − δ2 − δ3 (2.28)

Interpretation of formula (2.28) is straightforward. It adds the random result
δ1 + δ2 + δ3 with the non-random contributions of pair overlaps, neglecting the
non-random contribution of triple overlap.8 Combination must be done in the
space of optical depths, not absorptivities, since the former are additive while the

8The non-random contribution of triple overlap, given as δ123− δ12− δ13− δ23 + δ1 + δ2 + δ3,
would be difficult to parameterize. Fortunately it is very weak, so it can be neglected without
any harm.
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Figure 2.10: Impact non-random pair gaseous overlaps on longwave heating rates
for CIRC case 2: red dots – the narrowband reference; yellow squares – the
broadband scheme assuming random overlaps; green triangles – the broadband
scheme with parameterized pair overlaps. Dashed lines denote deviations from the
narrowband reference (upper scale). Broadband CO2+ optical depth and CO2+
pair overlaps with H2O and O3 were refitted using atmospheric composition of
CIRC case 2. The longwave results, however, are not directly comparable to
the published line-by-line reference, due to different assumptions made on the
emission source term (piecewise constant versus vertically continuous).

latter are not. In final shape, the random result δ1 + δ2 + δ3 is subtracted, since
the sum of pair optical depths δ12 + δ13 + δ23 contains contribution from each gas
twice. The very last safety step is the truncation of values δ < max(δ1, δ2, δ3),
since the broadband optical depth of the mixture cannot fall below broadband
optical depth of any component.

Accuracy of the proposed overlap treatment is demonstrated on figure 2.10,
showing longwave heating rates for CIRC case 2, this time with all three gases
included. Yellow curve, assuming random overlaps between gases, overestimates
cooling in the lower troposphere by maximum 0.8 K/day at 700 hPa level, and
underestimates it in the upper troposphere. Green curve, with parameterized
non-random pair overlaps, reduces the absolute error dramatically, keeping it
within 0.2 K/day across the troposphere and most of the stratosphere. Higher
error visible near the top of domain is not caused by the overlap treatment, but
it comes from the fits of individual gaseous optical depths. It is anyway in the
region of little meteorological interest, at least for the short range NWP.

It is now possible to understand relative success of the longwave ACRANEB
scheme, despite using isothermal emissivity assumption Te = T , and neglecting
non-random gaseous overlaps. From yellow curves on figures 2.6 and 2.10 it is
obvious that the errors of these two approximations were in partial compensation,
reducing bias especially in the lower troposphere. Improvement brought by the
ACRANEB2 scheme was possible only when both these errors were removed –
fixing only one of them would eventually increase the error. The line of attack
was to start inspecting single gas isothermal cases, in order to verify the quality
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of fitted broadband optical depths. Stepping to non-isothermal cases proved
unacceptability of Te = T assumption, while going to multiple gases revealed
necessity to parameterize their non-random overlaps.

Developments presented in sections 2.1–2.4 pushed the clearsky heating rate
error of the ACRANEB2 scheme (both shortwave and longwave) below 0.2 K/day
in the troposphere and most of the stratosphere, which is remarkable result for
the single interval scheme. As discussed in section 9.2 of Mašek et al. [2016],
main accuracy limitation in the shortwave spectrum then becomes spectrally flat
surface albedo, causing error up to 0.3 K/day. It seems that accuracy limit of the
single interval approach was reached. Therefore, it does not make much sense
to further improve broadband gaseous optical depths, maybe with exception of
the high atmosphere. Need of higher accuracy would necessitate use of several
shortwave spectral intervals.

2.5 Shortwave cloud optical saturation

With clouds entering the scene, radiation budget is altered dramatically. Differ-
ence between clear and overcast day is absolute, be it at noon or early morning.
Beside obvious direct radiative effect on temperature, there are also indirect ones
via water phase changes, or via influence of stratification on turbulent and con-
vective transports. Even in the short range, accurate weather forecast is not
possible without realistic interaction between radiation and clouds. The prob-
lem is demanding, since it requires reliable cloud inputs entering the radiation
scheme, as well as accurate cloud optical properties derived inside. Situation is
simpler but not trivial for liquid clouds, thanks to the sphericity of cloud droplets.
Still the hypothesis on their size distribution must be made, given the fact that
microphysics scheme works only with its one or two moments. For ice clouds, the
complexity is increased considerably by the coexistence of various crystal habits,
whose abundances depend not only on local conditions, but also on the cloud
history. Nevertheless, there is a way out from this seemingly hopeless situation,
based on observation that the spectral properties9 of realistic droplet size distri-
butions can be stratified along single parameter – droplet effective radius (see
Hu and Stamnes [1993]). Similar approach can be applied also to ice clouds,
but only after specifying composition of a ‘prototype’ cloud, usually representing
certain type of cirrus cloud. In case of one-momentum microphysics scheme, only
liquid and ice water contents are available, and the effective particle size must be
diagnosed.

Compared to gaseous absorption, cloud optical properties are much smoother
across the spectrum. In the longwave part of spectrum, clouds can be treated as
grey bodies without sensible degradation of heating rates. In the shortwave part
of spectrum, situation is different. Here the variation of single scattering albedo
in the near-infrared region cannot be ignored, dropping from virtually 1 at the
visible end to the minimum value 0.5 around 3µm wavelength. According to
Slingo [1989], at least four spectral intervals are needed to represent it explicitly.
Single shortwave interval can thus be used only if the cloud optical saturation is

9Namely the mass extinction coefficient kextν , single scattering albedo $ν and asymmetry
factor gν .
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parameterized. Ignoring the saturation effect would lead to severe overestimation
of shortwave cloud optical depth, making the scheme unusable.

In the original version of the ACRANEB scheme, cloud optical properties were
derived from the underlying spectral data of Stephens [1978a,b] for liquid clouds,
and of Rockel et al. [1991] for ice clouds. There was no dependence on liquid or ice
water contents, equivalent to assumption of fixed effective particle size, with sep-
arate values for liquid and ice clouds. The cloud optical saturation was accounted
for only statically, i.e. without considering actual cloud thickness. It necessarily
led to too transparent thin clouds and too opaque thick clouds. Such situation
was found unsatisfactory, therefore the ACRANEB cloud optical properties were
revised even before gaseous transmissions. New treatment, developed in the years
2005–2006, made cloud optical properties implicitly dependent on effective par-
ticle size, via liquid or ice water content. It also parameterized the cloud optical
saturation dynamically, by modifying mass absorption and scattering coefficients
by factors that were functions of unsaturated cloud optical depth. The optical
saturation was parameterized in both shortwave and longwave parts of spectrum,
even if in the latter the impact was weak. Influence of cloud geometry on the
optical saturation was taken into account heuristically. In the shortwave part of
spectrum, vertical dependence of the cloud optical saturation was derived using
the absorption approximation, which was however not very realistic. Still the
main shortcoming, not realized at the time, was basing the optical saturation
of ice clouds on Rockel et al. [1991] spectral data. These assumed spherical ice
particles, giving spectral signature very similar to liquid clouds. It lead to a false
conclusion that the cloud optical saturation is universal, independent of phase.

In the ACRANEB2 scheme, unsaturated broadband cloud optical properties
were rederived from the more recent datasets (Hu and Stamnes [1993] for liquid
clouds; Key et al. [2002] and Yang et al. [2005] for ice clouds in the shortwave
and longwave parts of spectrum, respectively). Functional shape of the fits is
given in section 6.2 of Mašek et al. [2016], with effective radius of water droplets
and effective dimension of ice particles diagnosed using equations (46) and (47)
therein. Parameterization of the cloud optical saturation was revised, keeping
the concept of effective cloud optical depth, but updating details concerning ver-
tical variation and cloud geometry. Separate saturation factors for liquid and ice
clouds were introduced, necessitated by the results presented on figure 2.11. It
shows saturation factors cabs ≡ kabs/kabs

0 and cscat ≡ kscat′/kscat
0
′
, calculated for

the synthetic sample of homogeneous clouds, plotted against unsaturated cloud
optical depth δ′0, where the prime denotes delta-scaled, and subscript ‘0’ unsat-
urated values.10 Each cloud was illuminated from the top, using either solar
spectrum at the TOA (shortwave case), or the Planck weights at temperature
T0 = 255.8 K (longwave case). Radiative effect of gases, as well as reflection from
the surface, were neglected. It should be noted that in the shortwave case, effect
of sun elevation on the cloud optical saturation does not have to be considered.
This is because in thicker clouds, where the saturation effect becomes important,
direct solar radiation becomes converted to diffuse one within few tens of meters
from the cloud top.

