Validation and climate projections of the ALARO-0 model on the EURO-CORDEX domain

O. Giot ${ }^{1,2}$, P. Termonia ${ }^{1,3}$, D. Degrauwe ${ }^{1}$, R. De Troch ${ }^{1,3}$, S. Caluwaerts ${ }^{3}$, G. Smet ${ }^{1}$, J. Berckmans ${ }^{1,2}$, A. Deckmyn ${ }^{1}$, L. De Cruz ${ }^{1}$, P. De Meutter ${ }^{1,3}$, F. Duchêne ${ }^{1}$, A. Duerinckx ${ }^{1,3}$, L. Gerard ${ }^{1}$, R. Hamdi ${ }^{1}$, J. Van den Bergh ${ }^{1}$, M. Van Ginderachter ${ }^{1,3}$, B. Van Schaeybroeck ${ }^{1}$,

${ }^{1}$ Royal Meteorological Institute of Belgium
${ }^{2}$ Centre of Excellence PLECO (Plant and Vegetation Ecology), University of Antwerp
${ }^{3}$ Department of Physics and Astronomy, Ghent University

Joint 26th ALADIN Workshop \& HIRLAM All Staff Meeting 2016 Lisbon, April 4-8, 2016

1 ALARO-0 climate runs at RMIB: status

2 Validation of ALARO-0 for climate

3 Climate projections

4 Subdaily precipitation

1 ALARO-0 climate runs at RMIB: status

2 Validation of ALARO-0 for climate

3 Climate projections

4 Subdaily precipitation

A little bit of history

Extended downscaling experiment by De Troch et al., JoC, 2013:

- Evaluation of ALADIN and ALARO-0 cy36t1 at 40, 10 and 4 km .

■ Initial and lateral boundary conditions: ERA-40 or model at 40km resolution (one-way nesting)

- 40-year run with daily reinitializations
- Reference: to station observations 1961-1990

Thanks to the 3MT physics parameterization scheme, ALARO-0 generates consistent results across scales and correctly represents extreme daily precipitation, even at high resolutions.

Results indicate that ALARO-0 is a good candidate for regional climate modelling.

ALARO-0 climate runs at RMIB

Participation in the Coordinated Regional Climate Downscaling Experiment (CORDEX):

■ Runs are performed with ALARO-0 cy36t1
■ Boundary conditions: ERA-Interim (evaluation) or CMIP5 GCM: CNRM-CM5 (historical and future)
■ Run continuously (one month at a time) for a 31-year period.
■ Domain and resolutions: EUR-44 ($0.44^{\circ} \approx 50 \mathrm{~km}$) and EUR-11 ($0.11^{\circ} \approx \mathbf{1 2 . 5} \mathbf{~ k m}$)

Validation

Validated using state-of-the-art performance metrics.

Geosci. Model Dev., 9, 1143-1152, 2016
www.geosci-model-dev.net/9/1143/2016/
doi: $10.5194 /$ gmd-9-1143-2016
© Author(s) 2016. CC Attribution 3.0 License.

Validation of the ALARO-0 model within the EURO-CORDEX framework

Olivier Giot ${ }^{1,2}$, Piet Termonia ${ }^{1,3}$, Daan Degrauwe ${ }^{1}$, Rozemien De Troch ${ }^{1,3}$, Steven Caluwaerts ${ }^{3}$, Geert Smet ${ }^{1}$, Julie Berckmans ${ }^{1,2}$, Alex Deckmyn ${ }^{1}$, Lesley De Cruz ${ }^{1}$, Pieter De Meutter ${ }^{1,3}$, Annelies Duerinckx ${ }^{1,3}$, Luc Gerard ${ }^{1}$, Rafiq Hamdi ${ }^{1}$, Joris Van den Bergh ${ }^{1}$, Michiel Van Ginderachter ${ }^{1,3}$, and Bert Van Schaeybroeck ${ }^{1}$
${ }^{1}$ Royal Meteorological Institute, Brussels, Belgium
${ }^{2}$ Centre of Excellence PLECO (Plant and Vegetation Ecology), Department of Biology, University of Antwerp, Wilrijk, Belgium
${ }^{3}$ Department of Physics and Astronomy, Ghent University, Ghent, Belgium
Correspondence to: Olivier Giot (olivier.giot@meteo.be)
Received: 29 July 2015 - Published in Geosci. Model Dev. Discuss.: 1 October 2015
Revised: 3 March 2016 - Accepted: 4 March 2016 - Published: 30 March 2016

Current status

Runs are ongoing on the Tier-1 supercomputer at Ghent University. The checked runs are finished or ongoing, green ones are next.

