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Introduction: diagonalising B

In 3D-Var we want to minimise the cost function

J = Jb+Jo =
1

2
(x−xb)∗B−1(x−xb)+

1

2
(Hx−y)∗R−1(Hx−y),

If we represent B in grid space, the diagonal
represents the error variance at every grid point.

Diagonalising B in Fourier space (B = F∗BfF):
homogeneous
(mean structure function at every location)

Better: diagonalising the correlation matrix
(mean correlation function, local variance)

B = D1/2F∗CfFD1/2
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Introduction: diagonalising B

Can we simplify B in another way?

We must still be able to calculate B = UU ∗

Take account of local difference in variance and
structure functions.
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Wavelets

Orthogonal Discrete Wavelet Transform

Somewhere inbetween grid point and Fourier
representation:

Basis functions are localised both in grid and
Fourier space → Always some compromise!
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Wavelets

These wavelets are repeated at different scales
(usually powers of 2) and locations to form an
orthogonal basis.
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Example of a 2d wavelet

Example of a 2d wavelet:
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The 3 Bases Approach

Use every basis for its strongest points:
Grid space: strictly local (variance)
Fourier space: average correlation function
Wavelet space: local differences from average

B = D∗

gF
∗D∗

f(F
−1)∗W ∗BwWF−1DfFDg,

Bw = d
{

WF−1D−1

f FD−1

g T ∗TD−1

g F−1D−1

f FW−1

}

.

In fact this generalises the spectral approach
(B = F ∗BfF ):

Bf = D∗

fDf → D∗

f(F
−1)∗W ∗BwWF−1Df
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Lengthscale

Local lengthscales at surface:

Lev 31 Correlation length
Lev 31 Correlation length

Wavelet B
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Anisotropy

 
 

(a)  
 

(b)

Figure 1: Local anisotropy axes at model level 31.
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Anisotropy

 
 

(a)  
 

(b)

Figure 2: Local anisotropy axes at model level 41.

→ problem with diagonal (NW) directions...
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Correlation functions

Level 31:
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Correlation functions

ALADIN/France lev 41:
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Halfway the presentation - status?

Lengthscales are quite well captured.

The anisotropy on ALADIN/France is not
represented:

Our 2D wavelets wavelets are too much centered
around X and Y axis.
The average anistropy is small (different regions)
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Complex wavelet transform

In 1D, consider 2 separate orthogonal wavelet
transforms, carefully chosen such that they can be
interpreted as a real and imaginary components
(Kingsbury, 2001)
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Complex wavelet transform

In 2D, you need 4 different wavelet transforms and
some linear combinations, to get a set of wavelets
with clear orientations (only real part shown):
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Complex wavelet transform

If we use these directional wavelets to diagonalise
B:
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Vertical Structure

How can we represent tilted structure functions
winth a (block-) diagonal matrix?
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COMPLEX co-ordinates (e.g. Fourier)

var(A + iB,C + iD) = (A + iB)(C − iD) =

AC + BD + i(BC − AD)

The phase of this (in general) complex covariance
describes the tilt of the structure function.
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Complex wavelet transform

We can model tilted covariance functions between 2
levels with complex wavelets:
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Conclusions

The anisotropy is much better modelled.

Tilted vertical structure functions are possible.

The wavelets are 4 × redundant (a so called tight
frame in stead of a basis)

Originally developped for motion detection.

Some issues:
Border conditions: periodic or 0?
Most wavelets require domain size to be a power
of 2, but there are some short-cuts.
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