Figure 2.11 reveals several features, crucial for the scheme design. Apart

10Absorption coefficient kabs is not subject to delta-scaling, that is why primes are omitted
for it.
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Figure 2.11: Saturation factors calculated for the synthetic sample of homoge-
neous clouds in vacuum, illuminated from the top: red dots – liquid clouds; dark
blue triangles – ice clouds. Sample consisted of 90 liquid clouds with water con-
tents ρl = 0.01, 0.02, 0.05, 0.1, . . . , 5 g/m3 and 80 ice clouds with water contents
ρi = 10−7, 10−6, 10−5, . . . , 1 g/m3, both of them having geometrical thicknesses
∆z = 10, 20, 50, 100, . . . , 10 000 m. Yellow and blue curves are the fitted depen-
dences for liquid and ice clouds, respectively. Top: Shortwave case. Bottom:
Longwave case. Left: Cloud absorption. Right: Cloud scattering.
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from clear separation between liquid and ice clouds, it is sharpness of shortwave
dependences. The optical saturation of shortwave cloud absorption becomes sig-
nificant11 already for optical depths δ′0 < 1, therefore it cannot be ignored. On
the other hand, the optical saturation of shortwave cloud scattering starts to act
only for optical depths δ′0 > 10, i.e. in the situations with little meteorological
relevance. Neglecting it should thus be harmless. Longwave dependences for liq-
uid clouds are much less sharp. This is not a problem, since it happens either
in the region where the saturation is weak, or for optical depths δ′0 & 10. Fi-
nally, longwave saturation is very weak for ice clouds, with saturation factors not
falling below 0.8 for any cloud in the sample. For these reasons, the cloud optical
saturation is neglected in the longwave part of spectrum, while in the shortwave
part it is parameterized only for cloud absorption.

Smoothness of shortwave saturation dependences enables to describe them
accurately with a simple function, containing only three fitting coefficients (sub-
scripts ‘l’ and ‘i’ denote liquid and ice clouds, respectively):

cabs
l (δ′0) =

1[
1 +

(
δ′0
δ00l

)ml
]nl

cabs
i (δ′0) =

1[
1 +

(
δ′0
δ00i

)mi
]ni

(2.29)

Values of fitting coefficients found for liquid and ice clouds are:

δ00l = 0.437 ml = 1.11 nl = 0.617 (2.30)

δ00i = 1.35 mi = 1.11 ni = 0.797 (2.31)

Outstanding quality of these fits can be judged from the top left panel of fig-
ure 2.11. Fitted dependences are plotted also on remaining panels, but these are
not used in the ACRANEB2 scheme.

The next step, initiated by the results presented on figure 2.12, was to incorpo-
rate vertical variation of the cloud optical saturation. Using the constant optical
saturation for the whole cloud (green) gives the net flux at cloud boundaries
within 5 W/m2 from the narrowband reference (red), but it underestimates heat-
ing near the cloud top by 15 K/day, and overestimates it in the rest of cloud (top
panels). This is because in reality, the optical saturation is weakest at the cloud
top and increases towards its base. Presence of the surface reflection increases
absorption near the cloud base (bottom panels), but the optical saturation in this
region remains strongest. Concerning accuracy, the situation is less favourable
now. The upward flux above cloud top is underestimated by 25 W/m2, due to
overestimated overall in-cloud absorption. Degradation caused by the surface re-
flection is not surprising, since the saturation curves were obtained in the idealized
conditions with the perfectly absorbing surface. Still, vertically constant cloud
optical saturation yields much better results than no saturation at all (blue),
where the heating near the cloud top is overestimated by 25 K/day, and in case
of perfectly reflecting surface the upward flux above cloud top is underestimated
by 200 W/m2.

Vertical variation of the cloud optical saturation can be introduced using the
concept of effective cloud optical depth, which at the same time enables to accom-
modate impact of cloud geometry. The idea is simple – for each layer l = 1, . . . , L,

11Adopted significance criterion was the saturation factor falling below 0.8.
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acra2.cloud0c_alb1_nosat.t001Figure 2.12: Importance of the optical saturation of shortwave cloud absorption,
demonstrated for a homogeneous liquid cloud with water content ql = 0.1 g/kg,
extending between 700 and 800 hPa levels: red dots – the narrowband reference;
yellow squares – the broadband scheme with vertically dependent cloud optical
saturation; green triangles – the broadband scheme with vertically constant cloud
optical saturation; blue inverse triangles – the broadband scheme ignoring cloud
optical saturation. Dashed lines denote deviation from the narrowband reference
(upper scale). Cloud layers are plotted in grey, radiative effect of gases is ne-
glected. Cloud geometry is trivial – overcast at all cloudy layers. Sun elevation
is 30◦. Top: Perfectly absorbing surface. Bottom: Perfectly reflecting surface.
Left: Shortwave heating rates. Right: Net shortwave fluxes.
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local saturation factors (2.29) are evaluated replacing the argument δ′0 by:

δeff
0l

′
=

l−1∑
k=1

Babove
k nkδ

′
0k + δ′0l +

L∑
k=l+1

Bbelow
k nkδ

′
0k (2.32)

Babove
k =

Babove
l ρlk +Babove

i ρik

ρlk + ρik

Bbelow
k =

Bbelow
l ρlk +Bbelow

i ρik

ρlk + ρik

(2.33)

Quantity δeff
0l
′

represents effective optical depth of the whole cloud, relevant for
saturation at cloud layer l. Cloud fractions nk were included in order to suppress
influence of the layers with small cloud cover. Coefficients Babove

k and Bbelow
k give

different weight to cloud layers above and below layer l, making the optical satura-
tion vertically dependent. They must discriminate between liquid and ice clouds
according to formulas (2.33), so there are four tuning parameters Babove

l , Bbelow
l ,

Babove
i and Bbelow

i . Unsaturated optical depth of cloud at layer k is defined as

δ′0k =
[
(kabs

0l + kscat
0l
′
)ql + (kabs

0i + kscat
0i
′
)qi

]
k

∆pk, (2.34)

where qlk and qik are the specific masses of cloud liquid and ice, and ∆pk is the
layer pressure thickness.12

Optimal values of the tuning parameters occurring in formulas (2.33) were
determined by fitting against the narrowband reference, using 322 atmospheric
profiles extracted from the NWP model runs. Minimized quantity was the mean-
square error of the net shortwave fluxes over all layer interfaces. Gaseous ab-
sorption, Rayleigh scattering and the surface reflection were taken into account
on both sides, i.e. in the narrowband reference and in the ACRANEB2 scheme.
The cloud optical saturation was enhanced by resetting the cloud fraction at all
cloudy layers to one. Fitting procedure delivered values

Babove
l = 10 Bbelow

l = 0.029 (2.35)

Babove
i = 5.3 Bbelow

i = 0.024, (2.36)

where the dominance of the ‘above’ parameters over the ‘below’ ones ensures
increasing effective cloud optical depth alias optical saturation as one moves from
the top of the highest cloud to the base of the lowest one. Success of the tuning
(2.35)–(2.36), still in the idealized conditions, can be judged from yellow curves on
figure 2.12. Absolute error of the net flux is now within several W/m2, regardless
of surface reflection. Vertical heating rate profiles are very realistic, with absolute
error below 2 K/day in most of cloud, reaching maximum value around 10 K/day
at its topmost layer.

