Towards a common framework for
(i) extensions of the Louis formalism,
(ii) the RANS aspect of the QNSE theory &
(iii) the class of 'No Ri(cr)' Reynolds-type
prognostic TKE schemes ?
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Aims of this study

= (1) Striping down to 1ts most simple shape the problem
of computing the shear production and buoyancy
production-destruction terms of a prognostic TKE
equation.

= (1) Using the found framework to compare as fairly as
possible three solutions for the specification of the
remaining degrees of freedom:

— The extension of a Louis-type ‘static’ computation towards
memory from past time-steps, auto-diffusion and having a
Newtonian-type formulation of the dissipation term;

— The recently proposed spectral representation of turbulence
(QNSE), when reduced to the sole specification of two
stability dependency functions;

— One recently proposed rather complete Reynolds-type
- scheme, 1n its version where (alike for both above cases)
there 1s no critical value for the Richardson-number R, .




For the past 10 years, observations, LES and
theoretical advances have shown that ...

The anisotropy of turbulent W

flows should not be neglected ; )

Unstable case
asymptote

At very high stability there appears
to be no limitation on the
Richardson-number (but there
exist a critical flux-Richardson-
number R )

The latter fact is the consequence of
conversions between TKE and TPE
happening even in very stable regimes
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Choices for the analytical developments

The common framework is that of a prognostic Turbulent
Kinetic Energy (TKE) equation.

There 1s no prognostic Turbulent Potential Energy (TPE)
equation [but the interplay of both forms of Turbulent Total
Energy (TTE=TKE+TPE) 1s kept into account].

In the case of the Reynolds decomposition, one uses the
Mellor-Yamada assumption of neglecting the (small) influence
of shear-turbulence interactions on the temperature-pressure
correlation terms.

Like proposed by SGS05 for such aims, the scope of the
(Wider) QNSE theory 1s limited here to the specification of
stability dependency functions for the production-destruction
terms of the TKE equation.

In the stable case, the ALARO-0 (empirical) Louis-type
functions have (as already since 2000) an asymptotic non-zero
limit for momentum, no critical R;and a finite R,,.



The ‘p-TKE’ starting point (‘p’ for pseudo) as
used operationally in ALARO-0

Basic idea

Search of an extension [e-TKE, ‘e’ for emulation]/
Some a-posteriori lessons



The 'p-TKE' extension of the Louis method
(for more details see Ivan’s poster)

= Basic Turbulent Kinetic Energy (E) prognostic
scheme:
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Louis-type scheme <> this box =0
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If we believe that we have a well-tuned (but too static) scheme
for diagnostic values of K and K, (via F (R,) and F,(R,) in

Louis’ scheme), why not inverting the process?

From K (and its neutral equivalent K ) one computes an

equilibrium value £ for E towards which the prognostic
variable will be relaxed with the time scale of the dissipation.




The ‘e-TKE' extension of the 'p-TKE' method

(for more details see Ivan’s poster)

If we consider a ‘full” TKE scheme [‘f-TKE’ 1in our ‘slang’],
‘emulating’ 1t within the p-TKE framework just amounts to
compute E on the basis of the exact formulation of the
production-destruction terms.

In terms of dependency upon stability, it is equivalent to derive
a formulation of F_(R,) and F,(R,) [Louis] starting from ¢
s(R;) and Xy(R;) ['{-TKE’].

At first thought, one may believe that the problem 1s symmetric
and that any Louis-type scheme can have a hidden ‘e-TKE’
equivalent.

However the treatment of the length scales L, and L, and their

reduction to a single L one (RMCO01) is such that it cannot be
the case, except for rather particular conditions.



The lessons of the '‘p-TKE' development

= In terms of adding ‘memory’, auto-diffusion and a Newtonian
dissipation term to a well tuned pre-existing Louis scheme, it
works perfectly well (operational in ALARO-0).

= As long as we stick to the ‘e-TKE’ data flow, ‘p-TKE’ can still
take part in the intercomparison with QNSE and CCHEOS.

= [f this has to evolve (for other considerations than those treated
here), ‘p-TKE’ 1s too restrictive a method to be setting the pace
for future configurations.

= But the associated staggering, shape of the implicit ‘solver’ and
time step algorithm can (& should) be preserved.

Without this ‘intermediate step’ we would anyhow not have
been able to study the ‘common framework problem’ as below




The search for a single common framework

The ‘f’ function and its filtering role
The relation between the ¢, & y, stability functions

The ONSE case

The No-Ri(cr) Reynolds case
The resulting set of equations




The ‘f’ function (RMC01) and its computation

= A bridge i1s needed between the shear- and buoyancy-
terms of the TKE prognostic equation.

= The ‘CBR’ approach obtains it in a case where the only
stability dependency 1s the one linked with the
parameterisation of the TKE < TPE term, but this
result can be shown to be absolutely general.

