

Flow-dependent data assimilation from a scientific perspective

ALADIN WK/ HIRLAM ASM

16-19 April 2018 Toulouse, Météo-France Jelena Bojarova&Co (SMHI, AEMET, KNMI, Ljubljana University, ...)

What do we have now in HARMONIE

HARMONIE AROME 4DVAR

outer and inner loops, multi-incremental _____
 to resolve weak and moderate non-linearities)

HARMONIE LETKF

 a grid-point ensemble technique with local selection of observations and local analysis (non-homogeneity, anisotropy,)

HARMONIE Hybrid EnVAR

as a regularization constraint
 (error-of-the-day ensemble information into variational framework with "global" selection of observation)

EPS branch

model error uncertainty,
 LBC,

Impact of HARMONIE 4D-Var

Daily cycle of Cloud cover

------ no data assimiation
----- 3D-Var
----- 4D-Var
----- observations

3 h acc. Precipitattion

Fraction Scill Score 0.3 mm at 12h

----- no data assimilation

----- 3D-Var

----- 4D-Var

By Jan Barkmeijer

Importance of outer-loops and coarse-resolution DA

Kinetic energy spectra of assimilation increment for different iteration numbers; HIRLAM 4D-Var 24 km model

1 outer loop iteration 100 iterations at 48 km

(Gustafsson et al 2012)

2 outer loop iterations 60 iterations at 96 km 40 iterations at 48 km

Hybrid 3DVAR/LETKF in HARMONIE

Temperature

9 stations Selection: ALL Temperature Period: 20170401-20170408 Statistics at 00 UTC Used {00,123 + 00 12

RH2m

(By Pau Escribá)

AnHyb = K*AnLETKF + (1-K)*An3DVAR K = 0.5

HARMONIE Hybrid EnVAR finally works!

Implementation as in

A hybrid variational ensemble data assimilation for the HIgh Resolution Limited Area Model (HIRLAM)

N. Gustafsson¹, J. Bojarova², and O. Vignes²

$$J(\delta x_{\text{var}}, \alpha) = \beta_{\text{var}} J_{\text{var}}(\delta x_{\text{var}}) + \beta_{\text{ens}} J_{\text{ens}}(\alpha) + J_{\text{o}}$$
 (6)

$$\frac{1}{\beta_{\text{var}}} + \frac{1}{\beta_{\text{ens}}} = 1.$$

$$J_{\rm ens} = \frac{1}{2} \boldsymbol{\alpha}^T \mathbf{A}^{-1} \boldsymbol{\alpha}$$

$$\mathbf{B}_{\text{ens}} = \mathbf{A} \circ \mathbf{B}_{\text{raw-ens}}$$

Ensemble: 20 members of BRAND perturbations

Localisation: spectrum of unbalanced surface pressure

Convergence of Hybrid EnVar

$$J(\chi) = 2Jb + 2Ja + Jo$$

$$\min J(\chi) => \frac{\partial J}{\partial \chi} = 0$$

Example 20120613_21 DKCOEXP (10 members)

The Scheme: generation of perturbations with the structure of B-matrix covariance. (depends on configuration)

Hybrid EnVar EPS

N+1 Hybrid EnVAR runs

Ens. Member1

Ens.Member2

Ens.Member i

Ens.MemberN

$$\mathcal{J}(\chi,\alpha) = \beta \mathcal{J}_{var}(\chi) + \beta \mathcal{J}_{ens}(\alpha)$$

 $+\mathcal{I}_{_{o}}$

$$\beta_{var} + 1/\rho_{ens} = 1$$

Ens i

Ens 0

Ens.Member i

Ens. Member1

Ens.Member2

control

$$X_{ens\ i}^{a} = X_{ens\ i}^{f} + \delta \chi_{ens\ i}^{a}$$

$$\delta \chi_{ens\ i}^{a} = \delta \chi_{var} + \underset{ens\ i}{alpha} \sum_{n=1}^{\mathcal{N}} (\alpha_{n} \circ \delta \chi_{ens\ n}^{i})$$

Ens.MemberN

values of tunable parameters might be different for control and ensemble members

Genealogical Tree of DA Algorithms SMHI

Hybrids: Mixed clim. and ens. forecast error statistics

Different perturbation generation techniques S

Samples forecast model error space : **BRAND**

$$\delta x_{i} = B^{1/2} \delta \xi_{i}$$
, $\xi_{i} \sim \mathcal{N}(0,1)$ $i = 1,...,N^{ens}$

