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What do we have now in HARMONIE

HARMONIE AROME 4DVAR 
   – outer and inner loops, multi-incremental
 ( to resolve weak and moderate non-linearities )

HARMONIE LETKF 
    – a grid-point ensemble technique with local 
selection of observations and local analysis
 (non-homogeneity, anisotropy, ) 

HARMONIE Hybrid EnVAR
     – as a regularization constraint
(error-of-the-day ensemble information into variational 
framework with  “global” selection of observation)
 
EPS branch 
      –  model error uncertainty,
LBC, 

CY40h1.1.1



Impact of HARMONIE 4D-Var 3 h acc. Precipitattion
 
Fraction Scill Score 
0.3 mm at 12h 
------- no data assimilation
------- 3D-Var
------- 4D-Var

Daily cycle of Cloud cover

–----------- no data assimiation
------------- 3D-Var
------------- 4D-Var
------------- observations

By Jan Barkmeijer



Kinetic energy spectra of assimilation increment for different iteration 
numbers; HIRLAM 4D-Var 24 km model

1 outer loop iteration
100 iterations at 48 km

2 outer loop iterations
60 iterations at 96 km
40 iterations at 48 km

Importance of outer-loops and coarse-resolution DA

(Gustafsson et al 2012)



Hybrid 3DVAR/LETKF in HARMONIE

5

AnHyb = K*AnLETKF + (1-K)*An3DVAR
K = O.5  

(By Pau Escribá)

Temperature RH2m



HARMONIE Hybrid EnVAR finally works !

Implementation as in 

Ensemble : 20 members of BRAND perturbations
Localisation : spectrum of unbalanced surface pressure



Jo (distance to obs) 
Jb (background static )
Ja (background flow-dep)

Gradient ∂J/∂χ

J(χ) = 2Jb + 2Ja + Jo min J(χ) => ∂J/∂χ = 0
χ

YQ%LGP=.TRUE.  
YQ%LSP=.FALSE.

Convergence of Hybrid EnVar

Example 20120613_21 DKCOEXP (10 members)

892

202.12

220.06

+ 91.89
+ 29.36 0.19

341.31 =

=> YQ%LGP=.FALSE.  
YQ%LSP=.TRUE. + Qtrans



“Brand” perturbations
10 members+control (2012061203 - 2012062718)
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values of tunable parameters 
might be different for control 
and ensemble members



3D-Var: single time,
clim. forecast error stat. 

4D-Var: time 
window 

Hybrid 4D-Var:
time window
3D forecast error stat.

4D LETKF                        4DEnVAR
        4D ens. forecast error stat.       

Genealogical Tree of DA Algorithms

Hybrids: Mixed clim. and ens. forecast error statistics

LETKF                                  3DEnVar
        3D ens. forecast error stat.
                  single time
local obs. sel                   global obs. 
sel  ens. space form.                 var 
form. 
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Samples forecast model error space : BRAND
 i = 1,…,Nens

Mimics analysis error behaviour : EDA 
 

Quantifies analysis error uncertainty  : ETKF  

LETKF

Different perturbation generation techniques



Surface pressure

Domain and orographic conditions



The weather situation

Strong front 
(around 850hPa):
 warm and  wet air meets 
cold and dry air.

We impose 
perturbations  

Temperature, humidity, 
u- ans v- winds 
components, surface 
pressure

We obtaine
response

Cloud Water around 
850hPa

Cloud water is a small 
scale field that depends 
on spatial derivatives of 
temperature and humidity

Temperature Specific
humidity

Valid time
20120618 18UTC

Forecast +03h



Convective developments : Harmonie 3DVAR

Integrated 
Graupel

Low Cloud Cover

+09h+03h Valid time
20120618 
18UTC
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Ensemble of Specific Humidity 850 hPa +3h
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Ensemble of Integrated Graupel +3h
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where 
B-1/2 is the inverse of square-root of the background error covariance, 
F is horizontal 2-dimensional Fourier transform from physical grid-

point space to spectral space,
D-1  is a de-correlation operator, 
V is a vertical transform utilizing the eigenvectors of vertical 

covariance matrices.   

Model for the background error covariance

Climatological

Ensemble estimate



It is assumed that background error statistics are homogeneous => the 
spectral component for different wave-numbers are statistically uncorrelated
It is assumed that background error statistics are isotropic in horizontal=> the 
horizontal correlations can be represented via 1D spectra for control 
variables 

The balance operator 
D is derived in spectral 
space through step-wise 
multivariate statistical 
regression technique for 
each wave number 
component separately   

Balance operator and assumptions

(Powerful diagnostic tool)

Rossby waves

Inertia-Gravity waves
 (IGW)



Structure functions derived from different ensembles 

EDA with perturbed observations 
BRAND: additative inflation to control BG
     Surface pressure variance explained by
     - vorticity (solid line) 
     - unbalanced divergence (dashed line)

              
               (6 hour DA cycle)                                (3 hour DA cycle)

(thanks to 
Nils Gustafsson 
and Martin Ridal)

Rossby 
waves

Meso-scale
IGWs

Gravity 
waves 
due to 
noise

EDA conv EDA MetCoOp



What is the origin of mesoscale inertia-gravity waves?

One example of a source: Schematic illustration of the 
geostrophic adjustment process governing upscale 
growth of errors from the convective scales: 

From Bierdel, Selz and Craig, 2017, Theoretical aspects of upscale error 
growth through the mesoscales: an analytical model    



Jean-Francois Geleyn, 2006, during joint 
HIRLAM-ALADIN planning of mesoscale 
data assimilation:

“How to project on a good estimate of the 
moist attractor before it anyhow moves 
away?”

Very different time scales of convective processes and inertia-gravity 
waves =>  learn from turbulence and sub-grid variability

Are variational techniques still appropriate? Should we put more efforts 
in altewrnative data assimilation schemes (particle filters)?  



Could 4DEnVAR help (“a simple exercise”)?
Equatorial domain shallow water model; moisture and condensation 
added.

4D-Var data assimilation experiment with a 
temperature observation at +12h

Forward non-linear model sensitivity experiment from
a temperature perturbation at +0h

+3 h

+6 h +12 h+0 h

+6 h +12 h

By Ziga Zaplotnik et al
2018
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