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Aims of this study

■ (i) Striping down to its most simple shape the problem 
of computing the shear production and buoyancy 
production-destruction terms of a prognostic TKE 
equation.

■ (ii) Using the found framework to compare as fairly as 
possible three solutions for the specification of the 
remaining degrees of freedom:
– The extension of a Louis-type ‘static’ computation towards 

memory from past time-steps, auto-diffusion and having a 
Newtonian-type formulation of the dissipation term;

– The recently proposed spectral representation of turbulence 
(QNSE), when reduced to the sole specification of two 
stability dependency functions;

– One recently proposed rather complete Reynolds-type 
scheme, in its version where (alike for both above cases) 
there is no critical value for the Richardson-number Ri .



  

For the past 10 years, observations, LES and 
theoretical advances have shown that …

The anisotropy of turbulent 
flows should not be neglected

Unstable case 
asymptote

At very high stability there appears 
to be no limitation on the 
Richardson-number (but there 
exist a critical flux-Richardson-
number Rifc )

The latter fact is the consequence of 
conversions between TKE and TPE 
happening even in very stable regimes
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Choices for the analytical developments

■ The common framework is that of a prognostic Turbulent 
Kinetic Energy (TKE) equation.

■ There is no prognostic Turbulent Potential Energy (TPE) 
equation [but the interplay of both forms of Turbulent Total 
Energy (TTE=TKE+TPE) is kept into account].

■ In the case of the Reynolds decomposition, one uses the 
Mellor-Yamada assumption of neglecting the (small) influence 
of shear-turbulence interactions on the temperature-pressure 
correlation terms. 

■ Like proposed by SGS05 for such aims, the scope of the 
(wider) QNSE theory is limited here to the specification of 
stability dependency functions for the production-destruction 
terms of the TKE equation.

■ In the stable case, the ALARO-0 (empirical) Louis-type 
functions have (as already since 2000) an asymptotic non-zero 
limit for momentum, no critical Ri and a finite Rifc.



  

The ‘p-TKE’ starting point (‘p’ for pseudo) as 
used operationally in ALARO-0

Basic idea
Search of an extension [e-TKE, ‘e’ for emulation]

Some a-posteriori lessons



  

The ‘p-TKE’ extension of the Louis method
(for more details see Ivan’s poster)

■ Basic Turbulent Kinetic Energy (E) prognostic 
scheme:
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Louis-type scheme  this box  0

If we believe that we have a well-tuned (but too static) scheme 
for diagnostic values of Km and Kh (via Fm(Ri ) and Fh(Ri ) in 

Louis’ scheme), why not inverting the process?

From Km (and its neutral equivalent Kn) one computes an 
equilibrium value Ẽ for E towards which the prognostic 

variable will be relaxed with the time scale of the dissipation.



  

The ‘e-TKE’ extension of the ‘p-TKE’ method
(for more details see Ivan’s poster)

■ If we consider a ‘full’ TKE scheme [‘f-TKE’ in our ‘slang’], 
‘emulating’ it within the p-TKE framework just amounts to 
compute Ẽ on the basis of the exact formulation of the 
production-destruction terms.

■ In terms of dependency upon stability, it is equivalent to derive 
a formulation of Fm(Ri ) and Fh(Ri ) [Louis] starting from φ
3(Ri ) and χ3(Ri ) [‘f-TKE’].

■ At first thought, one may believe that the problem is symmetric 
and that any Louis-type scheme can have a hidden ‘e-TKE’ 
equivalent.

■ However the treatment of the length scales LK and Lε and their 
reduction to a single L one (RMC01) is such that it cannot be 
the case, except for rather particular conditions. 



  

The lessons of the ‘p-TKE’ development

■ In terms of adding ‘memory’, auto-diffusion and a Newtonian 
dissipation term to a well tuned pre-existing Louis scheme, it 
works perfectly well (operational in ALARO-0).

■ As long as we stick to the ‘e-TKE’ data flow, ‘p-TKE’ can still 
take part in the intercomparison with QNSE and CCHE08.

■ If this has to evolve (for other considerations than those treated 
here), ‘p-TKE’ is too restrictive a method to be setting the pace 
for future configurations.

■ But the associated staggering, shape of the implicit ‘solver’ and 
time step algorithm can (& should) be preserved.

Without this ‘intermediate step’ we would anyhow not have 
been able to study the ‘common framework problem’ as below



  

The search for a single common framework

The ‘f’ function and its filtering role
The relation between the 3 & 3 stability functions

The QNSE case
The No-Ri(cr) Reynolds case
The resulting set of equations



  

The ‘f ’ function (RMC01) and its computation
■ A bridge is needed between the shear- and buoyancy- 

terms of the TKE prognostic equation.
■ The ‘CBR’ approach obtains it in a case where the only 

stability dependency is the one linked with the 
parameterisation of the TKE  TPE term, but this 
result can be shown to be absolutely general.

