Finite Element Operators in the Vertical

Álvaro Subías Díaz-Blanco

 asubiasd@aemet.esAgencia Estatal de Meteorología
Departamento de Desarrollo y Aplicaciones Madrid, Spain

25th ALADIN Workshop \& HIRLAM All Staff Meeting Helsingør, Denmark

16 April 2015

- The purpose of the present work is to provide a vertical finite element technique making use of analytical properties of B-splines
- This technique can be a solution to solve constraints
- invertibility between integral and derivative: d and w
- C1 constraint
- Cooperation in VFE with
- Mariano Hortal, Juan Simarro (AEMET)
- Petra Smolíková (CHMI)
- Jozef Vivoda (SHMI)

VFE in hydrostatic model

 YMEDIO AMBENTESplines have been implemented successfully on IFS hydrostatic model by A. Untch and M. Hortal with linear and cubic B-splines using Galerkin method. All variables are kept at full levels, no staggering of variables is used

In non-hydrostatic model there is a constraint between vertical operators (C1) which is very desirable to satisfy in order to reduce the Helmholtz equation to a single variable \hat{d}

P. Smolíková and J. Vivoda work

 EMEDRCUITURAA AMBENTEP. Smolíková and J. Vivoda have developed a FE discretization with B-splines (computed with the de Boor algorithm) and Galerkin method. The C1-constraint is relaxed by an iterative method

$$
N_{i k}=\left(t-t_{i}\right) \frac{N_{i, k-1}}{\Delta_{i, k-1}}+\left(t_{i+k}-t\right) \frac{N_{i+1, k-1}}{\Delta_{i+1, k-1}}
$$

$$
\text { where } \Delta_{i k}:=t_{i+k}-t_{i}
$$

0th-order B-splines are

$$
N_{i 1}(t)= \begin{cases}1 & t_{i} \leq t<t_{i+1} \\ 0 & \text { otherwise }\end{cases}
$$

knots t_{i} are a non-decreasing sequence of points "related" to levels

Analytical VFE

VFE operators based on analytical properties of B-splines instead of Galerkin method. B-splines are a partition of unity, constants can be written as a linear combination of basis functions

$$
\sum_{i} N_{i k}(t)=1
$$

B-splines are well suited also in view of their properties under derivation and integration

$$
\begin{aligned}
\frac{\partial}{\partial t} N_{i k} & =(k-1)\left[\frac{N_{i, k-1}}{\Delta_{i, k-1}}-\frac{N_{i+1, k-1}}{\Delta_{i+1, k-1}}\right] \\
\int_{0}^{t} N_{i k} & =\frac{\Delta_{i k}}{k} \sum_{i \leq s} N_{s, k+1}
\end{aligned}
$$

VFE integral and derivative

as a consequence we have the commutative diagram where \sim identify functions that differ by a constant. S_{k} is the space spanned by B-splines

VFE integral and derivative

as a consequence we have the commutative diagram where \sim identify functions that differ by a constant. S_{k} is the space spanned by B-splines

it ensures invertibility between integral and derivative operators in grid-point space $\widehat{\partial}, \widehat{\int_{0}}, \widehat{\int_{1}}$, what can be seen as a constraint

VFE integral and derivative: invertibility between gw and d

We can make use of $\widehat{\partial}, \widehat{\int_{1}}$ operators to have an invertible-full-level representation of vertical divergence and vertical velocity

$$
\mathrm{d}=-\frac{p}{m R_{d} T} \partial_{\eta} \mathrm{gw}
$$

$$
\mathrm{gw}=\vec{v}_{s} \vec{\nabla} \phi_{s}-\int_{1}^{\eta} \frac{m R_{d} T}{p} \mathrm{~d} d \eta^{\prime}
$$

Spectral integral and derivative

- -NELEV
we make a periodic extension at the upper levels of the atmosphere and apply fourier analysis using the basis functions

$$
\begin{array}{ll}
1, x \\
\lambda_{n}:=e^{\frac{2 \pi i n x}{L}}
\end{array} \quad \begin{array}{ll}
\partial_{x} x=1 & \int_{*}^{x} 1=x \\
\partial_{x} \lambda_{n}=\frac{2 \pi i n}{L} \lambda_{n} & \int_{*}^{x} \lambda_{n}=\frac{L}{2 \pi i n} \lambda_{n}
\end{array}
$$

- NFLEVG+1

C1 constraint: FE operators

vertical operators appearing in semi-implicit nh-model are
derivative:

$$
\begin{aligned}
& \partial^{*}:=\pi^{*} \frac{\partial}{\partial \pi^{*}} \\
& \mathcal{L}^{*}:=\partial^{*}\left(\partial^{*}+1\right)
\end{aligned}
$$

integration:

$$
\begin{aligned}
\mathcal{G}^{*} f & :=\int_{\pi_{s}^{*}}^{\pi^{*}} f \frac{d \pi^{*}}{\pi^{*}} \\
\mathcal{S}^{*} f & :=\frac{1}{\pi^{*}} \int_{0}^{\pi^{*}} f d \pi^{*} \\
\mathcal{N}^{*} f & :=\frac{1}{\pi_{s}^{*}} \int_{0}^{\pi_{s}^{*}} f d \pi^{*}
\end{aligned}
$$

constraints:

$$
\begin{aligned}
\hline \begin{array}{cc}
\mathbf{C 1} 1 & \mathbf{C} 2 \\
\mathcal{A}_{1}^{*} \equiv 0 & \mathcal{T}^{*} \equiv 1 \\
\mathcal{A}_{1}^{*} & :=\mathcal{G}^{*} \mathcal{S}^{*}-\mathcal{G}^{*}-\mathcal{S}^{*}+\mathcal{N}^{*} \\
\mathcal{T}^{*} & :=\frac{g^{2}}{c^{2} N^{2}} \mathcal{L}^{*}\left[\mathcal{S}^{*} \mathcal{G}^{*}-\frac{c_{p d}}{c_{v d}}\left[\mathcal{G}^{*}+\mathcal{S}^{*}\right]\right]
\end{array}
\end{aligned}
$$