Final test demonstrates the performance of parameterization (2.29)–(2.36) in
realistic conditions, where absorption by atmospheric gases, Rayleigh scattering
and the surface reflection all take part. Case of waving cold front was selected,
namely the snapshot over Prague having rich cloud structure and high precip-
itable water vapour 41 kg/m2. Corresponding model atmospheric profiles are
given on figure 2.13, showing existence of three separate cloud layers – ice top
layer, mixed medium layer and liquid bottom layer – yielding liquid and ice water
paths 85 and 77 g/m2, respectively. Cloud fraction ranging from 0–0.5 ensured
non-trivial cloud geometry.

12Mass absorption and scattering coefficients are thus expressed in inverse pressure units.
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Figure 2.13: Atmospheric profiles over Prague on 01-Jul-2012 at 18:00 UTC,
extracted from experimental ALADIN run. Passage of the frontal wave created
three separate cloud layers plotted in grey. Left: Profiles of temperature (solid
red; lower scale) and specific humidity (dashed blue; upper scale). Right: Profiles
of cloud fraction (red squares; lower scale), cloud liquid and ice (dark blue circles
and blue triangles; upper scale).

Resulting shortwave heating rates are presented on figure 2.14. They are
relatively small due to the low sun, still showing importance of the cloud optical
saturation convincingly. Neglecting it (green) causes overestimation of shortwave
heating rates, most severe in the medium and bottom cloud layers, where it
reaches factor of 3 or even more. Largest absolute error with respect to the
narrowband reference (red) is seen in the medium cloud layer, reaching 1.8 K/day.
With the parameterized optical saturation of shortwave cloud absorption (yellow),
absolute error in all cloud layers remains within 0.2 K/day, which is remarkable
result. Among the other things it proves that the treatment of mixed liquid-ice
clouds works excellently, despite the fact that underlying fits (2.29)–(2.31) were
done for pure liquid and pure ice clouds. Another important observation is that
accuracy of shortwave heating rates is retained for both extreme cloud overlap
treatments – maximum-random (left panel) and random (right-panel) – so the
parameterization should work well also for the generalized cloud overlap.

The parameterized optical saturation of shortwave cloud absorption is a key
result of this thesis, introducing the band approach for clouds. This component
turned to be critical for success of the shortwave scheme with single spectral
interval. The proposed treatment is very compact, containing only 10 fitting
coefficients altogether, still taking cloud geometry and scattering into account.
Even though underlying design choices were well motivated, accuracy achieved
in realistic conditions came as a welcome surprise.
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Figure 2.14: Shortwave heating rates for the case shown on figure 2.13: red dots
– the narrowband reference; yellow squares – the broadband scheme with pa-
rameterized optical saturation of shortwave cloud absorption; green triangles –
the broadband scheme ignoring cloud optical saturation. Dashed lines denote
deviation from the narrowband reference (upper scale). Cloud layers are plot-
ted in grey. Sun elevation is 9.2◦, Lambertian surface has albedo ᾱS = 0.18.
Left: Maximum-random overlap between cloud layers. Right: Random overlap
between cloud layers.

2.6 Revised bracketing technique

Main challenges of the longwave radiative transfer are the existence of multiple
emission sources, and strong temperature dependence of emitted radiation. In
case of band approach, the gaseous optical saturation must be evaluated individ-
ually for each emission source, so that in final effect transmission between each
pair of levels is needed. Non-multiplicativity of band transmissions yields com-
putational cost quadratic in the number of atmospheric layers L, which becomes
prohibitive at high vertical resolutions.

The ACRANEB and ACRANEB2 schemes bypass the L2 computational bar-
rier by the NER decomposition with bracketing. Details of ACRANEB2 imple-
mentation can be found in section 6 of Geleyn et al. [2017], and they will not
be repeated here. Main idea is to split the net longwave flux into CTS (Cooling
To Space), EWS (Exchange With Surface) and EBL (Exchange Between Layers)
components. CTS and EWS fluxes consist of pair exchanges where one of the
exchanging bodies is space13 and the Earth’s surface respectively, while the other
body is the model atmospheric layer. CTS and EWS components can be calcu-
lated cheaply, since they involve only L+ 1 and L exchanging pairs.14 Computa-
tionally expensive component is the EBL flux, consisting of internal atmospheric
exchanges, counting L(L− 1)/2 layer pairs. It is typically much smaller than the
CTS flux (see figure 3 of Geleyn et al. [2017]), so it is logical to approximate it.

13Space is treated as a blackbody with zero absolute temperature, i.e. the cosmic background
radiation is not assumed due to its negligible energy.

14By convention, exchange between the Earth’s surface and space is included in CTS, not in
EWS flux.
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The bracketing technique first calculates cheap minimum and maximum EBL
estimates FEBL,min and FEBL,max, then it interpolates the true EBL flux FEBL

between them. Estimation is based on two observations, valid in the absence of
scattering:

1. Band optical depth of the layer decreases as the observer moves away from
it. It is therefore highest when the observer is at the layer boundary, and
lowest when the layer is viewed either from the surface or from space (in-
dexing is explained on figure 2.15):

∆δmin
l = min(δ(0̃, l̃)− δ(0̃, l̃ − 1), δ(l̃ − 1, L̃)− δ(l̃, L̃)) (2.37)

∆δmax
l = δ(l̃ − 1, l̃) (2.38)

2. Exchanges in optically thick atmosphere are generally stronger than in op-
tically thin one. This is because in the monochromatic case with no scat-
tering, the net exchange between layers k and l has the shape

Eklν = τν(1− τkν)(1− τlν)︸ ︷︷ ︸
optical factor

· [πBν(Tk)− πBν(Tl)]︸ ︷︷ ︸
Planck factor

, (2.39)

where τkν and τlν are the transmissions of exchanging layers, and τν is
the transmission of separating environment. Positive net exchange Eklν
means prevailing energy flux from layer k to layer l. Optical factor is never
negative, while the sign of Planck factor is determined by the temperature
difference Tk−Tl. Exchange between completely transparent layers is zero.
With increasing opacity of the atmosphere, the net exchange grows due to
increasing product of layer emissivities (1 − τkν)(1 − τlν), until the point
where the growth is overridden by decreasing transmission τν .

15

From these observations it follows that minimum and maximum EBL estimates
can be calculated using layer optical depths (2.37) and (2.38) respectively, as-
suming their additivity alias greyness. Two remarks are needed here. First, since
in the longwave spectrum the only non-grey bodies are gases, equations (2.37)–
(2.38) need to be applied only on gaseous optical depths. Taking into account
double temperature dependence of grey optical depths (2.37)–(2.38) is not possi-
ble exactly, since each layer transmits radiation of multiple sources and these can
have different temperatures Te. Gaseous optical depths (2.37)–(2.38) are there-
fore evaluated using fixed weights ˜̃wν , appropriate in the limit when temperatures
of exchanging bodies are close to linearization temperature T0. Second, approxi-
mate nature of minimum and maximum EBL estimates does not guarantee that
the true EBL flux will always lie between them. Apart from already explained
reasons, additional one arises in situations where the temperature profile is not
monotonic, so that different exchanges crossing given layer can have different
signs. Increasing/decreasing absolute value of each exchange does not necessarily
mean that the absolute value of their sum will also increase/decrease.

15For adjacent layers there is τν = 1, so that growth continues until the blackbody limit
Eklν = πBν(Tk)− πBν(Tl).
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Figure 2.15: Broadband optical depths needed for minimum and maximum EBL
estimates. There are L atmospheric layers 1, . . . , L numbered from the top to bot-
tom, with L+1 interfaces 0̃, . . . , L̃. The Earth’s surface is treated as a completely
non-transparent layer L+ 1.

