

ALADIN operations in Romania

Doina BANCIU - doina.banciu@meteoromania.ro

Mihaela CAIAN, Simona TASCU, Otilia DIACONU

National Meteorological Administration, Bucharest, Romania

Computing platform:

- SUN E4500 workstation (8-CPU 400GHz, 8*1 GB RAM) for direct integrations and in line post processing
- ALPHA DEC 500 workstation (1CPU, 704 MB RAM) for off line post processing
- Characteristics
- hydrostatic version
- 4 runs / day 00, 06, 12 18 78, 54, 66, 54 hrs forecast range
- boundary conditions from ARPEGE (6 hrs coupling frequency)
- domain: 144 x 144 points, 41 vertical levels (Lambert Projection)
- physical parameterizations: quite simple in respect to last developments
- NO prognostic variable for condensed water
- OLD radiation simple parameterization (Gelevn and Hollingsworth, 1979, Ritter and Gelevn (1992)
- Post-processing and visualization
- in line FPOS on a geographical regular grid (0.1 x0.125°), hourly up to 54 forecast range, every 3 hrs afterwards

grib format; automatically routed to the visualization systems at NMA headquarters and Regional Centers

- of line FPOS on model grid, every 3 hours
- additional post processing: stability indexes, pseudo-temp, isotherms height
- graphical products on the Aladin intranet web site

ALADIN-ROMANIA

Model orography

> Atmospheric input for:

Wave models (western Black Sea Basin) **Hydrological models**

Pollutant transport and dispersion models(regional scale)

ALADIN statistical adaptation and local verification

New Aladin MOS operational in May 2008:

Unified verification procedure for all models

ALADIN SELAM (especially for marine applications)

- > Same platform as for ALADIN Romania
- > Same characteristics like ALADIN Romania
- > domain covering entirely the Black Sea
- domain: 120 x 90 points, 46 vertical levels (Lambert Projection)
- $\Delta x = 24 \text{ km}, \Delta t = 900 \text{ s}$
- > Atmospheric input for:

Wave and marine circulation models

.... it will be replaced in the future by AROME

Computing platform: 2CPU SGI ALTIX

Model version: cy32t1, non hydrostatic version

50 x 50 points, Δx=3.5 km 41 levels. Δt=60

Model orography

> Atmospheric input for:

Urban-scale (Bucharest) air quality forecast system

of the Air-Aware system

from industrial sources, GIS processing

M. CAIAN M., R. RADU R., R. DUMITRACHE R., S. TASCU

MULTI-MODEL EPS

- built using first 3 different forecast models: ALADIN , COSMO and HRM - operational post-processing, databa created since Janu

HRM 00 UTC ALADIN 00 UTC

higher variability in summer

EPS Verification

separately for : ALADIN and HRM

Better skill for multi-model ensemble solution for temperature and precipitation

ALADIN/ALARO Romania – on a new platform

- IBM BLADE Linux Cluster
- 14 nodes; 2 CPU-quad core / node; x86_64 processor architecture, 2.5 GHz Red Hat 5.3 Enterprise
- * CY35T1 implemented and tested (C.Soci and D. Banciu)

ALADIN: $\Delta x = 10$ km, 144x144, 60 levels, $\Delta t = 400$ s Meteo-France configuration 78 h integration + Full Pos in line

23 minutes (5 nodes) ~ 10 times faster than actual oper. ALADIN

Near future configuration

ALARO: $\Delta x = 10$ km, 60 levels **ALARO:** $\Delta x = 5 \text{ km}$, 60 levels over the same area