■ There are two ways to compute ‘f ’ in practice:
– Either explicitly while solving the TKE equation;
– Or by solving a characteristic equation that expresses the 

stationnary solution shear term + buoyancy term + 
dissipation = 0 . This delivers a second order equation for 
f(Ri ) that admits a solution for Ri going from -∞ to +∞ .
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The ‘f’ function (RMC01) and its computation

■ We follow here the second path, since:
– We wish a solution without restriction of the range of 

possible Richardson-numbers;
– We obtain this feature in a way very similar to the 

argument of Z_et_al_08: ‘f ’ acts as a ‘filter’ imposing 
that ‘stationarity of the TKE equation + diagnostic TPE 
equation  conservation of TTE’.

■ Under these conditions it can be shown that the 
characteristic equation leading to ‘f ’ factorises as

     with Rif the flux-Richardson-number. With this, χ
3(Ri ) has the same range of validity as ‘f ’, i.e. from -
∞ to +∞ . Idem for φ3(Ri ) .
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A key relationship

■ We do not have yet the conditions for a full analytical 
solution of the problem. 

■ But, adding one constraint (too complex to be explicited 
here), that anyhow takes a different shape depending on 
which problem one wants to solve (CBR, CCH02, 
CCHE08), one can obtain a unique equation linking the 
two stability dependency functions:

    with C3 the inverse Prandtl number at neutrality and Rifc 
the critical flux-Richarson-number, i.e. two of the three 
‘physical’ quantities relevant to our proposal.
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A remaining degree of freedom (‘R ’)
■ On top of cK, cε (Reynolds case only) and C3, Rifc 

(general case), a dependency analysis shows that we 
still have a degree of freedom to consider in our new 
system of equations.

■ Let us define, for the time being as a function of 
stability (and by ‘eliminating’ the ‘f ’ function),

■ R can be seen as a measure of the anisotropy. For an 
isotropic flow one shall have R≡1 (CBR case for 
instance); lower and lower R values will indicate 
more and more anisotropy.

■ Our system can now be solved analytically once the 
3(+2) degrees of freedom are specified and using the 
‘filtering’ characteristic equation as well as the link 
between the stability functions.
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Quasi Normal Scale Elimination (QNSE) case

■ QNSE is a ‘spectral’ alternative to the Reynolds-
averaging technique for describing the detailed 
properties of turbulence.

■ The ‘working hypotheses’ are imbedded in the 
derivation method => no a-posteriori tuning possible.

■ Anisotropy of the flow is central to the algorithm. But 
nothing distinguishes its impact from the impact of TPE 
 TKE => one prognostic equation only.

■ The resulting data are valid only for stable and slightly 
unstable case => we need a strategy for extrapolation to 
the full unstable regime.

■ The basic theory delivers wave-number dependency that 
has to be converted to Ri-type one (see SGS05). 



  

Fits of the function 3(Ri ) for QNSE

Published values

Independent SGS fit

Analytical fit (after 
3 independent one)



  

What about the handling of anisotropy?

■ After doing the analytical fit of χ3(Ri ) one may look at 
what are the implicit values of R associated with the 
resulting function (fitted exclusively from published 
values)
– For Ri → -∞, we get R=0.404 (through extrapolation)

– For Ri = 0,     we get R=0.359

– For Ri → +∞, we get R=0.440

■ So a fit with R=0.4 (rather than ‘reading’ χ3(Ri )) would 
not be as good, but still quite acceptable.

■ The other constants corresponding to the QNSE fit are 
C3=1.39 (given by the authors) and Rifc=0.377 (vs. 0.4 
suggested by the authors).



  

The case of Reynolds averaging models

■ Contrary to QNSE, we have here complete control of all 
relevant parameters.

■ The CBR case is not interesting (R=1, no χ3 function).

■ The CCH02 formulation does not match the searched 
generality (either limitation of the range of possible Ri 
values [with strong associated R variations] or need to 
artificially decouple momentum and heat equations).

■ The modification for ‘No Ri(cr)’ [CCHE08] on the 
contrary leads to interesting perspectives: not only do 
we have the full range of Ri but we get far more 
homogeneous R values (a bit alike QNSE).

■ Hope to soon justify the use of a constant R 
parameter changing value only with the set-up ?



  

Resulting set of equations (for R constant)
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R : parameter characterising 
the flow’s anisotropy 

Rifc : critical flux-Richardson 
number (Rif at +∞) 

Plus the ‘developed’ prognostic TKE equation, of course



  

Conclusions

■ The development is rather complex, but the result is 
synthetic [as aimed at] and simple [a nice surprise].

■ It also seems to be quite general and compatible with 
recent basic findings (beyond CBR, so to say).

■ As a by-product, it gives a consistent QNSE 
extension for unstable cases.

■ We have yet to justify it in more details.
■ Anyhow, it can already play its role for a perfectly 

fair intercomparison of formulations.


