Debriefing of the TCA0 (Training Course on ALARO-0), Radostovice, 26-30/3/07

http://www.rclace.eu/?page=99

ALADIN Yorkshop Osley 25/4/2007

Time-table

	Monday	Tuesday	Wednesday	Thursday	Friday
08.45- 09.45		L06	L09	E6	L15
10.00- 11.00	L01	L07	E4	L12	L16
11.15- 12.15	L02	E2	L10	E7	L17
13.30- 14.30	L03	WGA2	WGB2	L13	
14.45- 15.45	E1			E8	
16.00- 17.00	L04	L08	E5	L14	
17.15- 18.15	L05	E3	L11	E9	
19.45- 20.45	WGA1 & realisations	WGB1 & realisations	WGC1 & realisations	WGC2	
21.00- 22.00				WOOZ	

Lectures' programme

L01	Introduction	Jean-Francois
L02	Governing equations	Bart
L03	SLHD	Filip
L04	Moist physics generalities	Radmila
L05	Microphysical processes	Bart
L06	Radiation: basic and NER	Jean-Francois
L07	p-TKE scheme	Filip
L08	Radiation: gas. stats & cloud satur. models	Jean-Francois
L09	Code status	Martin
L10	Existing validations and associated problms.	Radmila
L11	3MT: the grey-zone challenge	Luc
L12	3MT: the equation's historical evolution	Jean-Marcel
L13	3MT: the core concepts	Jean-Marcel & Luc
L14	3MT: the up- & downdrafts' handling	Luc
L15	3MT: the certainties and the perspectives	Jean-Marcel
L16	Implementation problems, options, constrnts.	. Martin
L17	Wrapping-up and preparing KIT work	Neva

Working group arrangements (1/3)

- Working Group A: (Martina => Bart), Christoph and <u>Luc</u> (coding structures for modularity-flexibility and associated scientific constraints)
- Working Group B: Jan, Filip and Joao (rather convection-independent parameterisation issues)
- Working Group C: Neva/Jure, (Siham) and Doina (*roughly speaking 3MT*)

Working group arrangements (2/3)

- The evening working group sessions are of the mixed type, with also presentations about implementations' results. Plus the addition on 'time-schemes' in one afternoon and the discussion about CVPP in one evening.
- There was intentionally no strong guideline for the preparatory (documentation) part of the WG part. There is none either for how the WG sessions will happen.

Working group arrangements (3/3)

- The exercise did mean to ultimately produce some special documentation about the specificities of ALARO-0. Obviously we are not at that stage, but it is not the main point now.
- We are here to UNDERSTAND, COMPARE, HARMONISE and IMAGINE a transversal documentation form that will be well shaped with respect to the reinforced 'scientific maintenance' new goals of ALARO-0.
- Let see empirically how we proceed to that along the six WG sessions.

Exercise sessions arrangements (1/2)

- There will be five types of exercises:
 - 1) **algorithmic recognition**: 2 pieces of code and one basic 'document': the aim is to find the right one between the two codes and to explain why;
 - 2) **bug search**: in a single similar piece of code to the previous case; this time the declination is correct on the paper but intentionally ill-coded;
 - *3) algorithmic anticipation*: like in the first case (2 codes), but the difference is situated in the consequences for stability or accuracy; thus no reference document provided;
 - 4) **results' interpretation**: cases study results made available, with in principle all necessary information available for the multi-source diagnostic of a weakness;
 - 5) **modularity** (in 'passive mode'): to create the equivalent of an existing code sub-item, starting from some non-ALARO-0 scientific and/or technical documentation.

Exercise sessions arrangements (2/2)

The exercise sessions should be classical, but clearly '*scientific maintenance*' oriented.

Each type of exercise will be practiced, however not on a very structured and coordinated basis.

For the code exercises please do not cheat. We are here to learn, not to do a beauty contest in debugging.

What we are here to learn is a better methodology of scientific maintenance. Hopefully the exercises will help to it.

Type N°1 mini-example (1/4)

- Routine, APLPAR.
- Document, governing equations paper Catry et al., 2007 => consistency between various thermodynamical processes contributing to the thermodynamic equation (see Lecture L02).
- Which of the two ensuing solutions is "equations' compatible".

