# Improved representation of supercooled liquid water in HARMONIE-AROME





WISLINE – Wind, Ice, and Snow Loads Impact on Infrastructure and the Natural Environment

Lead by MET-Norway and funded by the Norwegian Research Council

### Supervisors:

Bjørn Egil Nygaard (Kjeller Vindteknikk)

Greg Thompson (NCAR)

Lisa Bengtsson (SMHI/NOAA)

Jón Egill Kristjánsson (University of Oslo)

Terje Berntsen (University of Oslo)

Trude Storelvmo (University of Oslo)



Photo: Ole Gustav Berg, statnett









Thompson scheme is designed to be less "ice friendly"

We want to put parts of the Thompson scheme into HARMONIE-AROME



### MUSC

1D column version of HARMONIE-AROME

Quick testing

Idealized experiments

Isolate the processes

Turn on and off processes

Initial vertical profile + vertical velocity forcing

# Make your own cloud!



### Idealized experiment: orographic lifting



# First results: liquid water

### Cloud droplets

### Rain



#### rain EXP: Ideal CTRL bf bugfix Ntc100 g/kg 0.675 0.625 12000 0.575 0.525 10000 0.475 0.425 Height [m] 8000 0.375 -20-0.325 6000 0.275 -10 0.225 4000 0.175 0.125 2000 0.075 0.025 30 60 90 120 150 Time [min]

### First results: ice







Cloud ice

Snow

Graupel

# First results: liquid water

### Cloud droplets

### Rain



#### rain EXP: Ideal CTRL bf bugfix Ntc100 g/kg 0.675 0.625 12000 0.575 0.525 10000 0.475 0.425 Height [m] 8000 0.375 -20-0.325 6000 0.275 -10 0.225 4000 0.175 0.125 2000 0.075 0.025 30 60 90 120 150 Time [min]

### Cloud droplets

### Before bugfix

#### cloud droplets EXP: Before bugfix Ntc100 g/kg 1.1 12000 0.9 10000 0.8 Height [m] 8000 0.7 0.6 6000 0.5 -10 0.4 4000 0.3 0.2 2000 0.1 30 60 90 120 150 Time [min]

### After bugfix



### Rain

### Before bugfix

### After bugfix





# After bugfix: Ice







Cloud ice

Snow

Graupel

# Changes

Process: Effect:

Autoconversion Rain initiation

Ice nucleation Triggers the cold processes

Snow/Graupel collecting Depletes cloud water cloud droplets

Rain and Snow collision Favors graupel

### Cloud droplets

#### **CTRL**



#### Autoconversion



Ice initiation





Immersion freezing



Graupel col. cloud water



Rain and snow collision



#### Autoconversion

#### Ice initiation



**CTRL** 











Graupel col. cloud water

Rain and snow collision

Immersion freezing

### Cloud ice

CTRL

### Ice initiation





### Snow

#### CTRL Autoconversion

#### Ice initiation













Graupel col. cloud water

Rain and snow collision

Immersion freezing

### Graupel



#### Autoconversion

#### Ice initiation













Immersion freezing

Graupel col. cloud water

Rain and snow collision

### Summary

Supercooled liquid water is essential when forecasting icing

Autoconversion important for rain triggering

Cloud ice triggers cold processes

Variable collision-collection efficiencies important to allow mixed-phase clouds

### Future work

### More idealized cases

- Freezing drizzle/rain case (Jan 15 Oslo)
- Convection case
- Sensitivity tests

### Real 3D cases

Validate against both specialized and conventional observations

# Thank you for your attention!



