A new systematic strategy for chosing the coupling update frequency

۲

15th ALADIN Workshop, 6 - 10 / 05 /2005 Bratislava

Piet Termonia

Royal Meteorological Institute

A new systematic strategy for chosing the coupling update frequency - p.1/14

Contents

•

Aliasing due to interpolation of coupling data

Contents

•

Aliasing due to interpolation of coupling data

A new field in the coupling files

Contents

- Aliasing due to interpolation of coupling data
- A new field in the coupling files
- How to use it?

Undersampling

۲

• for
$$|\omega| > \frac{\pi}{T} \equiv \omega_N$$

•

۲

Undersampling

• for
$$|\omega| > \frac{\pi}{T} \equiv \omega_N$$

 the amplitude is OK, but the detected frequency is wrong

High pass filter

•

 The amount of aliasing can be estimated by a high-pass filter

High pass filter

 The amount of aliasing can be estimated by a high-pass filter

• E.g.

•

Can be computed recursively

recursive computation

$$y_k = \sum_{m=0}^N a_m x_{k-m} - \sum_{n=1}^N b_n y_{k-n} ,$$

Can be computed recursively

recursive computation

۲

$$y_k = \sum_{m=0}^N a_m x_{k-m} - \sum_{n=1}^N b_n y_{k-n} ,$$

allows computation during the coupling run

Can be computed recursively

recursive computation

$$y_k = \sum_{m=0}^N a_m x_{k-m} - \sum_{n=1}^N b_n y_{k-n} ,$$

allows computation during the coupling run

A new systematic strategy for chosing the coupling update frequency – p.5/14

Example: the 26/12/1999 Christmas stor

December 99

• compute this filtered field during a forecast

- compute this filtered field during a forecast
- put in the coupling files

- compute this filtered field during a forecast
- put in the coupling files

۲

 has been implemented in a version of cy28, but entered in cy29?

- compute this filtered field during a forecast
- put in the coupling files
- has been implemented in a version of cy28, but entered in cy29?
- DONE:

- compute this filtered field during a forecast
- put in the coupling files
- has been implemented in a version of cy28, but entered in cy29?
- DONE:

۲

computation in during the model run

- compute this filtered field during a forecast
- put in the coupling files
- has been implemented in a version of cy28, but entered in cy29?
- DONE:

- computation in during the model run
- writing to the historical files

- compute this filtered field during a forecast
- put in the coupling files
- has been implemented in a version of cy28, but entered in cy29?
- DONE:

- computation in during the model run
- writing to the historical files
- TO BE DONE: conf 927 to put it in the coupling files.

Proposal for a coupling strategy

 Before using the coupling file check the the maximum value of the coupling index field in your domain (or coupling frame)

Proposal for a coupling strategy

- Before using the coupling file check the the maximum value of the coupling index field in your domain (or coupling frame)
- if the maximum value exceeds a threshold value then download more coupling files to couple with 1 hour frequency

Proposal for a coupling strategy

- Before using the coupling file check the the maximum value of the coupling index field in your domain (or coupling frame)
- if the maximum value exceeds a threshold value then download more coupling files to couple with 1 hour frequency
- the price to be paid is a delay in the forecast: up to each country to decide if they want it.

How many time do we want it to happen

- what is the probability that a predefined value will be exceeded in a 8 × 100 frame?
- put this frame arbitrary in the domain
- during the month December 1999
- get statistics from the distribution of the maximum values of the filtered $\ln P_s$

•

• the different quantiles of the distribution

90 %	95 %	99 %	99.5 %	99.9 %	99.95 %	99.99 %
0.000127	0.000206	0.000501	0.000685	0.001291	0.001647	0.002736

۲

the different quantiles of the distribution

90 %	95 %	99 %	99.5 %	99.9 %	99.95 %	99.99 %
0.000127	0.000206	0.000501	0.000685	0.001291	0.001647	0.002736

so if we want a precision of 0.001 we are slightly below the 99.9% quantile.

the different quantiles of the distribution

90 %	95 %	99 %	99.5 %	99.9 %	99.95 %	99.99 %
0.000127	0.000206	0.000501	0.000685	0.001291	0.001647	0.002736

- so if we want a precision of 0.001 we are slightly below the 99.9% quantile.
- this means that in 99.9% of the cases you will just couple with 3-h updates

the different quantiles of the distribution

90 %	95 %	99 %	99.5 %	99.9 %	99.95 %	99.99 %
0.000127	0.000206	0.000501	0.000685	0.001291	0.001647	0.002736

- so if we want a precision of 0.001 we are slightly below the 99.9% quantile.
- this means that in 99.9% of the cases you will just couple with 3-h updates
- of course you can go below this

How frequent is frequent enough?

A new systematic strategy for chosing the coupling update frequency - p.12/14

How frequent is frequent enough?

 establish your own threshold value based on how many times you want a delay the quantiles: 0.001 is a good start

- establish your own threshold value based on how many times you want a delay the quantiles: 0.001 is a good start
- write scripts to check the filtered field in your domain and change the coupling update in the intervals where the threshold value is exceeded.

- establish your own threshold value based on how many times you want a delay the quantiles: 0.001 is a good start
- write scripts to check the filtered field in your domain and change the coupling update in the intervals where the threshold value is exceeded.
- couple with 1-h updates. Although my Fig. suggests that we should go below

- establish your own threshold value based on how many times you want a delay the quantiles: 0.001 is a good start
- write scripts to check the filtered field in your domain and change the coupling update in the intervals where the threshold value is exceeded.
- couple with 1-h updates. Although my Fig. suggests that we should go below
- this should be revisited for kilometer scale (AROME)