Bracketing of the EBL flux can be mathematically written as

FEBL = (1− α)FEBL,min + αFEBL,max + β (2.40)

0 ≤ α ≤ 1,

where α is interpolation weight and β is offset. They are both vertically depen-
dent quantities. Equation (2.40) is applied at every layer interface, where the
fluxes are evaluated. Value α = 0 means that the EBL flux is dominated by
distant exchanges, while α = 1 means dominance of local exchanges. In the old
ACRANEB scheme, bracketing weight α was determined by the statistical fit
of reference clearsky results, and offset β was set to zero. It was found empir-
ically that local exchanges dominate lower down in the atmosphere and in the
regions of strong temperature inversions. The statistical fit took this into account
by making weight α depending on normalized pressure and on vertical potential
temperature gradient. Influence of clouds on bracketing weight was not consid-
ered, i.e. the fit obtained in the range of clearsky conditions was then applied in
the full case with aerosols and clouds. Non-obvious fact that bracketing weight
is little affected by clouds16 not only simplified the fitting problem, but later it
became a key assumption of the self-learning algorithm combined with selective
intermittency.

Main advantage of statistically fitted bracketing weight was its simple and
cheap calculation. With improved longwave gaseous transmissions, however, ac-
curacy of the statistical fit became insufficient, compromising the final result.
Another disadvantage was a necessity to redo the statistical fit at every change of
the model vertical resolution, since maximum EBL estimate, unlike the true EBL
flux and its minimum estimate, turned to be strongly resolution dependent. For

16This is the so-called bracketing hypothesis.
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Figure 2.16: Oscillations due to bracketing in the vicinity of critical level, de-
noted by dashed horizontal line: blue – minimum EBL estimate; red – maximum
EBL estimate; black – true clearsky EBL flux (left panel) or interpolated cloudy
EBL flux (right panel). Central panel shows the bracketing offset (black) and
truncated bracketing weights (grey; upper scale). Grey portions of EBL curves
show the results obtained without bracketing offset, preventing overshoots but
not oscillations.

these reasons, bracketing based on the self-learning algorithm was adopted in the
ACRANEB2 scheme. The idea, illustrated on figure 2.16, is to calculate the true
EBL flux and its minimum and maximum estimates in the absence of aerosols,
clouds and surface reflection, and to diagnose bracketing weight and offset as:

α∗ =
FEBL

gases − FEBL,min
gases

FEBL,max
gases − FEBL,min

gases

(2.41)

α = max(0,min(α∗, 1)) (2.42)

β = FEBL
gases −

[
(1− α)FEBL,min

gases + αFEBL,max
gases

]
(2.43)

Step (2.41) determines weight α∗ ∈ (−∞,+∞). In order to prevent extrapola-
tion, eventually leading to a numerical instability, the next step (2.42) truncates
bracketing weight to interval [0, 1]. The last step (2.43) determines bracketing
offset β in such way, that in the assumed idealized conditions equation (2.40)
gives back the exact value FEBL

gases.
Procedure (2.41)–(2.43) involves expensive quantity FEBL

gases. Its calculation is
simplified by the absence of any scattering and cloud geometry, but the cost
remains quadratic in the number of layers L. This is because the true EBL
flux across level l̃ is given by the double sum involving broadband transmissions
between each pair of levels:

FEBL
gases,l̃

=
l∑

m=1

L∑
n=l+1

Emn, (2.44)
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Figure 2.17: Longwave heating rates for the same case as on figure 2.13: red dots
– the narrowband reference; yellow squares – the broadband scheme with random
(H2O, O3) overlap; green triangles – the broadband scheme with random (H2O,
O3) overlap and with unfiltered bracketing weights. Cloud layers are plotted
in grey, maximum-random overlap between cloud layers is assumed. Reflective
surface has emissivity εS = 0.966.

Moreover, the broadband pair exchanges Ekl must take double temperature de-
pendence of gaseous transmissions fully into account:

Ekl = ∆τkl
∣∣
Tk
σT 4

k −∆τkl
∣∣
Tl
σT 4

l (2.45)

∆τkl ≡ τ(k̃, l̃ − 1)− τ(k̃ − 1, l̃ − 1)− τ(k̃, l̃) + τ(k̃ − 1, l̃) k < l

For the success of the self-learning algorithm, it was necessary to remove
spurious heating rate oscillations, appearing frequently in the vicinity of critical
levels, where the minimum and maximum EBL estimates cross. One example of
such oscillations is shown on figure 2.17, namely by the green curve between 700
and 900 hPa levels. Generating mechanism can be understood from figure (2.16).
At the critical level, weight 2.41 is undefined. Near the critical level, the true
EBL flux FEBL

gases usually lies out of bracket determined by its estimates FEBL,min
gases

and FEBL,max
gases . Here the truncation of bracketing weight to interval [0, 1] takes

place, producing non-zero offset β. At the critical level, truncated weight α
jumps from 0 to 1. Applying it in cloudy case, where the critical level can
be shifted or removed completely, leads to an abrupt jump of the interpolated
EBL flux at original critical level. Corresponding heating rate, proportional to
vertical derivative of the net flux, will then contain sharp peak, from each side
accompanied by weaker peak in opposite direction.

Cure of the above mentioned problem lies in the proper filtering of bracketing
weight α∗. Proposed treatment introduces filter with two tuning parameters α̂
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and ∆Fcrit:

α∗∗ = (1− ŵ)α∗ + ŵα̂ (2.46)

ŵ =
(∆Fcrit)

2

(∆FEBL
gases)

2 + (∆Fcrit)2
(2.47)

∆FEBL
gases = FEBL,max

gases − FEBL,min
gases (2.48)

α = max(0,min(α∗∗, 1)) (2.49)

0 ≤ α̂ ≤ 1 ∆Fcrit > 0

Weight ŵ is the function of EBL span ∆FEBL
gases. It was designed in such way that its

complement (1− ŵ) tends to zero faster than ∆FEBL
gases. This ensures that filtered

bracketing weight α∗∗ tends to value α̂ at the critical level. Strength of filter
can be tuned by parameter ∆Fcrit, which is the critical EBL span giving weight
ŵ = 1

2
. Bracketing weight is finally truncated to interval [0, 1], and bracketing

offset β is determined as before by equation (2.43).
Optimal values of the tuning parameters α̂ and ∆Fcrit were determined by

fitting against the narrowband reference, using 480 atmospheric profiles extracted
from the NWP model runs. Minimized quantity was the mean-square error of
the net longwave fluxes over all layer interfaces. Fitting provided rather strong
smoothing

α̂ = 0.50 ∆Fcrit = 56 W m−2, (2.50)

with the limit value α̂ = 1
2

appearing as very natural choice. Quality of the filter
can be judged from yellow curve on figure (2.17). It removed not only oscillations
of green curve inside low cloud layer, but also its cold bias between medium and
low cloud layers.

There was one more issue with bracketing, illustrated on figure (2.18). With
all non-random pair gaseous overlaps parameterized, the yellow true EBL flux
delivered by broadband equations (2.44)–(2.45) is out of green-blue bracket in
significant portion of profile (top left panel). Assuming random (H2O, O3) overlap
removes this problem almost completely by shifting green minimum EBL estimate
more to the right, without affecting much the yellow true EBL flux and its blue
maximum estimate. This solution was therefore adopted by Geleyn et al. [2017],
and it is still used in the operational configuration of model ALADIN/CHMI.
Anyway, the proposed filtering procedure is so robust, that it gives reliable cloudy
EBL flux even with non-random (H2O, O3) overlap included (top right panel),
showing only small deterioration with respect to the case when this overlap is
excluded (bottom right panel). Proximity of yellow curves to the red narrowband
reference in cloudy case (right column) proves validity of bracketing hypothesis.

