Towards a coalescence of

DA and EPS

Creating equally likely
 Initial Conditions Ensemble Members

Properties of an Ideal ensemble

IDEAL ENSEMBLE

- Infinitely many members
- All members are
i.i.d.
statistically equal to the atmosphere

which implies that

- All members are equally likely to be the truth bias-free and have correct variance
- Skill = Spread

Relationship between the skill of Ensemble Mean and Individual Ensemble Members

$$
\mathrm{E}\left[\mathrm{MSE}_{\mathrm{M}}\right]=\frac{1}{2} \mathrm{E}[\mathrm{MSE}]
$$

SKILL as measured by MSE Ideal EPS

SKILL as measured by MSE Ideal EPS

Presently used

Paradigm for creating

IC for EPS

Present Paradigm

1. A control analysis is assumed to be the uniquely best estimate of the IC

Present Paradigm

1. A control analysis is assumed to be the uniquely best estimate of the IC
2. An ensemble member is defined as the sum of the control analysis and a perturbation

Present Paradigm

1. A control analysis is assumed to be the uniquely best estimate of the IC
2. An ensemble member is defined as the sum of the control analysis and a perturbation
3. The sum of all ensemble perturbations add up to zero - that is - they are centered around the control analysis

Consequence 1

Perturbed ensemble members at the initial time is constructed by adding a perturbation to the control analysis

The Perturbed members are then - by construction made inferior to the Control Analysis

Consequence 2

Centering the perturbed ensemble members around the control analysis

The Ensemble Mean is then - by construction made equal to the Control Analysis

The error growth for the ensemble mean is almost identical to that of the control forecast at the beginning of the forecast.

SKILL as measured by MSE
State-of-the-art EPS

Consequence 3

The potential improvement in the skill of the Ensemble Mean forecast as indicated by

$$
\mathrm{E}\left[\mathrm{MSE}_{\mathrm{M}}\right]=\frac{1}{2} \mathrm{E}[\mathrm{MSE}]
$$

is severly impeded by the fact that the errors of the perturbed members are so much larger than that of the control forecast

Consequence 4

Centering the perturbed ensemble members around the control analysis

The Ensemble is thereby - by construction made under-dispersive

Conclusion

The currently used practice of

 generating ensemble members at the initial time should be replaced by a method that creates equally likely ensemble members with the same quality as the control analysis.
Proposed Joint DA-EPS scheme

Traditional 4DVAR

$$
\mathrm{J}\left(\mathbf{x}_{\mathrm{o}}\right)=\mathrm{J}_{\mathrm{b}}+\mathrm{J}_{\mathrm{o}}=\frac{1}{2}\left(\mathbf{x}_{\mathrm{o}}-\mathbf{x}_{\mathbf{o}}^{\mathbf{b}}\right)^{\mathrm{T}} \mathbf{B}^{-1}\left(\mathbf{x}_{\mathrm{o}}-\mathbf{x}_{\mathbf{o}}^{\mathbf{b}}\right)+\sum_{\mathrm{i}=1}^{\mathrm{I}} \frac{1}{2}\left(H_{\mathrm{i}} \mathbf{x}_{\mathrm{i}}-\mathbf{y}_{\mathbf{i}}\right)^{\mathrm{T}} \mathbf{R}_{\mathrm{i}}^{-1}\left(H_{\mathrm{i}} \mathbf{x}_{\mathrm{i}}-\mathbf{y}_{\mathbf{i}}\right)
$$

Ensemble Mean 4DVAR

Ensemble Mean 4DVAR

Ensemble Mean 4DVAR

Quantity of available data

Number of Observations $=\mathrm{M} \sim 10^{5}-10^{6}$ Dimension of State Vector $=\mathrm{N} \sim 10^{7}-10^{9}$

$$
\mathbf{M} \ll \mathbf{N}
$$

Only the largest scales are really defined by the available data

Ensemble Mean 4DVAR

Ensemble Mean 4DVAR

Ensemble Mean 4DVAR

Ensemble Mean 4DVAR

Ensemble Mean 4DVAR

$\mathbf{J}=\mathbf{J}_{\mathrm{b}}+\mathrm{J}_{\mathrm{o}}=\sum_{\mathrm{i}=1}^{\mathrm{I}}\left[\frac{1}{2}\left(\mathbf{x}_{\mathrm{i}}-\mathbf{x}_{\mathrm{i}}^{\mathrm{b}}\right)^{\mathrm{T}} \mathbf{B}^{-1}\left(\mathbf{x}_{\mathrm{i}}-\mathbf{x}_{\mathrm{i}}^{\mathrm{b}}\right)+\frac{1}{2}\left(\mathbf{H}_{\mathrm{i}} \mathbf{x}_{\mathrm{i}}-\mathbf{y}_{\mathrm{i}}\right)^{\mathrm{T}} \mathbf{R}_{\mathrm{i}}^{-1}\left(\mathbf{H}_{\mathrm{i}} \mathbf{x}_{\mathrm{i}}-\mathbf{y}_{\mathbf{i}}\right)\right]$

1. The \mathbf{x}_{i} represents the ensemble mean instead of a control member
2. The $\mathbf{y}_{\mathbf{i}}$ represents tempered observations instead of raw observations
3. All time points $\mathbf{t}_{\mathbf{i}}$ are used instead of only the initial time point $\mathbf{t}_{\mathbf{o}}$
4. No need for TL and AD models
5. The MEAN is estimated instead of the MODE

Ensemble Members

Ensemble Members

Ensemble Members

Ensemble Members

Spread

Skill

Quantity of available data

Number of Observations $=M \sim 10^{20}$
Dimension of State Vector $=\mathrm{N} \sim 10^{15}$
$\mathrm{M} \gg \mathrm{N}$

However

Only the largest scales are predictable at the end of the window