	Analysis	Historical	RCP 2.6	RCP 4.5	RCP8.5
$\mathbf{1 9 7 6 -}$	\checkmark	\checkmark	-	-	-
2005					
$2005-$	-	-	\times	\times	\times
2040					
$2040-$	-	-	\checkmark	\checkmark	\checkmark
2070					
$2070-$	-	-	\checkmark	\checkmark	\checkmark
2100					

National project

- Dynamical downscaling of EURO-CORDEX 12.5 km or 50 km runs on a high-resolution $\mathcal{O}(4 \mathrm{~km})$ domain over Belgium
- In addition to our contribution with ALARO-0, partner institutes use e.g. COSMO-CLM, MAR
- This provides an ensemble of high-resolution climate runs for local impact modellers.

National project: CORDEX.be

Technical challenges

■ Creating netCDF files that conform to the CORDEX archive specifications
■ Processing 100s of TBs of historical files to extract TBs of data

Technical challenges

- Creating netCDF files that conform to the CORDEX archive specifications
- Processing 100s of TBs of historical files to extract TBs of data
- ... in R: new R package CordextractR (flexibility required!)

Technical challenges

- Creating netCDF files that conform to the CORDEX archive specifications
- Processing 100s of TBs of historical files to extract TBs of data

■ ... in R: new R package CordextractR (flexibility required!)

- Specify your in/output variables of choice, including functions such as sum, modulus, mask, threshold, max... in a declarative way
■ Set-up of a data conversion pipeline using producer-filter-consumer pattern (avoids (computation-intensive) logic/branches during the conversion)
■ Fast conversion (in spite of R): the bottleneck is mainly IO
■ Unit tests for all functions

Technical challenges

- Creating netCDF files that conform to the CORDEX archive specifications
■ Processing 100s of TBs of historical files to extract TBs of data
■ ... in R: new R package CordextractR (flexibility required!)
- Specify your in/output variables of choice, including functions such as sum, modulus, mask, threshold, max... in a declarative way
■ Set-up of a data conversion pipeline using producer-filter-consumer pattern (avoids
(computation-intensive) logic/branches during the conversion)
■ Fast conversion (in spite of R): the bottleneck is mainly IO
■ Unit tests for all functions
- Submitting data to the ESGF nodes (many of which have been down for a while...)

1 ALARO-0 climate runs at RMIB: status

2 Validation of ALARO-0 for climate

3 Climate projections

4 Subdaily precipitation

Validation of ALARO-0 for climate

Evaluation run:

- Lateral boundary conditions from the ERA-Interim reanalysis

■ Continuous 31-year run (1979-2010)

- Reference: E-OBS 7 data set

Can ALARO-0 represent the most important features of the European climate?

In practice:
1 Is ALARO-0 competitive with other EURO-CORDEX ensemble members, using the standardized performance metrics as in Kotlarski et al., 2014?
〔 Are these metrics robust?

Performance metrics

Scores are based on seasonal mean values of near-surface air temperature and precipitation.

- BIAS: mean bias

■ 95\%-P: 95th percentile of the absolute grid point differences
■ RSV: ratio of spatial variability
■ PACO: pattern correlation

- RIAV: ratio of interannual variability

■ TCOIAV: temporal correlation of interannual variability

$$
\begin{aligned}
& \text { All scores except TCOIAV should be similar for reanalysis- and } \\
& \text { GCM-driven runs (if GCMs represent the climate well) }
\end{aligned}
$$

Performance metrics

Scores are based on seasonal mean values of near-surface air temperature and precipitation.

