Regional Cooperation for Limited Area Modeling in Central Europe

ALARO status overview

Contributions by Jan Mašek and Luc Gerard

Neva Pristov

Talk outline

ALARO status

Developments

- Presentation
- TOUCANS (shallow convection) Radmila Brožkova
- Radiation scheme ACRANEB2
- Complementary subgrid drafts scheme
- Outlook

ALARO status

- One of the physical parameterization package inside ALADIN-HIRLAM system
- In the operational use in ALADIN countries
 - ALARO-0: at, be, hr, hu, ro, sk, si, tr
 - ► ALARO-1vA: cz, po *(e-suite be,tr)* model resolution between 8 km 4 km, 2km

National posters

- In EPS systems
 - ALADIN-LAEF, GLAMEPS, EPS at HMS
 - HarmonEPS convection-permitting ensemble system
- In climatological simulations
 - be, cz, se

Presentation Martin Belluš

Presentation Lesley De Cruz

ACRANEB2

Ongoing work

- scientific paper describing long wave (LW) part
 - an independent LW narrowband reference was constructed for validation of Net Exchange Rate concept with bracketing
- verification in NWP model
- implementation of generalized cloud overlap in radiation
- new products: unscaled direct solar flux, sunshine duration

ACRANEB2

ACRANEB2 is compared against narrowband reference (NBM) clear sky case cloudy case

Longwave heating rates: red - NBM reference, yellow - ACRANEB2

Dashed line: difference (upper scale); grey shading – cloud layers

ACRANEB2 - verification in NWP model

- systematic verification of operational ALADIN/CHMI
 - ALARO-1 configuration with ACRANEB2 in 2015
 - daily means of forecasted SW global radiation and LW downward radiation at surface were compared to ground measurements (CHMI network):
 - 19 stations with SW global radiation
 - 1 station with LW downward radiation

ACRANEB2 – verification in NWP model

MBIAS of 24-h accumulated downward short wave flux long wave flux

Strong yearly variation of SW bias related to underestimated cloud cover in cold season

Partial compensation of overestimated SW during cold season

Clouds and cloud overlaps

2 independent treatments of cloudiness in ALARO-1

- microphysics (APLMPHYS)
 cloud fractions and condensates are computed in thermodynamic
 adjustment having an implicit PDF, based on Xu-Randall type of
 computation;
 - assumes **exponential-random overlap** between cloud layers when handling geometry of clouds and falling precipitation
- radiation and diagnostics share the cloud condensates and layer cloud fractions diagnosed by Xu-Randall scheme (ACNEBN)
 - radiation (ACRANEB2) assumes **maximum-random overlap** between cloud layers

diagnostics (ACNPART) assumes (optionally) **nearly maximum-random overlap** between cloud layers

Two basic cloud overlap modes

adjacent cloud layers: random or maximum overlap

$$n_{12} = n_1 + n_2 - o_{12}$$

$$o_{12} = \begin{cases} n_1 n_2 & - \text{ random} \\ \min(n_1, n_2) & - \text{ maximum} \end{cases}$$

▶ distant cloud layers overlap randomly to the extent allowed by overlaps between adjacent layers
 → random or maximum-random cloud overlap

Generalized cloud overlap

- random cloud overlap gives too high total cloud cover (especially in fine vertical resolution)
- maximum-random cloud overlap gives too low total cloud cover (especially for deep clouds)
- solution is to introduce generalized cloud overlap with weight α<1</p>

$$o_{12} = (1 - \alpha)n_1n_2 + \alpha \min(n_1, n_2)$$

• exponential-random cloud overlap is obtained when α is chosen to decay exponentially with layer separation Δp

$$\alpha = \exp\left[-\Delta p/(\Delta p)_{\text{decorr}}\right]$$

decorrelation depth is higher in situations with deep convection, it should be at least latitude and season dependent

Unifying cloud overlaps in ALARO-1

- first step is unification of cloud overlap hypotheses, which has a strong impact in radiation and has the potential to decrease the observed bias
 - exponential-random overlap has been implemented in ACRANEB2 and ACNPART, where it should replace currently used options
 - variation of decorrelation depth across the globe and year has to be parameterized (using the fixed value is not optimal)
- next step: use of microphysical cloud condensates and layer cloud fractions in radiation/diagnostics (more demanding on tunings)

Case:14 October 2015 overcast with rain

Station Pardubice

7 total cloudiness [1/8] 2 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 9 forecast range [h]

diagnostic cloud cover, nearly maximum-random overlap (WMXOV=0.8) radiative cloud cover, maximum-random overlap radiative cloud cover, exponential-random overlap (decorrelation depth 100 hPa) dots - observations

Total cloudiness

Case:14 October 2015 overcast with rain Station Hradec Kralove (near Pardubice)

Downward surface SW flux

maximum-random radiative cloud overlap exponential-random radiative cloud overlap (decorrelation depth 100 hPa) dots - measurements

Deep convection

- A new deep convection scheme (Gerard, Mon. Wea. Rev. October 2015)
 CSD (Complementary Subgrid Draft) in testing
 - showed an improved behaviour at high resolution
 - the execution time of the model with CSD is around 10% longer than with 3MT
 - uses the signal of shallow transport from the turbulence scheme
 - allows a gradual fading out of the parameterized signal at high resolution

Deep convection

Expectation

- improvement of the diurnal cycle
- further improvement of the multi-scale behavior
- the potential to produce even more realistic forecasts at fine resolution
- How to keep meso-scale organization below 2 km?
 - when deep convection is represented explicitly it can be too weak
 - with some re-tuning of diffusion
 - with the use of cellular automata

Summer convection 2 July 2009 (3-hour precipitation at 18 UTC)

Summer convection 2 July 2009 (3-hour precipitation at 18 UTC)

Sub-grid part of precipitation is decreasing Lack of meso-scale structure, precipitation areas are more "dotty"

Summer convection 2 July 2009 (3-hour precipitation at 18 UTC) Using Cellular Automaton and new horizontal momentum handling

Sub-grid part of precipitation is significantly reduced Meso-scale structure is kept

Summer convection 2 July 2009 Using Cellular Automaton and new horizontal momentum handling

 Domain-averaged precipitation accumulation over time (sampled every 3 hours)

solid – total 3 h precipitation dashed – subrid 3 h precipitation red – 8 km blue – 4 km brown – 2 km green – 1 km

Total precipitation is consistent at all resolutions

Outlook

- Enhancement of the 3MT downdraft parameterization towards unsaturated downdraft option
- Adding aspects of Complementary Sub-grid Drafts
- Further enhancements of the shallow convection and mixing length scale parameterization in TOUCANS
- Steps towards the unification of cloud cover representation
- Linking with the SURFEX scheme

Announcement

- ALARO-1 Working days12-14 September 2016, Brussels, RMI
 - a status overview, spread knowledge, planning
 - lectures by developers
 - presentations from evaluators/users

