New interpolation formula in stable situation for the calculation of diagnostic fields at measurement height

László Kullmann

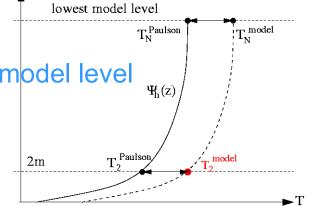
with supervision of Jean-Francois Geleyn, Jean-Francois Mahfouf

Outline

- Description and of the current diagnostic formulas
 - Paulson, Geleyn88, Canopy
- New interpolation formula
 - determination of the new formula
 - comparison with Geleyn88 and Canopy
- Application in DA
 - Use the new formula as the TL/AD version of Canopy
- Conclusion

Description of current diagnostic schemes in SURFEX

- Paulson scheme
 - fixed function, extrapolation from lowest model level
 - \rightarrow Ts inconsistency
- Geleyn88 scheme



Ζ

- fixed function with one parameter, interpolation between surface, lowest model level
 - \rightarrow underestimation of T2m in stable situation
- Canopy scheme (V. Masson)
 - 6 SBL levels between lowest model level & surface, solving prognostic equation (1d) with LS forcing + turbulence + drag
 - \rightarrow T2m is prognostic (TL/AD problem)

New interpolation formula

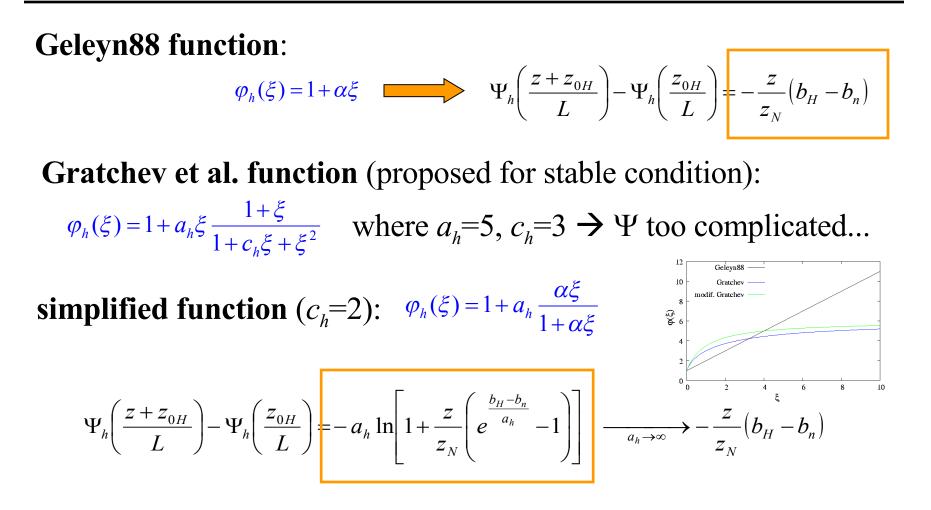
$$\frac{\partial s}{\partial z} = \frac{s_*}{\kappa} \frac{1}{z + z_{0H}} \varphi_h \left(\frac{z + z_{0H}}{L} \right) \qquad \text{neutral} \qquad \text{stable/unstable}$$
$$s(z) - s(0) = \frac{s_*}{\kappa} \left\{ \ln \left(\frac{z + z_{0H}}{z_{0H}} \right) + \Psi_h \left(\frac{z + z_{0H}}{L} \right) + \Psi_h \left(\frac{z_{0H}}{L} \right) \right\} \qquad \Psi(\xi = \frac{z}{L}) \equiv \int \frac{1 - z_{0H}}{L} \left\{ \Psi_h \left(\frac{z + z_{0H}}{L} \right) + \Psi_h \left(\frac{z_{0H}}{L} \right) \right\} \qquad \Psi(\xi = \frac{z}{L}) = \int \frac{1 - z_{0H}}{L} \left\{ \Psi_h \left(\frac{z + z_{0H}}{L} \right) + \Psi_h \left(\frac{z_{0H}}{L} \right) \right\} \qquad \Psi(\xi = \frac{z}{L}) = \int \frac{1 - z_{0H}}{L} \left\{ \Psi_h \left(\frac{z + z_{0H}}{L} \right) + \Psi_h \left(\frac{z_{0H}}{L} \right) \right\} \qquad \Psi(\xi = \frac{z}{L}) = \int \frac{1 - z_{0H}}{L} \left\{ \Psi_h \left(\frac{z + z_{0H}}{L} \right) + \Psi_h \left(\frac{z_{0H}}{L} \right) \right\} \qquad \Psi(\xi = \frac{z}{L}) = \int \frac{1 - z_{0H}}{L} \left\{ \Psi_h \left(\frac{z + z_{0H}}{L} \right) + \Psi_h \left(\frac{z_{0H}}{L} \right) \right\} \qquad \Psi(\xi = \frac{z}{L}) = \int \frac{1 - z_{0H}}{L} \left\{ \Psi_h \left(\frac{z + z_{0H}}{L} \right) + \Psi_h \left(\frac{z_{0H}}{L} \right) \right\} \qquad \Psi(\xi = \frac{z}{L}) = \int \frac{1 - z_{0H}}{L} \left\{ \Psi_h \left(\frac{z + z_{0H}}{L} \right) + \Psi_h \left(\frac{z_{0H}}{L} \right) \right\} \qquad \Psi(\xi = \frac{z}{L}) = \int \frac{1 - z_{0H}}{L} \left\{ \Psi_h \left(\frac{z + z_{0H}}{L} \right) + \Psi_h \left(\frac{z_{0H}}{L} \right) \right\} \qquad \Psi(\xi = \frac{z}{L}) = \int \frac{1 - z_{0H}}{L} \left\{ \Psi_h \left(\frac{z + z_{0H}}{L} \right) + \Psi_h \left(\frac{z + z_{0H}}{L} \right) + \Psi_h \left(\frac{z_{0H}}{L} \right) + \Psi_h \left(\frac{z + z_{0H}}{L} \right) = \int \frac{1 - z_{0H}}{L} \left\{ \Psi_h \left(\frac{z + z_{0H}}{L} \right) + \Psi_h \left(\frac{z + z_{0H}}{L} \right\} + \Psi_h \left(\frac{z + z_{0H}}{L} \right) = \int \frac{1 - z_{0H}}{L} \left\{ \Psi_h \left(\frac{z + z_{0H}}{L} \right) + \Psi_h \left(\frac{z + z_{0H}}{L} \right) = \frac{1 - z_{0H}}{L} + \Psi_h \left(\frac{z + z_{0H}}{L} \right) + \Psi_$$

