

GOBIERNO M DE ESPAÑA D Y

DE MEDIO AMBIENTE Y MEDIO RURAL Y MARINO

+

+

Variable Mercator Map Factor at the HARMONIE Model

Inés Santos Isabel Martínez AEMET

+

+

+

+

+ +

Outline

Projections. Map Factor

Variable Map Factor at the HARMONIE Model

- Mercator Map Factor using Fourier Series
- Working Area
- Truncation (Arpege vs HARMONIE)
- Code Flow
- **Code Modifications**
- First Results

+ +

Future Work

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

3

+

Projections - Map Factor

- Conformal projections: planar (stereographic), conical (Lambert) and cylindrical (Mercator)
- Map Factor (m): rate of reduction of a line in the projection with respect to a curve on the sphere

$$\mathbf{m}(\varphi) = \frac{dx}{ds} = \left(\frac{1 - K^2}{1 - \sin^2 \varphi}\right)^{\frac{1 - K}{2}} \left(\frac{1 + K}{1 + \sin \varphi}\right)^{K}$$

+ + + + + + + + +

+ + + +

K = sine of the tangency point latitude $<math>\varphi = latitude$

+ + + +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

Map Factor in the Model

- **m** appears in the model equations in projection coordinates
- The easiest way to treat it in the linearized model of the SI scheme is considering its maximum value at the working domain

 $\mathbf{m}_* = \max_{Domain} \{ \mathbf{m} \}$

- Good solution when m remains close to the unity (small domains)
- Instabilities at the semi-implicit scheme for large domains and greater problems in NH cases (vertical pseudo-divergence)
- A variable treatment of the map factor is considered for "large" domains (similarly to the stretched ARPEGE treatment)

 $\frac{y}{a}$

GOBIERNO DE ESPAÑA

+

+ +

+ +

+ +

+

+

Variable Map Factor at the HARMONIE Model MERCATOR MAP FACTOR USING FOURIER SERIES

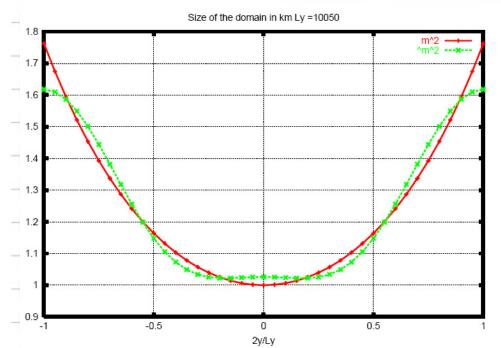
Mercator map factor

+ +

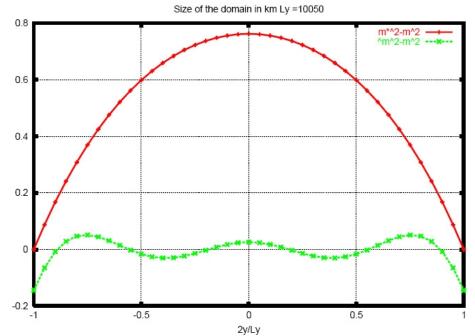
$$\mathbf{m}(\varphi) = \frac{1}{\cos \varphi}$$
 $\mathbf{m}(x, y) = \cosh \varphi$

• $\mathbf{m}(\mathbf{x},\mathbf{y})$ can be written as a linear combination of low-order Fourier harmonics $(2n\pi)^{n=\infty}$

$$\mathbf{m}(y)^{2} = \frac{1}{2}a_{0} + \sum_{n=1}^{\infty} a_{n} \cos\left(\frac{2n\pi}{L}y\right)$$


$$a_{0} = \frac{1}{2f}\left(e^{f} - e^{-f}\right) + 1$$

$$a_{n} = \frac{(-1)^{n}f}{2\left[(n\pi)^{2} + f^{2}\right]}\left(e^{f} - e^{-f}\right), \quad n = 1, 2, \dots$$


$$f = \frac{L}{a}$$

• A truncation with three coefficients will be included at the HARMONIE model codification for "large" domains

Variable Map Factor at the HARMONIE Model

Fourier estimation of the square map factor with three coefficients (a_0 , a_1 and a_2) in comparisson to the square **map factor real value**. $L_y = 10.050$ km