Finally, figure (2.19) demonstrates accuracy of bracketing in terms of heating
rates, showing comparable error of configurations with parameterized non-random
(H2O, O3) overlap (yellow), and with random (H2O, O3) overlap (green).17 In the
clearsky case (left), absolute error of both configurations remains below 0.2 K/day

17One should keep in mind that the longwave heating rate error is contributed by all three
CTS, EWS and EBL components.
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timate; blue inverse triangles – maximum EBL estimate. Cloud layers are plotted
in grey, maximum-random overlap between cloud layers is assumed. Top: The
broadband scheme with parameterized non-random pair gaseous overlaps. Bot-
tom: The broadband scheme with random (H2O, O3) overlap. Left: Clearsky
case with non-reflective surface determining the bracketing weights and offsets.
Right: Cloudy case with reflective surface applying the bracketing weights and
offsets. Surface emissivity is εS = 0.966, corresponding to the longwave reflectiv-
ity 3.4%.
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Figure 2.19: Longwave heating rates for the same case as on figure 2.13: red
dots – the narrowband reference; yellow squares – the broadband scheme with
parameterized non-random pair gaseous overlaps; green triangles – the broadband
scheme with random (H2O, O3) overlap. Dashed lines denote deviation from the
narrowband reference (upper scale). Cloud layers are plotted in grey, maximum-
random overlap between cloud layers is assumed. Reflective surface has emissivity
εS = 0.966. Left: Clearsky case. Right: Cloudy case.

across the atmosphere, the only exceptions being at the top and bottom of the
model domain, where it reaches 2 and 0.8 K/day respectively. In the cloudy case
(right), absolute error at the bottom of the model domain increases to 1 K/day,
and inside medium cloud layer it reaches maximum value 1.8 K/day. Outside
clouds it remains below 0.5 K/day. Parameterized non-random (H2O, O3) overlap
is beneficial in the clearsky case, reducing error above 200 hPa level thanks to
improved EWS flux. In the cloudy case, however, this advantage is lost due
to poorer minimum EBL estimate, deteriorating bracketed EBL flux. Hybrid
solution excluding non-random (H2O, O3) overlap only in EBL calculations was
not implemented, since its anticipated gain in the stratosphere is only modest,
surely smaller than uncertainty of the narrowband reference due to Curtis-Godson
approximation.

The proposed self-learning algorithm makes the bracketing technique both
adequately accurate and independent of vertical resolution. Disadvantage is its
high computational cost, quadratic in the number of layers L. Nevertheless, slow
evolution of bracketing weights and offsets enables their intermittent update,
cutting the cost of longwave computations in the NWP environment dramatically.
The idea is elaborated in section 2.7.

2.7 Selective intermittency

As was mentioned in the Introduction, there are conflicting requirements im-
posed on the radiative transfer schemes used in the NWP models. On the one
hand, high accuracy alias realism of delivered radiative fluxes is desired. On the
other hand, there are severe limitations on the computational cost of the scheme.
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Growing computing resources are typically spent on increase of model resolution,
but also on more advanced data assimilation techniques or ensemble forecasting.
Even in deterministic framework, radiation scheme has to share the available re-
sources with other physical parameterizations and with model dynamics. Simple
illustration can be given here: Operational model ALADIN/CHMI currently has
a computational domain of 529 × 421 points, with horizontal mesh size 4.7 km
and time-step 180 s. It means that within one-hour integration, radiation scheme
is called for more than 4 million model columns, each having 87 vertical levels.
Yet, real time of one-hour integration must not exceed about one minute. Radi-
ation consumes roughly 20% of that, i.e. 4 million calls of radiation scheme must
be accomplished in about 12 seconds of real time. If the calls were performed
sequentially, each would have to be ready in 3 microseconds!18

There are several ways how to reduce computational cost of the radiative
transfer parameterization in the NWP model. For an overview, the reader is
kindly referred to the introduction of Schomburg et al. [2012]. The simplest
strategy, still widely used despite its serious shortcomings, performs radiative
calculations with reduced spatial and/or temporal resolutions. The use of reduced
radiation grid implies smoothing of input fields, connected to the loss of high
resolution information. Output radiative fluxes have to be interpolated back to
full model resolution. Missing small scales in radiation outputs are then likely
source of inconsistencies, putting in question the investments in high resolution
forecast.19 Even if predictability of small scales is limited, their model description
should be consistent, in order to prevent false sources/sinks that can contaminate
also larger scales. The inconsistency problem can be especially severe in the
coastal areas, where there are large differences in surface albedo or temperature
between land and sea. It can be mitigated by approximate radiation updates
proposed by Hogan and Bozzo [2015]. Still, their cure does not address the error
coming from inhomogeneities of the cloud field on scales resolved in the model
but not in reduced radiation grid.

Reduced frequency of radiative calculations, approach orthogonal to reduced
spatial resolution, is also not problem-free. The broadband fluxes calculated in
full radiation time-step must be stored for use in subsequent model time-steps
until the next radiation update. Period between two radiation updates is so-
called intermittency window. It is typically 1 h, in ensemble forecasting sometimes
even 3 h. Within intermittency window, the net longwave fluxes are assumed con-
stant, while the net shortwave fluxes must be adjusted to evolving sun elevation.
The simplest possibility is to rescale the shortwave fluxes by the ratio of actual
to average20 cosine of solar zenith angle µ0, accounting solely for the change in
solar income at the TOA. Manners et al. [2009] introduced a more elaborate ap-
proach, correcting the net surface flux also due to changing optical path of direct
solar ray. Hogan and Hirahara [2016] further addressed the double occurrence
of µ0 in calculation of solar fluxes. Using different temporal averaging for each
occurrence, they were able to significantly reduce the stratospheric temperature

18Integration is actually done on 16 vector processors of NEC SX-9 supercomputer, using
OpenMP parallelization with 16 threads.

19Use of reduced radiation grid would be justified if the small-scale component of radiative
heating/cooling was negligible. Given the spatial variability of the cloud field, combined with
its strong radiative effect, this is very unlikely.

20The average value is calculated over the radiation time-step.
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bias even for radiation time-step 3 h. Fundamental problem, common to all above
described approaches with prolonged radiation time-step, is the ‘frozen’ radiative
impact of clouds within intermittency window. Model cloud evolution on shorter
time scales is thus ignored by radiation, leading to severe inconsistencies when
the cloud scene changes rapidly. In the longwave spectrum, additional error arises
from ‘frozen’ Planck factors, ignoring the temperature evolution within intermit-
tency window. Because of the ‘frozen’ radiative response, the above described
strategies will be referred to as full intermittency.

Computational cost of the old ACRANEB scheme was relatively low, enabling
it to be called at every model grid-point and time-step. Developments described
in sections 2.1–2.6 have made the ACRANEB2 scheme much more accurate, but
also too expensive to be used with unreduced spatial and temporal resolutions.
Full interaction with clouds was recognized as a necessity. Decision was made to
use unreduced spatial grid, and to save computational costs by updating gaseous
optical depths intermittently. This strategy, referred to as selective intermittency,
can be afforded thanks to the broadband character of the ACRANEB2 scheme.
For the schemes with finer spectral division, required memory storage would be
prohibitive.

Key features of selective intermittency are the cloud optical properties up-
dated at every model time-step, with subsequent solving of the delta-two-stream
and adding system. Logic of this choice comes from the fact that while gaseous op-
tical depths are the most costly component of radiative calculations, they evolve
on the time scales of hours rather than minutes. This is because unlike clouds,
gaseous composition of the atmosphere varies slowly, even in the presence of wa-
ter phase changes. Illustration is given on figure 2.20, where the top left panel
shows the point evolution of water columns during passage of the waving cold
front.21 While the hourly change of precipitable water vapour (red) does not ex-
ceed ∼20%, for the cloud liquid and ice water paths (dark blue and blue) it can
reach 2–3 orders of magnitude. The top right panel shows that the most abrupt
changes in the cloud condensates are related to the appearance of deep convective
clouds.

