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’ Outlines

1. The operational AROME 3DVar at MF

- B matrix

- Observations (with focus on Doppler winds)
2. Ongoing work

- Jk, 3DVar-FGAT

- Assimilation of objects

- Use of a heterogeneous B matrix
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’ AROME operational suite

* Operational since December 2008 over France

* Cycled 3DVar assimilations/forecast every 3 hours with a +/- 1h30
cut-off, coupled with ALADIN
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* U, V, T, gand Pg analyzed, TKE, NH and microphysical variables cycled

* 30h forecasts launched every 6 hours

* Surface analysis interpolated from ALADIN’s every 6 hours
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’ Background error covariance matrix

AROME uses a B matrix deduced from an ensemble of AROME 3h
forecasts, coupled with an ensemble of ALADIN forecasts initialized from
analyses that use perturbed observations.

This matrix follows the multivariate formalism of Berre (2000)
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’ Background error covariance matrix

One obs experiment: 2K temperature innovation at 850 hPa
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Shorter correlation lengths for AROME than for ALADIN, which is coherent
with the smaller domain and smaller horizontal resolution.

= the assimilation of one observation leads to more localized increments
= dense observation networks (ground measurements, geostationary
satellites, GPS, radars...) can be used with a higher horizontal resolution
(by paying attention to correlations between observation errors)




Assimilated data

Geo-stationary satellites Polar-orbiting satellites
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' Radar data in AROME

The ARAMIS radar network
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* 24 radars (incl.22 Doppler), F0d o o
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In AROME: o

* Radial velocities of 15 Doppler radars : .
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remaining 7 are often contaminated by non a» 1021 s
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(For details, see Montmerle and Faccani, 2009, sw o 5E ot
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* Reflectivity of every radars assimilated in Radars : C Band O Doppler
research mode (see Eric’s talk after), and
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Impact of Doppler winds 1/2
ex: 2007/11/08 case
Convergence line associated to

a cold front _
Divergence

Analysis
(925 hPa)

(dots: active radar

PARIS Analysis VT:Thursday 8 November 2007 18UTC 950hPa relative divergence
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Main convergence line well
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= More realistic precipitation
forecast upto 6 h
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Impact of Doppler winds 2/2

ex: 2008/05/30 case
Meso-vortex

Vorticity Analysis (600 hPa)

PARIS Analysis VT:Friday 30 May 2008 21UTC 600hPa absolute vorticity
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Wind at 700 hPa

B 12y 30 May 2008 21UTC PARIS Forcoast 143 VT: Satuday 31 May 2008 00UTG 800hPa absolute vorticity
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’ Ongoing work

About observations:

=  ALADIN/AROME directly benefit from studies performed in the ARPEGE
framework (microwave radiances over continents, |IASI, cloudy
radiances...)

= Specifically for AROME:
- radiances with higher horizontal resolution
- radar reflectivity
- assimilation of objects based on structure matching



’Assimilation of objects based on structure matching

* At first, structures, or “object”, are deduced from image processing
applied on observed and simulated radar reflectivity over a certain

time period previous to the analysis time.

* A misplaced simulated structure of heavy precipitations is then shifted
towards the observed structure that is the closest in the structure space
during a fixed time period, using pseudo-observations deduced from the

background.

J’(50) - HM(xb(gm))+ €4
UC,)= Hu((C,)=45)

With H,,~<RH>




Impact on
precipitations

Z850 hPa
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Ongoing work

Optimisation of observation impacts

= 3DVar-FGAT: technically ok, experiments are ongoing by Pierre Brousseau

= Relaxation towards larger
scales in Var (J,) (PB):

25 days experiment, relaxing
toward large scale (>100 km)
of ALADIN analyses above
250hPa:

- neutral scores against
conventional data

- small improvements in QPF
scores for small precipitating
amount

- 1 case with significant

\4
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improvement

= Use of a heterogeneous
B matrix




’ Use of a heterogeneous B matrix

To use more suitable background error statistics in clear air and
precipitating areas, we can write:

BZOpr +’8Bnp
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With: o =FMF! and B=F(1-M)F?
M: grid point mask deduced from observed radar reflectivity.
B, and B are separately computed by performing statistics on an

assimilation ensemble of precipitating cases, considering a mask based
on simulated precipitations.

The increment writes:
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— Which implies to double the control variable ¥ and the gradient V J




Combparisons between structure functions

Pressure
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= Smaller o, for g and T in precipitating areas because the statistics are performed

using saturated profiles
= Smaller horizontal correlations in precipitating areas
= Precipitating observations can be used with a greater density



Comparisons between structure functions
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Multivariate formulation of errors:
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2 obs experiment

Innovations of — 30% RH
At 800 and 500 hPa

4.5F




Real case experiment

CNTRL: AROME oper + Reflectivities

EXP: CNTRL using simultaneously (B, B,)) .

Mask deduced from observed reflectivities (zoom) M=o
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Real case experiment

* For that first experiment, the use of the heterogeneous
B matrix aims mostly at reducing precipitations
realistically during the first hours of forecast

* Obviously more cases are needed and this approach
will be evaluated on long periods of cycled assimilations

= Other possible applications: specific data
assimilation in fog conditions...

3h cumulated
rainfall
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’Doppler wind observation operator

* Follows closely HIRLAM'’s (Linskog et al,
2004): Vr computed using the earth’s effective

radius model

* fall speed and side lobes contributions

neglected

* Broadening of the radar beam simulated by a

Gaussian function
e TL/AD

LU Ex: ABBE, BLAIL MCLA
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Tag,

Screening
* o, proportional to the distance from the radar to take into
account the beam broadening

* innovations (obs-guess) between +/- 20 ms™"are kept

* thinning within15x15 km? boxes using a sorting criteria
based on the distance and on the number of observations
per profiles



Wur I'analyse prve
850 hPa
Incréments

Localisations Pseudo-obs  (humidité spécifique)

Cellules observées

Probléeme de propagation
irréaliste des incréments

= |'extension horizontale des incréments
d’analyse dépend des fonctions de
structures de la matrice B et de la densité
des observations assimilées




Lincrément s'écritalors:  dx =B'?y = (\/EB}/2 \/5312/2)[? ]
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— On double la variable de controle

Termes de la fonctions co(t:
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q-Div total covariances
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’ Cycling strategies
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’Assimilation of objects based on structure matching

* This approach aims at shifting a misplaced simulated structure of heavy precipitations
towards the observed structure that is the closest in the structure space, using pseudo-

observations deduced from the background.

* These structures, or “object”, are deduced from radar
reflectivity (or satellite) image processing over a certain time
period previous to the analysis time.
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