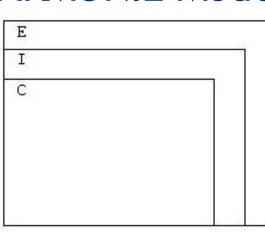
Approximation to the square map factor real value of the Fourier estimation with three coefficients $(a_0, a_1 \text{ and } a_2)$ and of its maximum value in the domain. L_y = 10.050km

Variable Map Factor at the HARMONIE Model

WORKING AREA

+ +

+ +


+ +

+ +

+ +

- HARMONIE grid areas:
 - computational part of the domain (C+I)
 - biperiodization extension zone (E)
- m does not take the value 1 at the centre of the computational domain
- The improvement of the new map factor treatment should be noticeable anyway
- Other options imply big coding effort for a small improvement

+ + + + + + + +

+

+

+

+ +

+ +

+ +

+ +

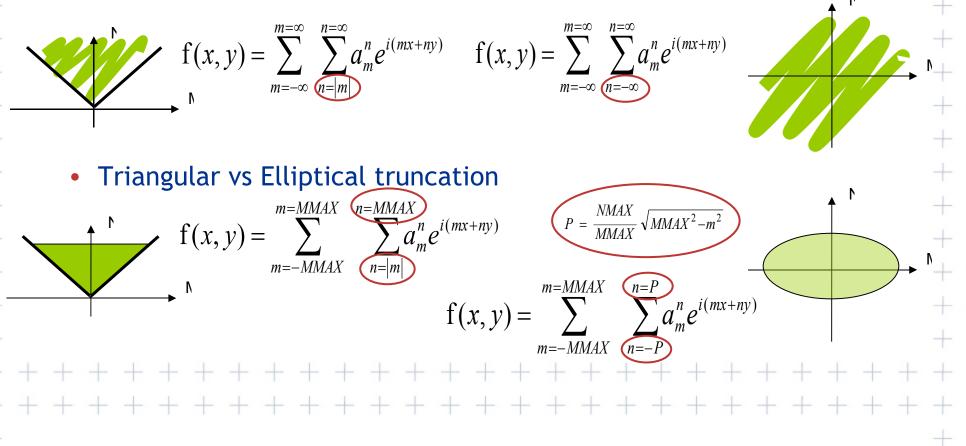
+ +

+ +

+ +

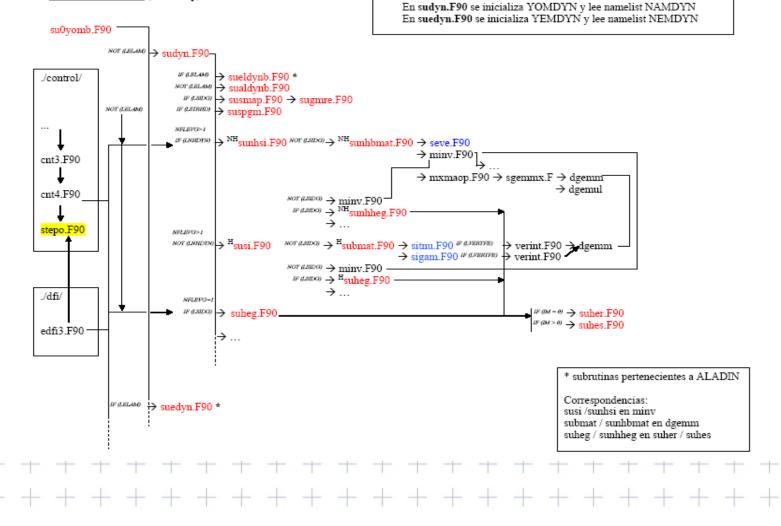
+

+


+

Variable Map Factor at the HARMONIE Model TRUNCATION (ARPEGE VS HARMONIE)

• Spherical Harmonics vs Bi-Fourier decomposition



Code Flow (1)

ARPEGE - SETUP (/main/arp)

+

+

+

+

+

+

+

+ +

+ +

+ +

+ +

+ +

-

+

+

+

+

+

+

+

+

+

+

+

+

+

Code Flow (2)