$$\Psi(\xi = \frac{z}{L}) \equiv \int \frac{1 - \varphi(\xi)}{\xi} d\xi$$

- use prescribed Ψ function (like in Paulson scheme)
- use the interpolation technique (JFG88) $\Psi(\alpha\xi)$ contains α parameter \rightarrow determine α from $s(z_N)$

$$s(z_N) - s(0) = \frac{S_*}{\underset{\substack{\underline{s(z_N) - s(0)}\\b_H}}{\mathcal{K}}}} \left\{ \ln\left(\frac{z_N + z_{0H}}{z_{0H}}\right) - \Psi_h\left(\frac{z_N + z_{0H}}{L}\right) + \Psi_h\left(\frac{z_{0H}}{L}\right) \right\}$$

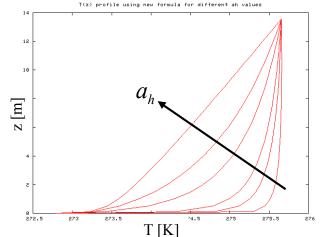
New interpolation formula



New interpolation formula (2)

- The Gratchev formula for wind is too complicated
 → use original formula which already gives good results
- New formula has a tuning parameter (a_h)

 \rightarrow determines the shape of the profile

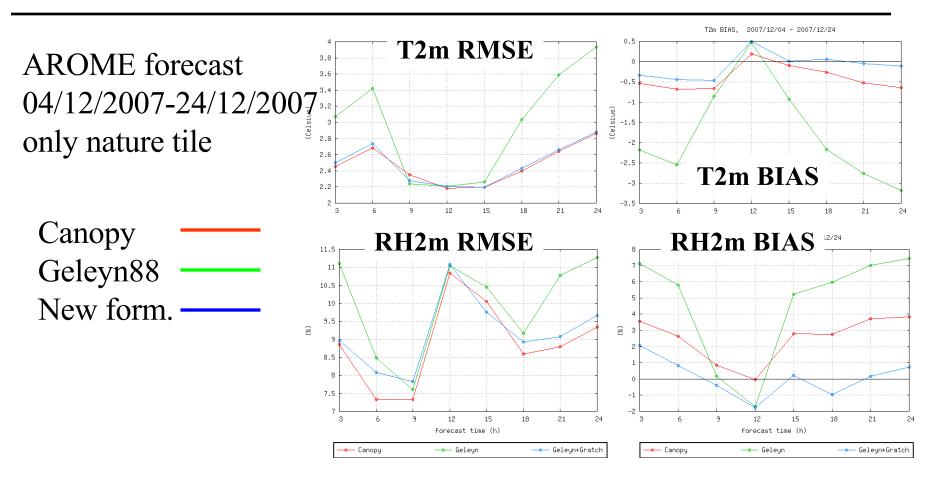


Determination of a_h by fitting to observations

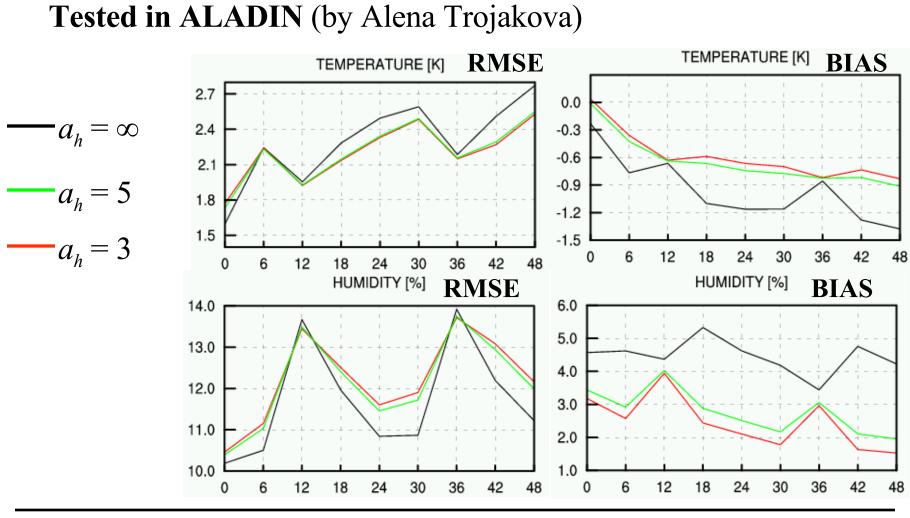
→ big variance: $a_h \in [2,20]$

 \rightarrow use the proposed value a_h =5

Comparison of new/old formula



New formula gives similar results as Canopy

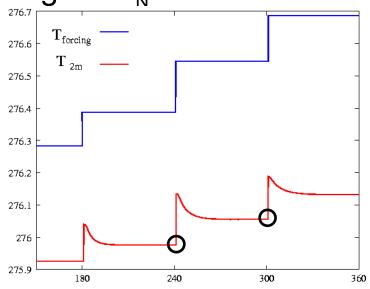


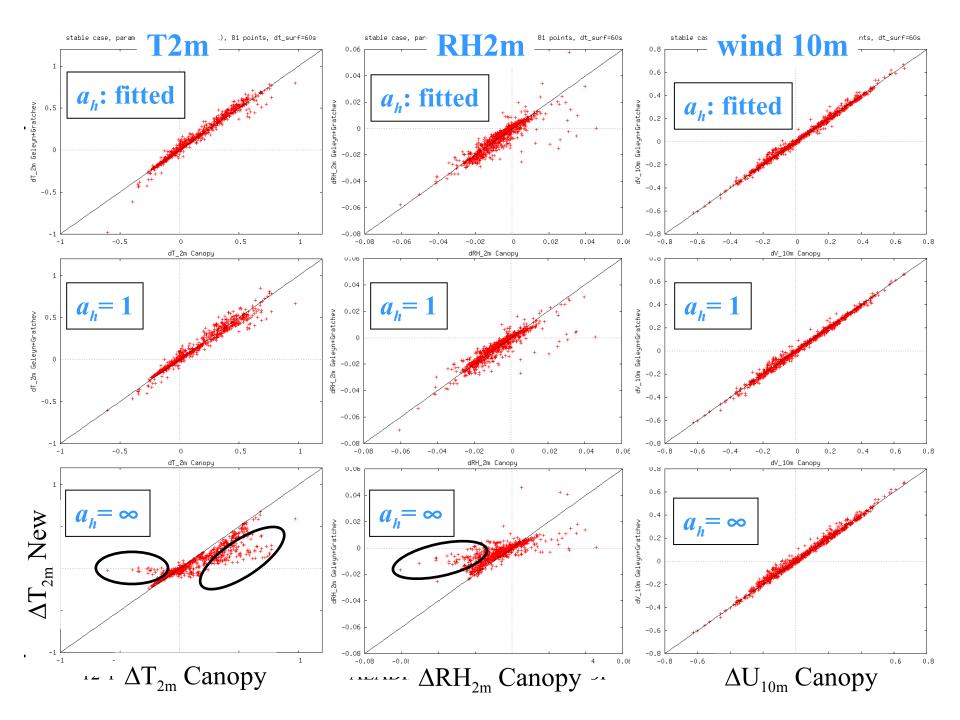
12-15 May 2009

ALADIN/HIRLAM WORKSHOP

