Combining the EKF soil analysis with a three dimensional variational upper-air assimilation for ALARO

Rafiq Hamdi, Annelies Duerinckx, Alex Deckmyn, Piet Termonia

Original idea by J-F. Mahfouf

1. Introduction

2. Surface assimilation only

3. Combination: surface and upper air assimilation

4. Summary & Future work

1913

26th ALADIN-HIRLAM workshop, 4-8th April 2016 (2/26)

Surface Analysis and upper air analysis

For the time being surface analysis are performed separately from upper air analysis. In theory a single analysis would be better but it is much more difficult to implement:

1) definition of **B** between upper air and surface variables,

2) time scale evolutions may be different, ...

For the time being several surface analysis are used for different surface parameters (Soil temperature and Soil moisture, Snow, SST, Sea ice, ...

Atmospheric analysis and several surface analysis are done separately and combined to provide the final analysis for the forecast.

26th ALADIN-HIRLAM workshop, 4-8th April 2016 (3/26)

belsp

Surface Analysis and upper air analysis

Surface Analysis and upper air analysis

Question: Whether combining surface assimilation with upper-air assimilation has an added value compared to using either of them separately?

- Randriamampianina and Storto (2008) \rightarrow improvement for short forecast range
- Schneider et al. (2009) \rightarrow results more mixed
- Stanesic (2011) \rightarrow positive for 2m T, RH and upper air RH
- de Rosnay et al. (2012) \rightarrow EKF with 4D-Var operationally at ECMWF

• Duerinckx et al. (2016) focuses on **new** combination **EKF+3D-Var** tested with ALARO-0 coupled to SURFEX

26th ALADIN-HIRLAM workshop, 4-8th April 2016 (5/26)

Simulation set-up

	Initial Conditions		
	Atmosphere	Soil	
Open Loop (OL)	ARPEGE analysis	ARPEGE analysis	
Optimum Interpolation (OI)	ARPEGE analysis	OI	
Extended Kalman Filter (EKF)	ARPEGE analysis	EKF	
3dVar+OL	3dVar	ARPEGE analysis	
3dVar+Free run	3dVar	6h fc. from prev. run	
3dVar+OI	3dVar	OI	
3dVar+EKF	3dVar	EKF	
3dVar+OI/EKF	3dVar	OI(soil temp.)	
		+ EKF(soil moisture)	

Prognostic Variables :

- Soil moisture content : Wg and W2
- Soil temperature : Ts and T2

Observations : T2m and RH2m

 Interpolated to model grid with CANARI • ALARO-0

- SURFEX/ISBA 2-layer version
- One year run for 2013
- 6-hour assimilation cycle
- Operational ALADIN-Belgium domain 4km resolution
- 181x181 grid point and 46 vertical levels
- OPLACE database for 2m T & RH
- OPLACE conventional

observations: wind profiler, radiosonde, aircraft data and surface synoptic observations.

belspo

26th ALADIN-HIRLAM workshop, 4-8th April 2016 (6/26)

EKF for soil analysis

26th ALADIN-HIRLAM workshop, 4-8th April 2016 (7/26)

EKF: The Jacobian

$$\mathbf{x}_t^a = \mathbf{x}_t^b + \mathbf{B}\mathbf{H}^T(\mathbf{H}\mathbf{B}\mathbf{H}^T + \mathbf{R})^{-1}[\mathbf{y}_t^o - \mathcal{H}(\mathbf{x}_o^b)]$$

- *H* : observation operator includes a model propagation
- H: Jacobian of the observation operator
 Calculated with finite differences

$$H_{i,j} = \frac{\delta y_{i,t}}{\delta x_{j,t0}} = \frac{y_i(x + \delta x_j) - y_i(x)}{\delta x_j}$$

26th ALADIN-HIRLAM workshop, 4-8th April 2016 (8/26)

belspo

EKF: The Jacobian

Coupled : used for the forecast

Offline : used in the EKF to calculate the Jacobian

26th ALADIN-HIRLAM workshop, 4-8th April 2016 (9/26)

belspo,

1. Introduction

1913

2. Surface assimilation only

3. Combination: surface and upper air assimilation

4. Summary & Future work

26th ALADIN-HIRLAM workshop, 4-8th April 2016 (10/26)

Increments

(b) TG1, Spring

(c) TG1, Summer

(d) TG1, Autumn

(e) TG1, Winter

(g) TG2, Spring

(h) TG2, Summer

(i) TG2, Autumn

(j) TG2, Winter

(1) WG1, Spring

(m) WG1, Summer

(n) WG1, Autumn

(o) WG1, Winter

(q) WG2, Spring

(r) WG2, Summer

(s) WG2, Autumn

(t) WG2, Winter

Soil moisture verification

TG2 at Loo

WG2 at Loo

1. Introduction

1913

2. Surface assimilation only

3. Combination: surface and upper air assimilation

4. Summary & Future work

26th ALADIN-HIRLAM workshop, 4-8th April 2016 (18/26)

Scores for precipitation

Winter

	S	А	L
OL	0.266	0.233	0.117
3D-Var+OL	0.267	0.278	0.121
3D-Var+free	0.279	0.281	0.128
3D-Var+OI	0.225	0.257	0.115
3D-Var+EKF	0.250	0.267	0.122
3D-Var+OIEKF	0.241	0.262	0.121
EKF	0.212	0.220	0.114
OI	0.214	0.196	0.115

Summer

S	А	L
0.407	0.153	0.203
0.427	0.232	0.189
0.552	0.339	0.226
0.397	0.161	0.191
0.398	0.201	0.197
0.380	0.193	0.193
0.363	0.097	0.195
0.369	-0.007	0.191
	S 0.407 0.427 0.552 0.397 0.398 0.380 0.380 0.363 0.369	SA0.4070.1530.4270.2320.5520.3390.3970.1610.3980.2010.3800.1930.3630.0970.369-0.007

belspo.**De**

26th ALADIN-HIRLAM workshop, 4-8th April 2016 (22/26)

1. Introduction

2. Surface assimilation only

3. Combination: surface and upper air assimilation

4. Summary & Future work

1913

26th ALADIN-HIRLAM workshop, 4-8th April 2016 (23/26)

Summary:

1. The EKF runs are more successful in beating the Open Loop than the OI runs.

2. 3d-var is able to improve the 2m RH scores during the first 12h compared to Open Loop.

 During winter, the combination of surface and atmospheric assimilation outperforms the runs with only surface assimilation or only upper-air assimilation.

4. During summer, the runs with only surface assimilation perform better than the runs with a combination of both.

5. upper air scores using sounding indicate that the 3d-var is not able to get an equally well upper-air alysis as the ARPEGE interpolated atmosphere.

belspo.

GNSS ZTD assimilation

Forecast time since 0000 UTC

2m Relative Humidity BIAS (01-09 June 2014) run 0

Forecast time since 0000 UTC

Politique scientifique fédi

belspo.

26th ALADIN-HIRLAM workshop, 4-8th April 2016 (25/26)

+ 100 +

STAEKF

26th ALADIN-HIRLAM workshop, 4-8th April 2016 (26/26)

1913

Politique scientifique fédér

belspo.