Type N°1 mini-example (2/4)

First code version

```
DO JLEV=KTDIA, KLEV
 DO JLON=KIDIA, KFDIA
    ZQX1=ZQR(JLON, JLEV) - ZIPOI(JLON, JLEV) * (0.0_JPRB &
      & - (PFPFPL(JLON, JLEV) - PFPFPL(JLON, JLEV-1)) &
      & + (PFPLSL(JLON, JLEV) - PFPLSL(JLON, JLEV-1)) &
      & + (PFPEVPL (JLON, JLEV) -PFPEVPL (JLON, JLEV-1))
    ZQR(JLON, JLEV) = MAX(0.0_JPRB, ZQX1)
    ZDQR=MAX(0.0 JPRB, ZQX1)-ZQX1
    ZFCQRNG(JLON, JLEV) = ZFCQRNG(JLON, JLEV-1) - ZDQR*ZPOID(JLON, JLEV)
    PFCQRNG(JLON, JLEV) = PFCQRNG(JLON, JLEV) + ZFCQRNG(JLON, JLEV)
    ZQX1=ZQS(JLON,JLEV)-etc.
    ZDQS=MAX(0.0 JPRB, ZQX1)-ZQX1
      etc.
    ZDOC=ZDOR+ZDOS
    ZDFCQL=ZFCQL(JLON, JLEV) - ZFCQL(JLON, JLEV-1) &
      & - PFCSQL(JLON, JLEV) +PFCSQL(JLON, JLEV-1) &
      & - PFCCOL(JLON, JLEV) +PFCCOL(JLON, JLEV-1)
    ZFCQLDM(JLON, JLEV) = ZFCQLDM(JLON, JLEV-1) + ZDFCQL
    ZDFCQI= etc.
    ZQL(JLON, JLEV) = ZQL(JLON, JLEV) - ZIPOI(JLON, JLEV) * ( &
      & (PFPFPL(JLON, JLEV) - PFPFPL(JLON, JLEV-1)) &
      & -ZDFCOL )
    ZQI(JLON, JLEV) = etc.
    PFCSQL(JLON, JLEV) = PFCSQL(JLON, JLEV) + ZFCQLDM(JLON, JLEV)
    PFCSQN(JLON, JLEV) = PFCSQN(JLON, JLEV) + ZFCQIDM(JLON, JLEV)
 ENDDO
ENDDO
```

Type N°1 mini-example (3/4)

Second code version

```
DO JLEV=KTDIA, KLEV
   DO JLON=KIDIA, KFDIA
     ZOX1=ZOR (JLON, JLEV) - ZIPOI (JLON, JLEV) * (0.0 JPRB &
        & - (PFPFPL(JLON, JLEV) - PFPFPL(JLON, JLEV-1)) &
        & + (PFPLSL(JLON, JLEV) - PFPLSL(JLON, JLEV-1)) &
        & + (PFPEVPL (JLON, JLEV) - PFPEVPL (JLON, JLEV-1)) )
      ZQR(JLON, JLEV) = MAX(0.0 JPRB, ZQX1)
     ZDQR=MAX(0.0 JPRB, ZQX1)-ZQX1
     ZFCORNG(JLON, JLEV) = ZFCORNG(JLON, JLEV-1) - ZDOR*ZPOID(JLON, JLEV)
     PFCQRNG(JLON, JLEV) = PFCQRNG(JLON, JLEV) + ZFCQRNG(JLON, JLEV)
      ZQX1=ZQS(JLON,JLEv)-etc.
      ZDQS=MAX(0.0_JPRB, ZQX1)-ZQX1
        etc.
      ZDOC=ZDOR+ZDOS
     ZDFCQL=ZFCQL(JLON,JLEV) -ZFCQL(JLON,JLEV-1) &
        & - PFCSQL(JLON, JLEV) +PFCSQL(JLON, JLEV-1) &
        & - PFCCQL(JLON, JLEV) +PFCCQL(JLON, JLEV-1)
     ZFCOLDM(JLON, JLEV)=ZFCOLDM(JLON, JLEV-1)+ZDFCOL
     ZDFCOI= etc.
      ZQL(JLON, JLEV)=ZQL(JLON, JLEV)-ZIPOI(JLON, JLEV)*( &
       & (PFPFPL(JLON, JLEV) -PFPFPL(JLON, JLEV-1)) &
        & -ZDFCOL )
     ZOI(JLON, JLEV) = etc.
     ZT(JLON, JLEV) = ZT(JLON, JLEV) - ZIPOI(JLON, JLEV) / PCP(JLON, JLEV) * &
       & (0.0 JPRB-ZLHV(JLON, JLEV) *ZDFCQL-ZLHS(JLON, JLEV) *ZDFCQI)
    PFCSQL(JLON, JLEV)=PFCSQL(JLON, JLEV)+ZFCQLDM(JLON, JLEV)
    PFCSQN(JLON, JLEV) = PFCSQN(JLON, JLEV) + ZFCQIDM(JLON, JLEV)
  ENDDO
ENDDO
```