ALADIN - SETUP (./main/ald)

+

+

+ +

+ +

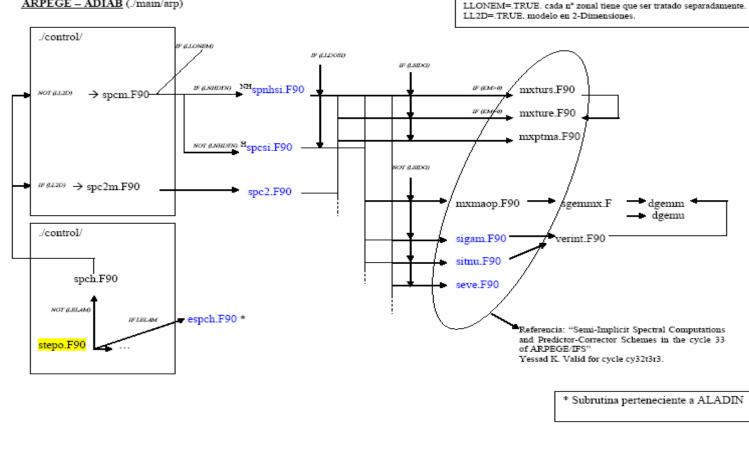
+

+

-

+

+


-

Code Flow (3)

ARPEGE - ADIAB (/main/arp)

+

+

+

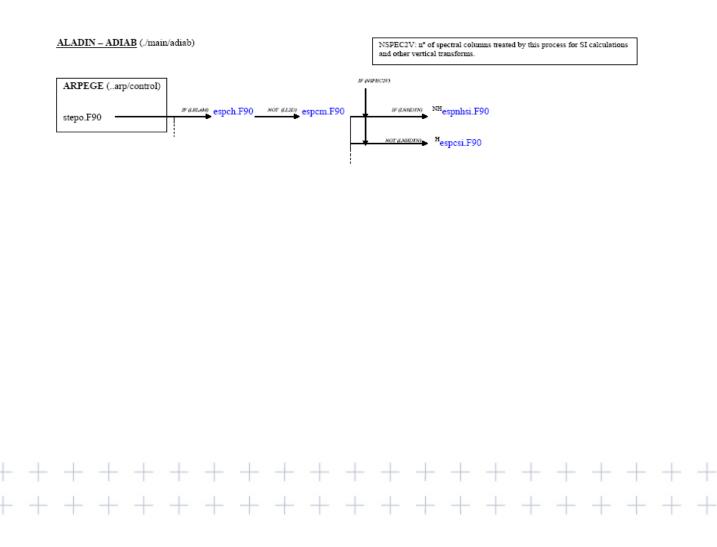
+

+

+

+

+


+

+

+ +

+

Code Flow (4)

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+

Code Modifications (1)

- ESUSMAP → Calculus of the map factor Fourier coefficients, ESCGMAP
- SUDYN → Definition of logical LLESIDG Calling to ESUSMAP function
- YEMDYN

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

- SUELDYNB → Initialization of variables LLESIDG and ESCGMAP and variables for future semi-implicit calculus, SIHEG, SIHEG2, SIHEGB and SIHEGB2
- SUSI

SUNHSI → Calling to the semi-implicit scheme calculus at ESUHEG and ESUNHHEG when LLESIDG

+

+

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+

Code Modifications (2)

• ESUHEG

+ +

+ +

+ +

+ +

+ +

- ESUNHHEG → Solver of the Helmholtz equation (SIHEG,...) Use of the new map factor coefficients ESCGMAP Use of the laplacian operator in the new spectral coordinates (bi-Fourier), RLEPDIM and RLEPINM
- ESPCM → Interface to the semi-implicit step Introduction of the LLESIDG option Introduction of the parallel calculus by zonal number (LLONEM)
 Array dimensions adapted to the new elliptical truncation

+

+

-

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+

+

+

Code Modifications (3)

- Semi-implicit step **ESPCSI**
 - $ESPNHSI \rightarrow$
- Introduction of the LLESIDG option Use of the new map factor coefficients ESCGMAP Use of the laplacian operator in the new spectral coordinates (bi-Fourier), RLEPDIM and RLEPINM Dimensions adapted to the new elliptical truncation
 - Use of four matrix, one per quadrant, instead of two, just for the first and second quadrant
 - Adapted array dimensions