- BIAS: mean bias
- 95\%-P: 95th percentile of the absolute grid point differences
- RSV: ratio of spatial variability
- PACO: pattern correlation
- RIAV: ratio of interannual variability

■ TCOIAV: temporal correlation of interannual variability
All scores except TCOIAV should be similar for reanalysis- and GCM-driven runs (if GCMs represent the climate well)

Robustness

Are the scores robust, i.e. independent of the period used? \Rightarrow Jackknife procedure:

- Calculate all scores for 1000 random 20-year samples out of the 32-year period
■ Construct 95\% confidence intervals
- Compare interval width to the ensemble spread.

Temperature
jackknife 95\% confidence interval | RMIB-UGent (top=.11; bottom=.44)
white background: RMIB-UGent is in K14
green background: RMIB-UGent is not in K14, but better or not the worst
yellow background: RMIB-UGent is not in K14 and the worst

optimal score

- K14 models
jackknife 95\% confidence interval
RMIB-UGent (top=.11; bottom=.44)

white background: RMIB-UGent is in K14 green background: RMIB-UGent is not in K14, but better or not the worst yellow background: RMIB-UGent is not in K14 and the worst

Temperature
white background: RMIB-UGent is in K14
green background: RMIB-UGent is not in K14, but better or not the worst yellow background: RMIB-UGent is not in K14 and the worst

Precipitation
white background: RMIB-UGent is in K14
green background: RMIB-UGent is not in K14, but better or not the worst yellow background: RMIB-UGent is not in K14 and the worst

Temperature bias patterns

Precipitation bias patterns

Conclusions

A state-of-the-art validation was performed of the ALARO-0 evaluation run of RMIB-UGent, following standardized metrics.

- ALARO-0 performs well, despite not being tuned for climate: cfr. white/green backgrounds
- Temperature biases persist in Scandinavia / Eastern Europe (same spatial pattern as ARPEGE)
■ For precipitation, ALARO-0 often outperforms all other models!
Robustness test: all scores except RIAV and TCOIAV are robust

1 ALARO-0 climate runs at RMIB: status

2 Validation of ALARO-0 for climate

3 Climate projections

4 Subdaily precipitation

RCP 8.5 vs historical T2m (Uccle, Belgium)

Change in temperature: RCP 8.5 (2070-2100) vs historical (1976-2005)

Temperature change

Winter

Temperature change

Summer

Change in precipitation: RCP 8.5 (2070-2100) vs historical (1976-2005)

Relative change in Precipitation

Winter

Relative change in Precipitation

Summer

1 ALARO-0 climate runs at RMIB: status

2 Validation of ALARO-0 for climate

3 Climate projections

4 Subdaily precipitation

Subdaily precipitation

OBS: "centennial" 10-minute precipitation observation series in Uccle

References

1 De Troch, R., et al.: Multiscale performance of the ALARO-0 model for simulating extreme summer precipitation climatology in Belgium, Journal of Climate, 26(22), 8895-8915, doi:10.1175/JCLI-D-12-00844.1, 2013.
2 Kotlarski, S., et al.: Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble, Geosci. Model Dev., 7, 1297-1333, doi:10.5194/gmd-7-1297-2014, 2014.
3 Giot, O., et al.: Validation of the ALARO-0 model within the EURO-CORDEX framework, Geosci. Model Dev., 9, 1143-1152, doi:10.5194/gmd-9-1143-2016, 2016.
4 De Troch, R., The application of the ALARO-0 model for regional climate modeling in Belgium: extreme precipitation and unfavorable conditions for the dispersion of air pollutants under present and future climate conditions, PhD dissertation, 2016.

Backup slides

Climate scenarios

■ Finished: RCP 8.5 2040-2100
■ Ongoing: RCP 4.5 2040-2100

- Ongoing: RCP 2.6 2040-2100
\square Planned: * 2005-2040

(CO_{2}-equivalent vs time)

Relative change in yearly precipitation: RCP 8.5 (2070-2100) vs hist (1976-2005)