C E
f=r—

@) 2]
0z Oz

= There are two ways to compute ‘f in practice:
— Either explicitly while solving the TKE equation;

— Or by solving a characteristic equation that expresses the
stationnary solution shear term + buoyancy term +
dissipation = 0 . This delivers a second order equation for

f(R;) that admits a solution for R, going from -oo to +oo .




The 'f’ function (RMCO01) and its computation

= We follow here the second path, since:

— We wish a solution without restriction of the range of
possible Richardson-numbers;

— We obtain this feature in a way very similar to the
argument of Z et al 08: °f” acts as a ‘filter’ imposing
that ‘stationarity of the TKE equation + diagnostic TPE
equation < conservation of TTE".

= Under these conditions i1t can be shown that the
characteristic equation leading to ‘f” factorises as

f(Rz’) = %3(Rz’)(1_Rif)

with R, the flux-Richardson-number. With this, ¥
;(R;) has the same range of validity as ‘", 1.e. from -
. oo to +oo . Idem for @,(R;) .
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A key relationship

® We do not have yet the conditions for a full analytical
solution of the problem.

But, adding one constraint (too complex to be explicited
here), that anyhow takes a different shape depending on
which problem one wants to solve (CBR, CCHO02,

CCHEQOS), one can obtain a unique equation linking the
two stability dependency functions:

C3R1¢32 — @5 (x5 + R, /Rifc)+ 2; =0

with C; the inverse Prandtl number at neutrality and R,

the critical flux-Richarson-number, 1.e. two of the three
- ‘physical’ quantities relevant to our proposal.
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A remaining degree of freedom (‘'R "’)

= On top of ¢, ¢, (Reynolds case only) and C;, R,
(general case), a dependency analysis shows that we
still have a degree of freedom to consider in our new

system of equations.

= Let us define, for the time being as a function of
stability (and by ‘eliminating’ the ‘f function),

R(Ri) — Rif /(l_f(Ri))

R can be seen as a measure of the anisotropy. For an
1sotropic flow one shall have R=1 (CBR case for

H

instance); lower and lower R values will indicate
more and more anisotropy.

H

'
Our system can now be solved analytically once the

3(+2) degrees of freedom are specified and using the

- ‘filtering’ characteristic equation as well as the link
between the stability functions.



Quasi Normal Scale Elimination (QNSE) case

" OQNSE i1s a ‘spectral’ alternative to the Reynolds-
averaging technique for describing the detailed
properties of turbulence.

The ‘working hypotheses’ are imbedded 1n the
derivation method => no a-posteriori tuning possible.

Anisotropy of the flow 1s central to the algorithm. But
nothing distinguishes its impact from the impact of TPE
< TKE => one prognostic equation only.

The resulting data are valid only for stable and slightly
unstable case => we need a strategy for extrapolation to
the full unstable regime.

® The basic theory delivers wave-number dependency that
has to be converted to R-type one (see SGS05).
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What about the handling of anisotropy?

After doing the analytical fit of X,(R,) one may look at

what are the implicit values of R associated with the
resulting function (fitted exclusively from published
values)

— For R, - -00, we get R=0.404 (through extrapolation)
— ForR,=0, we get R=0.359
— For R, - +oo, we get R=0.440

= So a fit with R=0.4 (rather than ‘reading’ X,(R,)) would
not be as good, but still quite acceptable.

= The other constants corresponding to the QNSE fit are
C;=1.39 (given by the authors) and R, =0.377 (vs. 0.4

suggested by the authors).



relevant parameters.

The case of Reynolds averaging models

= Contrary to QNSE, we have here complete control of all

I'he CBR case 1s not interesting (R=1, no X, function).

= The CCHO2 formulation does not match the searched
generality (either limitation of the range of possible R,

values [with strong associated R variations] or need to

artificially decouple momentum and heat equations).

The modification for ‘No Ri(cr)’ [CCE

F08] on the

contrary leads to interesting perspectives: not only do
we have the full range of R, but we get far more

homogeneous R values (a bit alike QNSE).

J" Hope to soon justify the use of a constant R

parameter changing value only with the set-up ?



Resulting set of equations (for R constant)

R, =C.R ¢ (R,) C; : inverse Prandtl number
/ l X3 (R,- ) at neutrality
_ I- Rif /R R : parameter characterising
X5 (R;) = .
SN 1 — R, the flow’s anisotropy
Ry 1-R, /R, R, : critical flux-Richardson
b5 (R;) = - R, number (R, at +0o)

Plus the ‘developed’ prognostic TKE equation, of course




Conclusions

The development 1s rather complex, but the result 1s
synthetic [as aimed at] and simple [a nice surprise].

It also seems to be quite general and compatible with
recent basic findings (beyond CBR, so to say).

As a by-product, 1t gives a consistent QNSE
extension for unstable cases.

= We have yet to justify 1t in more details.

Anyhow, it can already play its role for a perfectly
fair mntercomparison of formulations.