Testing the TL/AD of Canopy

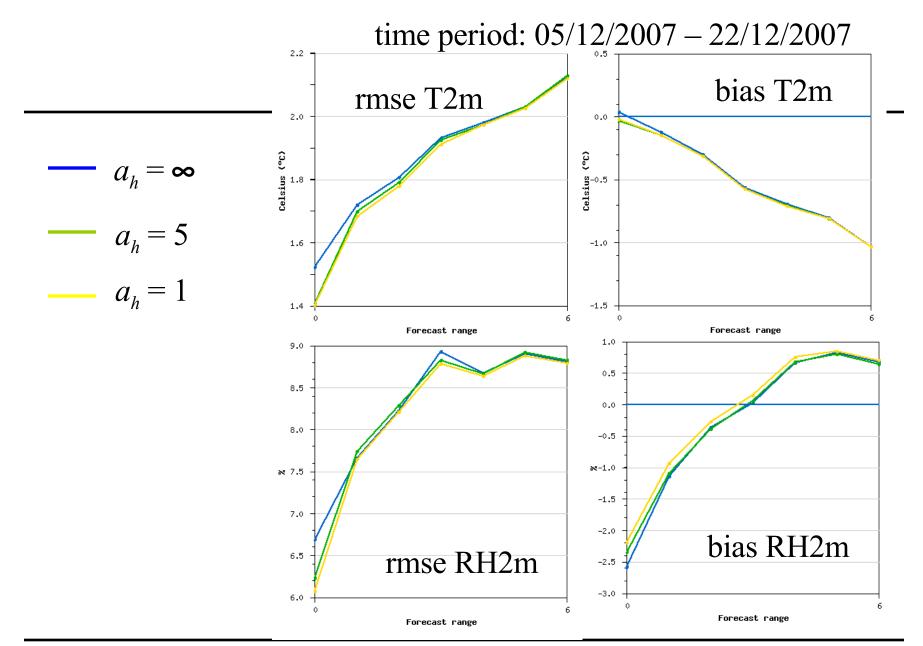
- Check if new formula is able to describe the TL of Canopy
- Canopy scheme is prognostic \rightarrow change in T_N does not cause immediate change in T_{2m}
 - Checking the speed of relaxation
- Offline Surfex run
 - random perturbation of forcing fields
 - keep forcing fields constant for relaxation period
 - surface fields are kept constant
 - Compare TL of new formula with the change in Canopy field: $T(t_2-1)-T(t_1-1)$
 - <u>determine *a_h* by fitting to Canopy profile</u>
 12-15 May 2009
 ALADIN/HIRLAM WORKSHOP





AROME 3dVar test

- Comparing results using TL/AD of old (G88) and new formula
- 6h assimilation cycling
- Observations: TEMP, AIREP, AMSU-A, AMSU-B, SYNOP (T2, RH2, U10)
- direct obs. operator is the Canopy scheme (from guess)
- Ensemble B matrix
- Small differences on average, disappears after few hours



ALADIN/HIRLAM WORKSHOP

- Determination of new interpolation formula
- The new formula gives similar result as Canopy or Paulson in stable case
- TL of new formula approximates well the TL of Canopy
- Using TL/AD of new formula in assimilation has small impact compared to the old one