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Outlines

1. The operational AROME 3DVar at MF

- B matrix

 - Observations (with focus on Doppler winds)

2. Ongoing work

- Jk, 3DVar-FGAT 

- Assimilation of objects

- Use of a heterogeneous B matrix



AROME operational suite

• Operational since December 2008 over France

• Cycled 3DVar assimilations/forecast every 3 hours with a +/- 1h30 
cut-off, coupled with ALADIN

• U, V, T, q and PS  analyzed, TKE, NH and microphysical variables cycled

• 30h forecasts launched every 6 hours

• Surface analysis interpolated from ALADIN’s every 6 hours
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Background error covariance matrix

greaterb for AROME than for ALADIN : The background is 
less trusted, mostly in the boundary layers and for variables that 
are representative for small scales

AROME uses a B matrix deduced from an ensemble of AROME 3h 
forecasts, coupled with an ensemble of ALADIN forecasts initialized from 
analyses that use perturbed observations.
This matrix follows the multivariate formalism of Berre (2000)

___  Arome

- - -    Aladin

Spectral average 

of b for T and div

Pierre Brousseau
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One obs experiment: 2K temperature innovation at 850 hPa

ALADIN AROME

Shorter correlation lengths for AROME than for ALADIN, which is coherent 
with the smaller domain and smaller horizontal resolution.

 the assimilation of one observation leads to more localized increments
 dense observation networks (ground measurements, geostationary 
satellites, GPS, radars…) can be used with a higher horizontal resolution
 (by paying attention to correlations between observation errors)

Background error covariance matrix



ARPEGE 

Hu2m, T2m

V10m

SEVIRI HR

ALADIN (SEVIRI HR instead of CSR, Hu2m,T2m,V10m) AROME (+ radars
+ more GPS)

GPSRO

GPS

IASI

SEVIRI CSR

Assimilated data



The ARAMIS radar network

• 24 radars (incl.22 Doppler), 
performing between 2 and 12 PPIs/15’

DopplerRadars : C Band

S Band

Radar data in AROME

5 : nb of elevations/15’

In AROME:

• Radial velocities of 15 Doppler radars 
currently assimilated operationally. The 
remaining 7 are often contaminated by non 
meteological targets, but should be 
included this summer thanks to the use of 
new detection algorithm.

(For details, see Montmerle and Faccani, 2009, 
MWR)

• Reflectivity of every radars assimilated in 
research mode (see Eric’s talk after), and 
hopefully in the parallel suite this summer.

Doppler at the 
end of 2009



CNTRL

Without DOPPLER

Divergence
Analysis 
(925 hPa)

Impact of Doppler winds 1/2
ex: 2007/11/08 case
Convergence line associated to 
a cold front

With DOPPLER

(dots: active radar 
profile)

Main convergence line well 
analyzed
 More realistic precipitation 
forecast up to 6 h

Radar obs



Without DOPPLERWith DOPPLER

Vr Blaisy
 1st elev

Impact of Doppler winds 2/2

ex: 2008/05/30 case
Meso-vortex

Vorticity Analysis  (600 hPa)



Absolute Vorticity

Wind at 700 hPa 
+ simulated reflectivity at 850 hPa

DOPPLER
t+2

OBS



DOPPLER
t+3

OBS

Absolute Vorticity

Wind at 700 hPa 
+ simulated reflectivity at 850 hPa

EW to NS Tilting of the main precipitating 
well forecasted with Doppler winds



Ongoing work

About observations:

 ALADIN/AROME directly benefit from studies performed in the ARPEGE 
framework (microwave radiances over continents, IASI, cloudy 
radiances…)

 Specifically for AROME:

- radiances with higher horizontal resolution

- radar reflectivity

- assimilation of objects based on structure matching



• A misplaced simulated structure of heavy precipitations is then shifted 
towards the observed structure that is the closest in the structure space 
during a fixed time period, using pseudo-observations deduced from the 
background. 

Assimilation of objects based on structure matching
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• At first, structures, or “object”, are deduced from image processing 
applied on observed and simulated radar reflectivity over a certain 
time period previous to the analysis time.