Type $N^{\circ}1$ mini-example (4/4)

- The second code version is correct. Indeed, when doing the cascading approach, the process catalogued in the 'auto-conversion' part of the equations set (true auto-conversion and collection) have two meanings:
 - going from cloud to precipitating species => no thermodynamical impact, only a 'dynamical' one;
 - for Wegener-Bergeron-Findeisen process, for collection of cloud liquid water by snow and of cloud ice water by rain, there is an associated implicit phase change before the change of species-type => there is also a thermodynamical impact.
- This has to be reflected in the cascade.

ALARO-0-tool status

- ALADIN/ALARO in consolidated state
 - there is logically closed subset of the whole concept ready to run
 - there are clear components to be tried and further developed
 - there is a reference code version as a basis for further development in line with other ALADIN
 - there are first case studies results and operational experience
 - there is a community knowledge about the tool functions, construction principles a properties
 - (there is still (at 08:46) not completely clear how the community will maintain and use the tool)

Motivations for ALARO-0 implementation

- there are expected and proven benefits for the weather forecast quality of current forecasting systems; addressing known major ALADIN weak points
- highly compatible with the current ALADIN implementation and tools; easy to implement; affordable
- security of the past investments: for a small cost the usefulness of the current tool (ALADIN) is secured for a resolution increase
- entering an open framework for scientific development and sharing experience and practices

Known limitations

- fullpos of new fields
 - currently bug in cy29t2alr00 it will be checked on cy32t1 and fixed
- file size

Further open issues

- validation of (new) parameters
 - qr/qs against radar (obs operator?)
 - ql/qi radiation fluxes validation
- development of new products
 - TKE
 - icing diagnostic
 - consistent cloudiness

Priority list

- 3MT
- Link SURFEX turbulent diffusion
- Cloudiness
- Radiation

focus point: 2m temperature in winter anticyclonic situation

Validation

- Well documented cases
 - Input files
- Initial conditions for operational implementation
 - Cycling (3Dvar, blending, first guess from previous run)
 - Initialization with value 0.
- Comparison with INCA precipitation analysis
 - Recent time period

Networking

- Toulouse is centre for IFS/ARPEGE/ALADIN/ALARO/AROME code maintenance
- Prague is centre for scientific, technical maintenance of ALARO code
- 9 ALADIN partners for scientific maintenance
 - 3 working group (continuity, flexibility)
- Interested people

to build up a <u>flexible</u> structure for supervision, reporting, ...

Exercises - discussion

Types:

- Algorithmic recognition (3+1)
- Bug search (6+1)
- Algorithm stability (3+1)
- Results interpretation (3)
- Modularity (3)

To put on web site?

WG session - discussion

- Documentation presentation (congratulations for a "homework")
- ALARO-0 experience at services
- Other topics: time-step organization, shallow convection, calculating humidity convergence with finite differences

Documentation - discussion

Shape of documentation - harmonization

- Content depends on topic
 - Scientific background
 - Implementation in the code
 - Float chart
 - input/output variables
 - Tuning parameters
- One document?
- LaTex format
- Available on web page
- Regular update

Good luck.