The ACRANEB2 scheme applies selective intermittency in both shortwave
and longwave spectral intervals. While in the shortwave case only modest com-
putational savings are achieved (see chapter 10 of Mašek et al. [2016]), in the
longwave case selective intermittency is absolutely necessary (see chapter 8 of
Geleyn et al. [2017]), making the ACRANEB2 scheme affordable. For this rea-
son, only the longwave treatment is examined here.

Gaseous optical depth of model layer depends on its composition, thermody-
namic state and mass. Selective intermittency, ‘freezing’ the broadband gaseous
optical depths within intermittency window, is justified by the following facts:

• Gaseous composition of the atmosphere evolves slowly. Even in frontal
situations with changing air mass, its hourly update is sufficient.

• The pressure within one hour can change by several per mille, while for

21Evolution of water columns was extracted from experimental ALADIN run. Precipitable
water vapour during early forecast is likely to be overestimated, since the values over 40 kg/m2

are observed very rarely in mid-latitude atmospheric soundings (D. Rýva, personal communi-
cation, 2017).
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Figure 2.20: Evolution of water columns, cloud cover and temperature in Prague
during passage of the waving cold front. Results are extracted from experimental
ALADIN run starting on 01-Jul-2012 at 18:00 UTC. Top left: red – precipitable
water vapour; dark blue – liquid water path; blue – ice water path. Thin hor-
izontal lines denote values 0.01, 0.1, 1 and 10 kg/m2. Top right: red – total
cloud cover (left scale); colour filling – layer cloud fractions (right scale and colour
palette). Clear sky is blue, overcast layers are dark grey. Bottom: red – surface
temperature; yellow – mean atmospheric temperature below 850 hPa level; green
– mean atmospheric temperature below 200 hPa level. Mean temperatures are
mass-weighted.
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thermodynamic temperature the change is limited to few per cent. Such
small variations affect monochromatic gaseous transmissions only weakly
and need not be considered. Much more important is the vertical variation
across the troposphere and stratosphere, being 3 orders of magnitude for
pressure, and reaching easily 100 K for temperature.

• In the longwave case, broadband gaseous transmissions depend also on the
temperature of emitting body. Here again, the vertical variation of the
temperature is much more substantial than its hourly evolution.

• The mass of model layers changes most quickly near the surface, where
the hybrid eta-coordinate reduces to sigma-coordinate, and the layer mass
becomes proportional to the surface pressure. Its relative change within one
hour is thus at most several per mille and can be neglected.

From the above listed facts it follows that hourly temperature evolution can be
ignored in the broadband layer gaseous transmissions, entering the optical fac-
tors. Longwave exchanges, however, contain also strongly temperature dependent
Planck factors, and these should be updated at every model time-step. Selective
intermittency enables to do so, together with inclusion of actual clouds in the
optical factors.

Selective intermittency in the longwave case relies on one more fact, verified
a posteriori:

• Evolution of the bracketing weights and offsets, needed for determination of
the EBL flux, is also slow. It is sufficient to update them using three-hourly
footing, regardless of the model time-step.

This last fact is crucial for a scalability of longwave computations with increasing
model resolution. It makes the cost of single ACRANEB2 call essentially lin-
ear in the number of layers L, even though calculation of the bracketing weights
and offsets remains quadratic in L. This is because the horizontal, vertical and
temporal model resolutions are interconnected, being kept roughly proportional.
Computational time of the longwave ACRANEB2 scheme in a single model col-
umn during 3 hour time period is given by

trad = N · (C0 · L) + 3C1 · L+ C2 · L2, (2.51)

where C0 ·L is the cost of single radiation call without update of the gaseous trans-
missions, bracketing weights and offsets, N is the number of model time-steps
within 3 hours, C1 · L is the cost of single update of the gaseous transmissions,
and C2 ·L2 is the cost of single update of the bracketing weights and offsets. Fac-
tor 3 in the second term is due to the fact that the longwave gaseous transmissions
are updated hourly. Now, since there is N ∝ L, the first term grows quadrat-
ically with L, i.e. in the same way as the last term, giving trad ∝ L2. For the
radiation scheme with the cost of single call truly quadratic in L, computational
time trad ∝ L3 would result. Keeping trad ∝ L2 is the key achievement of the
longwave ACRANEB2 developments, breaking the computational barrier of the
absorptivity-emissivity approach. Moreover, the longwave scattering is included
with no extra effort.
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The longwave ACRANEB2 scheme uses two-level selective intermittency, tai-
lored for usage with the NER decomposition and bracketing. Four sets of the
broadband gaseous optical depths are updated hourly – those for calculation of
the CTS, EWS, minimum and maximum EBL fluxes. The bracketing weights
and offsets are updated three-hourly. Altogether, there are six 3D global arrays
that have to be stored in the memory, so that they can be reused in subsequent
partial radiative time-steps. In these time-steps, actual cloud optical properties
are determined and used to recalculate the optical factors, while actual temper-
atures are used in Planck factors. Eight solvings of the delta-two-stream and
adding system are required, as explained in section 6.7 of Geleyn et al. [2017].

In section 8 of Geleyn et al. [2017], cost and accuracy of the proposed in-
termittency strategy is evaluated in the NWP model, including the feedbacks
between radiation and other fields. It demonstrates that compared to the non-
intermittent run with 3 min time-step, use of 1 h/3 h selective intermittency cuts
the cost of longwave computations by factor 20, while the error remains compa-
rable to the full intermittency with 6 min window, which however cuts the cost
only by factor 2.

In this thesis only the accuracy aspect of longwave intermittency is examined.
The ACRANEB2 scheme was run in an offline mode, fed by atmospheric profiles
extracted for single point from 24 hour integration of the NWP model ALADIN.
This approach excludes feedbacks, on the other hand it enables to calculate also
the narrowband reference, which would not be possible in the NWP model.22

Evolution of selected quantities is shown on figure 2.20. Case of waving cold
front was selected purposely, having abrupt changes in the cloud field, with cloud
cover ranging from overcast to almost clear. Simulations assumed maximum-
random cloud overlap. Surface emissivity was 0.966, model time-step was again
3 min.

Figure 2.21 shows evolution of the longwave fluxes leaving the atmosphere.
Non-intermittent ACRANEB2 run (red) is compared against the narrowband
reference (black), in order to isolate error of the broadband approach. The down-
ward flux at the surface is systematically underestimated, with absolute error
remaining below 10 W/m2. Error of the upward flux at the TOA is better bal-
anced, staying within 15 W/m2. Such accuracy is fine for the short range NWP,
but as was mentioned in the Introduction, it would be insufficient for climate
simulations. Underestimated downward flux at the surface can be attributed to
the overestimated broadband gaseous transmissions, since the emission of more
transparent atmosphere is weaker. This conclusion is supported also by the fact
that in periods with considerable low cloud cover, underestimation of the down-
ward flux at the surface is reduced. The upward flux at the TOA is not biased,
here the lower gaseous emission is compensated by more surface emitted radiation
transmitted to space.