C1 constraint: factorization

Factorization of C1-constraint $\left(\mathcal{G}^{*}-1\right)\left(\mathcal{S}^{*}-1\right)=\left(1-\mathcal{N}^{*}\right)$ allows us to make the chain of operators in function space (where C1 is always guaranteed)

C1 constraint: factorization

Factorization of C1-constraint $\left(\mathcal{G}^{*}-1\right)\left(\mathcal{S}^{*}-1\right)=\left(1-\mathcal{N}^{*}\right)$ allows us to make the chain of operators in function space (where C1 is always guaranteed)

and in grid-point space $\widehat{\mathcal{G}^{*}}:=1+\widehat{\mathcal{G}^{*}-1}$

C1 constraint: factorization

the basis functions are not exactly B-splines. Coordinate is $t:=\frac{\pi^{*}}{\pi_{s}^{*}}$

$$
\begin{array}{rr}
H_{k}: & \left(\partial^{*}+1\right) N_{i k} \\
K_{k}: & -\partial^{*} N_{i k}
\end{array}
$$

to compute vertical laplacian $\widehat{\mathcal{L}^{*}}$ we simply relate the spaces S_{k} and $\mathcal{L}^{*} S_{k}$, it's only a first attempt because is not obvious how to satisfy C 2 -contraint simultaneoulsy with C1-constraint

C1 constraint: coding

nh-vfe operators are defined in setup inside suvert and encapsulated at low level

invertibility	
VERINT	$\widehat{\int_{0}}, \widehat{\int_{1}}$
VERDER	$\widehat{\partial}$

| C1-constraint |
| :--- | :--- |
| SIGAM $\widehat{\mathcal{G}^{*}}$
 SITNU $\widehat{\mathcal{S}^{*}}, \widehat{\mathcal{N}^{*}}$ |

```
SISEVE \widehat{\mp@subsup{L}{}{*}}
```

we have found that C1 constraint is guaranteed up to $\max \left|\widehat{\mathcal{A}_{1}^{*}}{ }_{i j}\right| \simeq 10^{-13}$

C1 constraint: B matrix

there's still the problem of to obtain real and positive eigenvalues of \mathbf{B} matrix that appears in the inversion of Helmholtz equation [KY]

$$
\begin{aligned}
& \operatorname{SUNHSI} \\
& \operatorname{SUNHBMAT}
\end{aligned} \quad \mathrm{B}=C^{2}\left[1-\beta^{2} \Delta t^{2} \frac{C^{2}}{H^{2}} \frac{T^{*}}{T_{a}^{*}} \widehat{\mathcal{L}^{*}}\right]^{-1}\left[1+\beta^{2} \Delta t^{2} N^{2} \frac{T^{*}}{T_{a}^{*}} \widehat{\mathcal{T}^{*}}\right] \quad \begin{aligned}
& \text { NPDVAR }=2 \\
& \text { NVDVAR }=3,4
\end{aligned}
$$

a symmetric matrix has non-negative real eigenvalues, so if B were one of that class their eigenvalues would be as required. A good trial can be symmetrize $\widehat{\mathcal{L}^{*}}$ as much as possible due to the dependency of \mathcal{T}^{*} on \mathcal{L}^{*}
the subroutine SISEVE acting on the identity matrix gives a matrix representation $\widehat{\mathcal{L}^{*}}$. In a FE construction is good to symmetrize it at the lowest full-level where it shows his higher asymmetry

C1 constraint: first test

MINIITERIO YEAGRCULTURAA
YMEDIO AMBENTE

Iberian peninsula 26 nov 14 to 3 dec 14 LL36 LPC_FULL.T. FD vs FD + FE GSNL

- Adapt non-linear model to be consistent with $\mathcal{G}^{*}, \mathcal{S}^{*}, \mathcal{N}^{*}$ operators.

This can be done through compatible integral operators defined in this way

$$
\begin{aligned}
& \sum_{n} \widehat{\mathcal{G}^{*}} l n \\
& l n=\sum_{n} \mathrm{RINTEG}_{l n}\left(\frac{m^{*}}{\pi^{*}}\right)_{n} f_{n} \\
& \sum_{n} \widehat{\mathcal{S}^{*}} l n \\
& f_{n}=\frac{1}{\pi_{l}^{*}} \sum_{n} \mathrm{RINTES}_{l n} m_{n}^{*} f_{n} \\
& \sum_{n} \widehat{\mathcal{N}^{*}} n{ }_{n} f_{n}=\frac{1}{\pi_{s}^{*}} \sum_{n} \operatorname{RINTEN}_{n} m_{n}^{*} f_{n}
\end{aligned}
$$

- Test $\mathcal{G}^{*}, \mathcal{S}^{*}, \mathcal{N}^{*}$ operators in full-nhvfe scheme
- Test invertible integral and derivative operators in current code. Surface data is needed for invertible derivation!

$$
\begin{array}{ll}
\text { RINTE } & \text { is }(L+1) \times L \\
\text { RDERI } & \text { is } L \times(L+1)
\end{array}
$$

- Study the impact of the choice of knots in the quality of solutions. They should be at the maxima of basis functions (nice talks with Jozef) but not very close to boundaries in order to avoid high $\Delta_{i k}$

Thank you for your attention!