Mimics analysis error behaviour : **EDA**

$$H(x^{f}+\delta x) + HBH^{T}(HBH^{T}+R)^{-1}(y+\epsilon_{i}-Hx^{f}-H\delta x)$$
- Hx^{f} - $HBH^{T}(HBH^{T}+R)^{-1}(y-Hx^{f}) =>$

$$\delta x^{a}_{i} = \delta x + BH^{T}(HBH^{T}+R)^{-1}(\epsilon_{i}-H\delta x), \quad \epsilon_{i} \sim \mathcal{N}(0,1)$$

Quantifies analysis error uncertainty: ETKF

$$B^{a}=B-BH^{T}(HBH^{T}+R)^{-1}HB; U = (\delta x_{1}, ..., \delta x_{1}, ..., \delta x_{N_{ens}})$$

$$B=UU^{T}, B^{a}=U^{a}(U^{a})^{T}, U^{a}=UV; U_{mxN_{ens}}, V_{N_{ens}}, V_{N_{ens}} =>$$

$$LETKF$$

$$H \rightarrow H(z)_{loc}, V \rightarrow V(z)_{loc}, U^{a}(z)_{loc} = U V(z)_{loc}$$

Domain and orographic conditions SMHI

Surface pressure

The weather situation

Strong front (around 850hPa): warm and wet air meets cold and dry air.

Valid time **20120618 18UTC**

Forecast +03h

We impose perturbations

Temperature

Temperature, humidity, u- ans v- winds components, surface pressure

Specific humidity

0.0030 0.0045 0.0060 0.0075 0.0090 0.0105 0.0120 0.0135

We obtaine response

Cloud Water around 850hPa

Cloud water is a small scale field that depends on spatial derivatives of temperature and humidity

Ensemble of Specific Humidity 850 hPa +3h

Ensemble of Integrated Graupel +3h

Model for the background error covariance

Climatological

$$X = \mathbf{B}^{1/2}\xi$$

$$\mathbf{B}^{-1/2} = VD^{-1}F$$

where

 $B^{-1/2}$ is the inverse of square-root of the background error covariance,

F is horizontal 2-dimensional Fourier transform from physical gridpoint space to spectral space,

 D^{-1} is a de-correlation operator,

V is a vertical transform utilizing the eigenvectors of vertical covariance matrices.

Ensemble estimate

$$\mathbf{B}_{\text{ens}} = \mathbf{A} \circ \mathbf{B}_{\text{raw-ens}}$$

Balance operator and assumptions

(Powerful diagnostic tool)

It is assumed that background error statistics are homogeneous => the spectral component for different wave-numbers are statistically uncorrelated It is assumed that background error statistics are isotropic in horizontal=> the horizontal correlations can be represented via 1D spectra for control variables

The balance operator
D is derived in spectral
space through step-wise
multivariate statistical
regression technique for
each wave number
component separately

Inertia-Gravity waves (IGW)
$$\zeta = \zeta$$

$$\eta = MH\zeta + \eta_u$$

$$(T, P_s) = NH\zeta + P\eta_u + (T, P_s)_u$$

$$q = QH\zeta + R\eta_u + S(T, P_s)_u + q_u$$
 Rossby waves

Structure functions derived from different ensembles

EDA with perturbed observations

BRAND: additative inflation to control BG

Surface pressure variance explained by

- vorticity (solid line)
- unbalanced divergence (dashed line)

EDA conv (6 hour DA cycle)

EDA MetCoOp (3 hour DA cycle)

(thanks to Nils Gustafsson and Martin Ridal)

What is the origin of mesoscale inertia-gravity waves

One example of a source: Schematic illustration of the geostrophic adjustment process governing upscale growth of errors from the convective scales:

From **Bierdel, Selz and Craig, 2017**, Theoretical aspects of upscale error growth through the mesoscales: an analytical model

Jean-Francois Geleyn, 2006, during joint HIRLAM-ALADIN planning of mesoscale data assimilation:

"How to project on a good estimate of the moist attractor before it anyhow moves away?"

Very different time scales of convective processes and inertia-gravity waves => learn from turbulence and sub-grid variability

Are variational techniques still appropriate? Should we put more efforts in altewrnative data assimilation schemes (particle filters)?

Could 4DEnVAR help ("a simple exercise")?

Equatorial domain shallow water model; moisture and condensation added.

By Ziga Zaplotnik et al.

Forward non-linear model sensitivity experiment from

By Ziga Zaplotnik et al 2018

4D-Var data assimilation experiment with a temperature observation at +12h