Remaining curves on figure 2.21 compare two intermittent ACRANEB2 runs
against the non-intermittent run, in order to evaluate error due to intermittency
alone. Use of 1 h full intermittency (yellow) leads to enormous error in the up-
ward flux at the TOA, especially between integration hours 3 and 4, where the
deep convective cloud quickly fades out and the flux becomes underestimated

22Running the narrowband reference for 481 atmospheric profiles on a 3 GHz PC took about
one hour.
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Figure 2.21: Evolution of the longwave fluxes leaving the atmosphere for the
same case as on figure 2.20. Solid lines denote fluxes (left scale): black – the nar-
rowband reference; red – the ACRANEB2 scheme with no intermittency; yellow
– the ACRANEB2 scheme with 1h full intermittency; green – the ACRANEB2
scheme with 1h/3h selective intermittency. Dashed lines denote flux errors (right
scale): red – the ACRANEB2 scheme with no intermittency against the nar-
rowband reference; yellow – the ACRANEB2 scheme with 1h full intermittency
against no intermittency; green – the ACRANEB2 scheme with 1h/3h selective
intermittency against no intermittency. Left: Upward longwave flux at the TOA.
Right: Downward longwave flux at the surface.
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Figure 2.22: Evolution of the longwave heating rate scores for the same case
as on figure 2.20, calculated over the model column: red – the ACRANEB2
scheme with no intermittency against the narrowband reference; yellow – the
ACRANEB2 scheme with 1h full intermittency against no intermittency; green –
the ACRANEB2 scheme with 1h/3h selective intermittency against no intermit-
tency. Left: Mass-weighted longwave heating rate bias Right: Mass-weighted
longwave heating rate RMSE.

by 80 W/m2. This is because at hour 3 the cold cloud top below 200 hPa level
filled the gridbox, sending little longwave radiation to space. In subsequent hour
the horizontal extent of cloud top reduced, letting more energetic longwave ra-
diation emitted by warmer lower layers to escape. Full intermittency, ‘freezing’
the net longwave flux at the TOA,23 cannot capture this evolution until the next
radiative update at integration hour 4. Error of the downward flux at the sur-
face is somewhat smaller, staying within 30 W/m2, but its evolution is also quite
abrupt, especially in periods with quickly varying total cloud cover.24 On the
other hand, use of 1 h/3 h selective intermittency (green) introduces only small
error in the upward and downward fluxes, staying within few W/m2 from the
non-intermittent ACRANEB2 run.

Figure 2.22 completes the picture by showing evolution of the longwave heat-
ing rate scores, calculated over the model column using mass weighting. It clearly
confirms superiority of selective intermittency over the full one. It also shows that
systematic underestimation of downward longwave flux at the surface, seen for
non-intermittent ACRANEB2 run, results in the insufficient atmospheric cooling
alias warm bias.

Global picture can be obtained by inspecting table 2.2, giving overall scores for
the longwave fluxes leaving the atmosphere, as well as for the longwave heating
rates of atmospheric layers. Two important observations can be made. First,
selective intermittency is practically bias-free, for both fluxes and heating rates.

23And thus also longwave upward flux, since the longwave downward flux at the TOA is zero.
24Evolution of downward longwave flux at the surface is not piecewise constant, since it is

related to ‘frozen’ net flux FS by F ↓
S = FS/εS + σT 4

S , where the surface temperature TS evolves
(see bottom panel on figure 2.20).
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longwave upward flux at the TOA [W/m2]
scheme, intermittency reference BIAS RMSE SDEV
BB NB 0.46 5.60 5.58
BB, full 1h BB −3.02 17.30 17.04
BB, selective 1h/3h BB −0.17 0.54 0.51

longwave downward flux at the surface [W/m2]
scheme, intermittency reference BIAS RMSE SDEV
BB NB −7.48 7.65 1.58
BB, full 1h BB 0.79 7.55 7.51
BB, selective 1h/3h BB 0.05 0.82 0.82

longwave heating rate of atmospheric layers [K/day]
scheme, intermittency reference BIAS RMSE SDEV
BB NB 0.06 0.36 0.36
BB, full 1h BB 0.02 1.92 1.92
BB, selective 1h/3h BB 0.00 0.18 0.18

Table 2.2: Overall longwave scores during passage of the waving cold front in
Prague. The period is from 01-Jul-2012 18:00 UTC to 02-July-2012 18:00 UTC,
the model time-step was 180 s. NB denotes the narrowband reference, BB is the
broadband scheme, eventually with 1h full intermittency or with 1h/3h selective
intermittency. First line in each section is the error of the broadband approach,
second and third lines are the errors of given intermittent strategies.

It therefore does not increase bias due to the broadband approach. Second,
random error due to selective intermittency, represented by its standard deviation
(SDEV), is at most half that of non-intermittent ACRANEB2 run. Random error
due to full intermittency is one order of magnitude larger, exceeding random error
due to the broadband approach several times.

When intermittency is used in the NWP model run, feedbacks between radi-
ation and other fields will cause drift from the non-intermittent solution.25 Error
resulting from the intermittency strategy will thus be larger than listed in ta-
ble 2.2. One can apply factor 2 as a very rough estimate, yielding the longwave
heating rate SDEV due to selective intermittency 0.36 K/day, which is the same
value as SDEV due to the broadband approach. If these two errors were uncor-
related, resulting SDEV of 1 h/3 h selective intermittency with respect to a hy-
pothetical NWP run using the narrowband reference would be around 0.5 K/day,
which is adequate result for cloudy scene. Overall systematic error would remain
below 0.1 K/day.

Comparable errors coming from the stand-alone radiation scheme and from in-
termittency strategy are an important achievement of the longwave ACRANEB2
design, ensuring an optimal share of the computational resources. It can be put
in contrast with the mainstream approach, where the very accurate results of the
correlated k-distribution method are significantly deteriorated by the use of full
intermittency, possibly combined with reduced radiation grid.

25The drift is small in the initial stage of integration and it grows in time. The least favourable
situation is in global models, while in the limited area models the growth is restricted by lateral
boundary coupling.
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Conclusion

Described above in this thesis are the author’s main contributions to the de-
velopment of the ACRANEB2 radiation scheme. The goal of this development
was to provide a sound alternative to the mainstream approach, eliminating its
structural deficiency arising from the use of correlated k-distribution method,
which is very accurate but too costly to be used at every model grid-point and
time-step. The starting point was the old ACRANEB scheme, whose key choices
– the broadband approach with single shortwave and single longwave spectral
intervals, full cloud-radiation interaction, and NER decomposition with brack-
eting – remained unchanged. A significant effort was put into the improvement
of the basic building blocks – gaseous transmissions and cloud optical proper-
ties. Several important effects not accounted for previously were identified and
successfully parameterized, including the non-random spectral overlap between
different gases and the double temperature dependence of the longwave gaseous
transmissions. The band approach was extended to cloud treatment, where the
optical saturation of shortwave cloud absorption was parameterized in a fully
scattering environment. In the longwave spectrum, the accuracy of the brack-
eting technique was significantly increased by replacing the statistical fit with a
self-learning algorithm. The higher computational cost of the improved gaseous
transmissions was compensated for by their intermittent update, allowing the full
cloud-radiation interaction to be retained. The memory requirements for the in-
termittent storage were kept reasonable due to the broad spectral division used.
Selective intermittency was applied also to bracketing weights and offsets, ensur-
ing the essentially linear scalability of longwave computations with respect to the
number of vertical levels.

There were also additional developments not mentioned in this thesis. In the
end, the only ACRANEB components that remained untouched were the solvers
of the delta-two-stream and adding system, and the aerosol treatment. Many
new ACRANEB2 components are based on some sort of fit. Their reliability
and accuracy comes from two design principles. First, the functional shape of
the fit is physically motivated whenever possible, ensuring the correct asymptotic
behaviour or at least physically meaningfull values. Second, a small to moderate
number of fitting parameters minimizes the risk of overfitting and enables the
use of the non-linear least-squares method. The minimized cost function may
be of arbitrary shape, since the fitting parameters do not have to enter into it
in a linear way. This allows for the minimizing of error directly in the desired
quantity.

With all the above mentioned improvements, the ACRANEB2 scheme with
its selective intermittency has become competitive with the mainstream approach
that combines the correlated k-distribution method with full intermittency. Of
course, in a stand-alone mode the broadband approach is necessarily less accurate
than the correlated k-distribution method, the accuracy of which is provided by
its higher spectral resolution. On the other hand, in the NWP environment
the error originating from parameterized, spectrally unresolved phenomena is
counterbalanced by the full cloud-radiation interaction, made possible by selective
intermittency. This results in a much better balance between errors coming from
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the radiation scheme itself and from the intermittency strategy, than can be
obtained by the mainstream approach.