OBS BOGUS CNTRL

t0+1h

Impact on 
precipitations
Z850 hPa

t0+2h

t0+3h

Main squall line 
more realistic

Drying based on 
background 
information efficient

In some areas, 
precipitations are 
increasing too much

Part of the mitigated results comes from the 
unrealistic spreading of increment produced by 
pseudo-observations because of the B matrix 
and because of the absence of constraint from 
the assimilation of other observation types

Inc(q)850hPa

2007/05/25 r18



Ongoing work

Optimisation of observation impacts

 3DVar-FGAT: technically ok, experiments are ongoing by Pierre Brousseau

 Use of a heterogeneous 
B matrix

 Relaxation towards larger 
scales in Var (Jk) (PB):

25 days experiment, relaxing 
toward large scale (>100 km) 
of ALADIN analyses above 
250hPa: 
- neutral scores against 
conventional data 

- small improvements in QPF 
scores for small precipitating 
amount 

- 1 case with significant 
improvement

Without Jk With Jk

ALADINRain gauges ALADIN



Use of a heterogeneous B matrix

To use more suitable background error statistics in clear air and 
precipitating areas, we can write:

With:   = FMF-1    and  = F(1-M)F-1 
M: grid point mask deduced from observed radar reflectivity.
Bp and Bnp are separately computed by performing statistics on an 
assimilation ensemble of precipitating cases, considering a mask based 
on simulated precipitations.
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Boper

Bp+np

Bp

Bnp

 Smaller b for q and T in precipitating areas because the statistics are performed 
using saturated profiles
 Smaller horizontal correlations in precipitating areas
 Precipitating observations can be used with a greater density

Comparisons between structure functions

σb
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Correlation lengths

q T
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 Bp et Bnp are characterized by 
very different structure functions 
that are coherent with the 
model’s physic in precipitating 
and non-precipitating areas 
respectivelly

Bp Bnp
 qb

Cross correlations

Multivariate formulation of errors:

In precipitating areas, b(q) is 

mostly explained by u at 

mesoscale, whereas it is almost 
univariate and linked to the 
mass field in clear air

Comparisons between structure functions



x = 1/2Bp
1/21+ 1/2Bp

1/22x = 1/2Bnp
1/21+ 1/2Bnp

1/22

x = 1/2Bnp
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2 obs experiment

x = Bnp
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1/2

Innovations of – 30% RH
At 800 and 500 hPa



Real case experiment
CNTRL: AROME oper + Reflectivities
EXP: CNTRL using simultaneously (Bp, Bnp)
Mask deduced from observed reflectivities (zoom)

CNTRL EXP

Inc(T)950hPa

Inc(q)800hPa

Low level cooling localized 
to precipitating regions

Strong gradients associated to 
precipitations are kept in the analysis

Clear air regions are characterized 
by more “smooth” increments



CNTRLEXP

OBS
• For that first experiment, the use of the heterogeneous 
B matrix aims mostly at reducing precipitations 
realistically during the first hours of forecast

• Obviously more cases are needed and this approach 
will be evaluated on long periods of cycled assimilations

Real case experiment

 Other possible applications: specific data 
assimilation in fog conditions...

3h cumulated 
rainfall



Thank you for your attention!Thank you for your attention!



Screening

• o proportional to the distance from the radar to take into 
account the beam broadening

• innovations (obs-guess) between +/- 20 ms-1 are kept

• thinning within15x15 km2 boxes using a sorting criteria 
based on the distance and on the number of observations 
per profiles

Ex: ABBE, BLAI, MCLA

o

1 ms-1

3 ms-1

• Follows closely HIRLAM’s (Linskog et al, 
2004): Vr computed using the earth’s effective 
radius model

• fall speed and side lobes contributions 
neglected

• Broadening of the radar beam simulated by a 
Gaussian function

• TL/AD

Doppler wind observation operator



Impact sur l’analyse

 l’extension horizontale des incréments 
d’analyse dépend des fonctions de 
structures de la matrice B et de la densité 
des observations assimilées

Incréments 

(humidité spécifique)

850 hPa

750 hPa

500 hPa

Localisations Pseudo-obs

Cellules observées

Problème de propagation 
irréaliste des incréments



L’incrément s’écrit alors: 

 On double la variable de contrôle 
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Barome oper

Bprecip

Bair clair



Cycling strategies



• This approach aims at shifting a misplaced simulated structure of heavy precipitations 
towards the observed structure that is the closest in the structure space, using pseudo-
observations deduced from the background. 

Assimilation of objects based on structure matching

Pre-convective Env
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• These structures, or “object”, are deduced from radar 
reflectivity (or satellite) image processing over a certain time 
period previous to the analysis time.


