Research on VFE in HIRLAM

M. Hortal, PL on Dynamics in HIRLAM on behalf of J. Simarro; AEMet (Spain)

with thanks to P. Bénard, Météo-France

Sets of NH equations including geopotential

S1:
$$V, w, \phi, T, q \equiv \ln \pi_s$$

S2:
$$V, w, \phi, p, m \equiv \partial \pi / \partial \eta$$

S3:
$$V, w, \phi, \hat{q} \equiv \ln(p/\pi), q \equiv \ln\pi_s$$

The results presented here are for set S1, for which P. Bénard has shown to be SHB stable

Linearized system using $D, w, T, \varphi, q = \ln \pi_s$ is SHB stable

A slab x- σ model has been coded to ease testing of different options The equation set for the linearized version of this model is:

$$\begin{split} \frac{\partial D}{\partial t} + R\Delta T' + RT^* \nabla q' - (1 + \widetilde{\partial})\Delta \phi' &= 0 \\ \frac{\partial W}{\partial t} - \frac{g}{R_d T^*} \Big(R \Big(1 + \widetilde{\partial} \Big) T' + \Big(\left[\widetilde{\partial}^2 \right] + \widetilde{\partial} \Big) \phi' \Big) &= 0 \\ \frac{\partial T'}{\partial t} &= -\frac{RT^*}{c_v} \Big(D - \frac{g}{R_d T^*} \widetilde{\partial} w \Big) \\ \frac{\partial \phi'}{\partial t} - gw - RT^* \Big(\widetilde{N} - \widetilde{S} \Big) D &= 0 \\ \frac{\partial q'}{\partial t} + \widetilde{N} D &= 0 \end{split}$$

here:

$$\widetilde{\partial} \equiv \sigma \frac{\partial}{\partial \sigma}; \quad \widetilde{S}(f(\sigma)) \equiv \frac{1}{\sigma} \int_0^\sigma f(\sigma') d\sigma'; \quad \widetilde{N}(f(\sigma)) \equiv \int_0^1 f(\sigma') d\sigma'$$

14 May 2009

ASM 2009, Utrecht

A sufficient set of conditions to allow elimination to arrive at a single equation in w is:

C1:
$$\widetilde{\partial} \ \widetilde{N} = \mathbf{0}$$

C2: $(1 + \widetilde{\partial}) \widetilde{S} = 1$
C3: $[\widetilde{\partial}^2] \equiv \widetilde{\partial} \ \widetilde{\partial}$

Then we obtain:

$$\left(1 - \beta^2 c_*^2 \left(\Delta + \frac{1}{H_*^2} \left(1 + \widetilde{\partial}\right) \widetilde{\partial}\right) - \beta^4 N_*^2 c_*^2 \Delta\right) w^+ = \hat{R}_w$$

Eigenvalues of the "vertical laplacian" operator : $\widetilde{L} \equiv \left(1 + \widetilde{\partial}\right) \widetilde{\partial}$

should be real and negative for stability, which it is not easy to fulfill

Boundary conditions can modify eigenvalues and this is the case here

If we set the lowest model level at the surface

$$\phi_N^{+.} = \phi_N^E \equiv \phi_s$$

the structure equation becomes:

$$\left(1-\beta^2 c_*^2 \left(\Delta + \mathbf{P} \frac{1}{H_*^2} \left(1+\widetilde{\partial}\right) \widetilde{\partial}\right) - \mathbf{P} \beta^4 N_*^2 c_*^2 \Delta\right) w^+ = \widetilde{R}_w^*$$

where

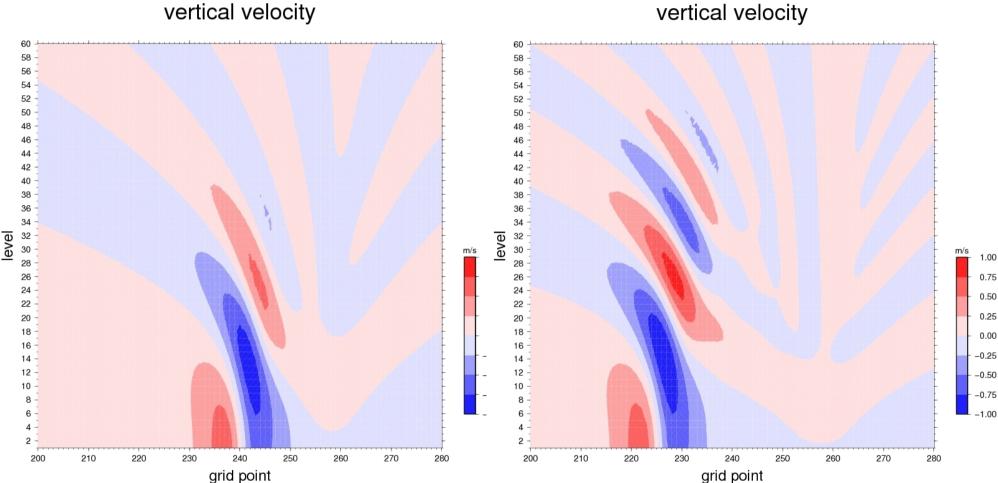
$$P = diag(1,...,1,0)$$

Matrix

 $\mathbf{P}(1+\widetilde{\partial})\widetilde{\partial}$

has real and negative eigenvalues

Preliminary tests: Linear model (SHB style) at rest with a hill moving to the left



vertical velocity

Future work

- Non-linear model with orography is unstable
 - Investigate the influence in 2-time-levels of the reference temperature on the stability