The ACRANEB2 concept was explained in two peer-reviewed articles. The
scheme became part of ALARO-1 version A, operational at CHMI beginning
in January 2015. Further refinements were incorporated into ALARO-1 ver-
sion B, which became operational in September 2016. At present, ALARO-1
with ACRANEB2 radiation is used by eight ALADIN countries (Belgium, Croa-
tia, Czech Republic, Hungary, Poland, Slovakia, Slovenia and Turkey), further
confirming the vitality of the concept.

The broadband approach definitely has its limits in terms of accuracy, some
of which seem to have been reached during ACRANEB2 developments. The
most important of these is related to the assumption of a spectrally flat surface
albedo. In extreme cases, it can yield a heating rate error exceeding that coming
from the broadband gaseous transmissions. Here probably the only cure is to opt
for two or more shortwave intervals, which would be a sidestepping of the orig-
inal ACRANEB concept. Another limitation is met in the stratosphere, where
the two-parameter Curtis-Godson approximation does not perform well with the
ozone. A solution within the band framework would be to use a more elaborated
three-parameter scaling. Yet another limitation prevails in the mesosphere, aris-
ing from the broadband treatment of the Voight line shape applied a posteriori.
The last two problems are not very acute in short range NWP, where the impact
of the higher atmosphere on weather is weak.

It was also seen that improving the broadband scheme resembles the opening
of Matryoshka, since more and more spectrally unresolved effects must be param-
eterized, increasing the complexity of the scheme. Fortunately, for reaching the
desired accuracy it was sufficient to include primary effects such as non-random
pair gaseous overlaps, and optical saturation of Rayleigh scattering and of short-
wave cloud absorption, neglecting their cross-interactions. Some phenomena, such
as the radiative effect of falling hydrometeors, are still ignored in the ACRANEB2
scheme and there is no urgent need to include them. This is because the main
limitations now come from the quality of cloud inputs and from the climatological
treatment of aerosols, i.e. from factors lying outside the radiation scheme.

The main challenge in the coming years is the effects of 3D radiation. These
are unimportant for scales larger than 10 km, where the vertical transfer clearly
dominates, but this is no longer true for scales below 1 km. For intermediate reso-
lutions, which are the domain of contemporary NWP, some unresolved 3D effects
can be parameterized. The problem starts at the moment when the 3D effects
become resolved, and a 1D radiation scheme based on a plane-parallel approxi-
mation is not able to capture them. Addressing the problem on current massively
parallel computing platforms is a tough challenge, since the implicitness of truly
3D solvers spoils scalability, while the slow convergence of explicit Monte Carlo
simulations prevents their usage in operational NWP. Partial solutions, such as
freezing the radiation grid at resolutions where the 3D effects can still be param-
eterized, create inconsistencies with the finest model scales. Sooner or later the
problem will have to be addressed properly, since beyond a certain point the use
of plane-parallel approximation produces errors comparable to those coming from
the neglected fine scales.
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$ . . . . . . . . . . . . . single scattering albedo kscat/(kabs + kscat)
ρ . . . . . . . . . . . . . . density
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τ . . . . . . . . . . . . . . transmission
φ . . . . . . . . . . . . . . azimuth
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Attachments

A Underlying peer-reviewed articles

This thesis is complemented by two articles written by the author, giving a more
complete view of the developed broadband radiation scheme. In the interest of
concise writing, the thesis does not repeat all details elaborated in the articles,
but refers to them whenever possible.

The articles are co-authored by colleagues taking part in the ACRANEB and
ACRANEB2 developments. Being subject to copyright of the Royal Meteorolog-
ical Society, articles are attached only to printed version of the thesis, while the
publicly available electronic version contains only their abstracts:

TITLE: Single interval shortwave radiation scheme with parameterized optical
saturation and spectral overlaps

AUTHORS: Ján Mašek, Jean-François Geleyn, Radmila Brožková, Olivier Giot,
Haliima Okodel Achom, and Peter Kuma

JOURNAL: Quarterly Journal of the Royal Meteorological Society, year 2016,
volume 142, pages 304–326, doi:10.1002/qj.2653

ABSTRACT: Spectral integration is the most time consuming part of solar
radiative transfer codes used in numerical weather prediction. Routinely used
approaches usually incline to one of two extremes – expensive and very accurate
correlated k-distribution method made affordable by doing radiative transfer cal-
culations with reduced temporal and/or spatial resolution, or cheaper but less
accurate broadband approach affordable at every grid-point and time-step. Both
approaches have their pros and cons, but hybrid solutions do not seem very
promising. The presented work improves accuracy of full spectrum broadband
approach by parameterizing secondary saturation of gaseous absorption, optical
saturation of Rayleigh scattering and of cloud absorption as well as non-random
gas-cloud spectral overlap. In order to isolate the problem of spectral integration
from other approximations, one builds a narrowband reference using the same
delta-two stream framework as the broadband scheme. Using this reference re-
veals the surprising fact that saturation effect of cloud absorption for one single
layer and for the whole solar spectrum can be parameterized in a rather com-
pact way, with one simple formula for liquid clouds and one for ice clouds. One
then introduces the concept of effective cloud optical depth, which extends the
applicability of parameterized cloud optical saturation to multi-layer cases, ac-
commodating also effects of gas-cloud spectral overlap in the near-infrared. A
scheme with all the above parameterizations indeed pushes accuracy limits of
broadband approach to the level where a single shortwave interval can be used.
This opens the possibility to reduce costs by using selective intermittency, where
slowly evolving gaseous transmissions are updated on the timescale of hours,
while quickly varying cloud optical properties are recomputed at every model
time-step. In a companion article it will be demonstrated that the above core
strategy is applicable also to thermal radiative transfer, with perhaps even better
cost effectiveness there.
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TITLE: Single interval longwave radiation scheme based on the net exchanged
rate decomposition with bracketing

AUTHORS: Jean-François Geleyn, Ján Mašek, Radmila Brožková, Peter Kuma,
Daan Degrauwe, Gwenaelle Hello, and Neva Pristov

JOURNAL: Quarterly Journal of the Royal Meteorological Society, year 2017,
volume 143, pages 1313–1335, doi:10.1002/qj.3006

ABSTRACT: The main obstacle to efficient calculation of longwave radiative
transfer is the existence of multiple radiative sources, each with its own emis-
sion spectrum. The work presented here overcomes this problem by combining
the full spectrum broadband approach with the net exchanged rate decomposi-
tion. The idea is worked out to suit the needs of numerical weather prediction,
where the most costly contribution representing the sum of internal exchanges is
interpolated between cheap minimum and maximum estimates, while exchange
with the surface and dominant cooling to space contributions are calculated ac-
curately. The broadband approach must address the additional problems related
to spectral integration and many ideas developed previously for the solar spec-
trum are reused. Specific issues appear, the dependence of broadband gaseous
transmissions on the temperature of the emitting body being the most important
one. The thermal spectrum also brings some simplifications – aerosols, clouds
and the Earth’s surface can safely be treated as grey bodies. The optical sat-
uration of gaseous absorption remains the main complication and non-random
spectral overlaps between gases become much more significant than in the solar
spectrum. The broadband character of the proposed scheme enables the use of an
unreduced spatial resolution with an intermittent update of gaseous transmissions
and interpolation weights, thus ensuring a full response of longwave radiation to
rapidly varying cloudiness and temperature fields. This is in contrast to the main-
stream strategy, where very accurate and expensive radiative transfer calculations
are performed infrequently, often with reduced spatial resolution. The approach
proposed here provides a much better balance between errors coming from the ra-
diation scheme itself and from the intermittency strategy. The key achievement,
ensuring a good scalability of the scheme, is a computational cost essentially lin-
ear in the number of layers, with straightforward inclusion of scattering as an
additional bonus.
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