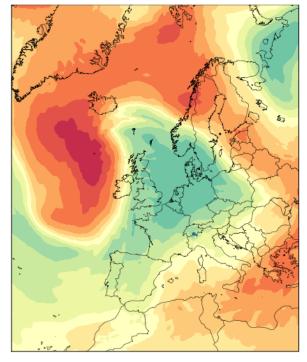
DO JN=0,ELLIPS(M)

```
ISE=START+4*JN
```

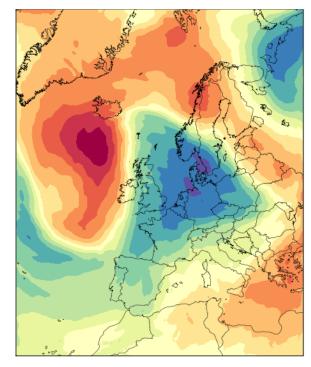
```
AUX ARRAY(:, ISE: ISE+3) = WORK ARRAY(:, JN, 1:4)
```

ENDDO

+ + + + + + + + + + +


DE MEDIO AMBIENTE Y MEDIO RURAL Y MARINO

First Results (Hydrostatic)

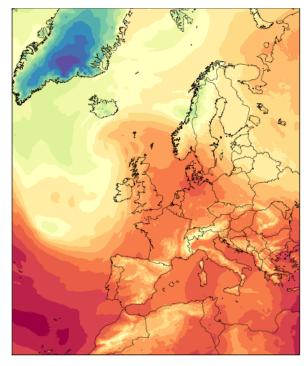

Original Codification

S010TEMPERATURE 2008/7/1 z0:0 +12h

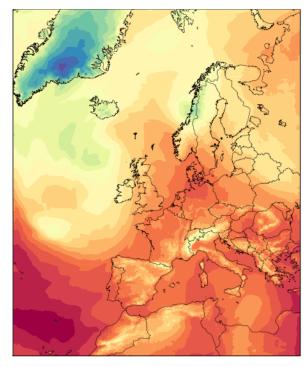
Modified Codification

S010TEMPERATURE 2008/7/1 z0:0 +12h

The main differences are at the central part of the maps, where map factor estimations differ the most


DE MEDIO AMBIENTE Y MEDIO RURAL Y MARINO

First Results (Hydrostatic)

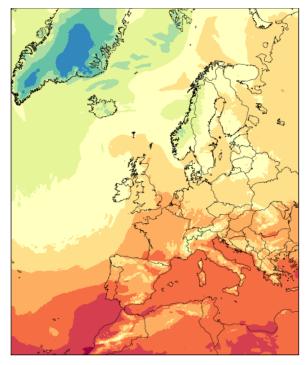

Original Codification

S020TEMPERATURE 2008/7/1 z0:0 +12h

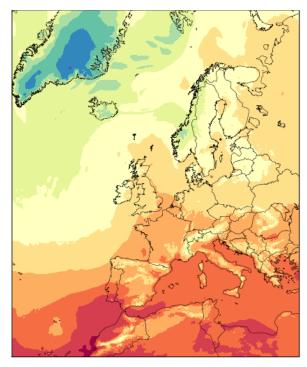
Modified Codification

S020TEMPERATURE 2008/7/1 z0:0 +12h

The main differences are at the central part of the maps, where map factor estimations differ the most


DE MEDIO AMBIENTE Y MEDIO RURAL Y MARINO

First Results (Hydrostatic)


Original Codification

S030TEMPERATURE 2008/7/1 z0:0 +12h

Modified Codification

S030TEMPERATURE 2008/7/1 z0:0 +12h

The main differences are at the central part of the maps, where map factor estimations differ the most

+

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

Future Work

- Further test should be done for reassuring the stability and reliability of the hydrostatic codification \rightarrow 10 day forecasting
- The non-hydrostatic codification is under work

+ + + + + +

• Stability problems

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

• The inclussion of a new diffusion term (as in ARPEGE) is under study

+ + + +

+ + + + + + + + + + + +