Testing the new ACDRAG scheme in the ALPIA environment

Bart CatryIGhent UniversityIBelgium.

Э

F. Bouyssel (Fr) R. Brozkova (Cz) J. Cedilnik (Si) M. Derkova (Sk) D. Dvar (Hr) J.-F. Geleyn (Fr) R. Mladek (Cz)

T'es vraiment pas adroit tout de même!

Outline Presentation

- Introduction
- The new ACDRAG scheme (short)
- The ALPIA domain
- Momentum Budgets
- The experiments
- Tuning of the new scheme
- Need for a parameterization scheme ?
- Suppression of the envelope
- Conclusions

Introduction

Representation of the subgrid scale effects of the unresolved orography:

- Increased surface roughness length
- Envelope orography (flow blocking & valley air isolation) Still needed while others don't
- Gravity wave & from drag Contradiction concerning F_c
- Lift (volume effect orthogonal to the background wind) Need for a geostrophic wind approximation

Problems

The new ACDRAG scheme

- F F_c inverse Froude number critical F value (=0.5) total surface stress τ surface stress from the linear theory $\tau_{\textit{lin}}$ C_{o}
 - drag coefficient

+ new lift

The ALPIA domain

Domain centered over the French Alps in 4 different resolutions:

10 km	96	X	96	X	37
5 km	192	X	192	X	52
2.5 km	384	X	384	X	71
1.25 km	768	X	768	X	96

Momentum Budgets

Momentum budgets are studied in a box (of which the height varies from 0 to 20km)

Should agree the following balance equation (e.g. for the meridional case):

Experiments (Semi-Academical)

- The atmosphere is dry, inviscid, in hydrostatic equilibrium and its static stability is given by a constant Brunt-Vaisälä frequency N = 0.01
- A constant reference flow of 7 m/s form the NW
- Geostrophic equilibrium with a constant Coriolis parameter f = 0.0001
- Reference values of temperature and density prescribed in the middle of the domain at sea level: $T_o = 300$ K and $\rho_o = 1$ kg/m³
- Forecast length set to 6 hours
- Two time level semi Lagrangian semi implicit approach with an Aladin 15 master

Experiments (Global)

- ARPEGE model in T358 resolution and in unstretched mode
- Equivalent to parallel suite in Toulouse
- New topography database
- No envelope

Tuning of the new scheme (resolution independent)

Performed on ALPIA domain and checked with ARPEGE and ALADIN-CE tests + additional constraint given by the Olafsson & Bougeault 1997:

Need for a parameterization (1)

Need for a parameterization (2)

Need for a parameterization (3)

5

Q

-5

O

6

12

18

24

30

36

Period: 20040124...20040131 Network: 0UTC Level 850 mb

14tn ALADIN Workshop - Innsbruck

42

48

Suppression of the envelope (1)

New lift scheme can remove volume effect of the envelope while keeping its barrier effect by changing the wind direction

Suppression of the envelope (2)

Suppression of the envelope (3)

-0.10

Conclusions

- The new ACDRAG scheme is tuned to be resolution independent
- Parameterization is needed for horizontal mesh sizes from ~ 5 km
- The envelope can be suppressed by the new lift scheme
- The thin line between param / no param is not clear