4D-VAR Optimization Efficiency Tuning

Tomas Wilhelmsson
Swedish Meteorological and Hydrological Institute

(now ECMWF)

2009-05-14

Signatur

Previous HIRLAM 4D-VAR performance scaling

Niko Sokka (FMI):

“In the end of day, 4DVAR
scales up to 84 processors

in our system and then

stalls.”

Torgny Faxén (NSC):

32.0000

30.0000

28.0000

26.0000

24.0000

22.0000

20.0000

18.0000

18.0000

14.0000

12.0000

10.0000

8.0000

6.0000

4.0000

2.0000

0.0000

Performance

Hirvda performance.

100.0000

200.0000

300.0000

ideal

‘Emerald [P

B P
Tmerald avresiner=f =~ ~

of processors

SMHI
Efforts to improve HIRLAM 4D-VAR scaling

* Switch from 1D to 2D partitioning?

Signatur

Transposes with 1D decomposition

FFTs in
y-direction

Spectral space
calculations

lev

P!

kmax=120

Y

y->1

v1=360

420

lev

— Il

nx=306

—
-

L

y FFTsin

/ x-direction
ny=306

- x>k

y Grid point space
calculations

v=306

X

SMHI
Transposes with 2D partitioning

lev lev
A A
,,,,,,,,,,,,,,,,,, //
7
4
: C
FFTs in 4| 7 | y-=>1 g 5|8 y FFTsin
y-direction e 5 ; / > ; 2 / x-direction
] : 9
- nyl=360 5 6/ ny=306
3|6 9 |3
- k ; - x->k
kmax=120 nxl=360
lev O lev O
A A
6y T 8 39
‘ P 5 A
. — 1_"2 "3
Spectral space l y Grid point space
calculations | / / calculations
imax=120 ny=306
s Y
. 3 .~
- k - X

kmax=120 nx=306

Efforts to improve HIRLAM 4D-VAR scaling

* Switch from 1D to 2D partitioning?

— Evaluated in a toy model 2005, no clear benefit

Efforts to improve HIRLAM 4D-VAR scaling

* Switch from 1D to 2D partitioning?

— Evaluated in a toy model 2005, no clear benefit

* Reduce interprocessor communication

* SMHI C22 area inner loop at 1/3 resolution, with 30 minute time step

— 103 x 103 grid distributed over 26 processors, each get a 103x4 slice

< nlon = 103 S
nhalo = 10
nhalo = 10

B core points Halo zone

Accumulated stencils in halo zone

Wind direction

B Needed for interpolation

SMHI
Efforts to improve HIRLAM 4D-VAR scaling

* Switch from 1D to 2D partitioning?

— Evaluated in a toy model 2005, no clear benefit

* Reduce interprocessor communication
— Slswap on demand, implemented 2008

— Investigate “HALO-lite” (Mozdzynski, 2008) approach?

SMHI
Efforts to improve HIRLAM 4D-VAR scaling

* Switch from 1D to 2D partitioning?

— Evaluated in a toy model 2005, no clear benefit

* Reduce interprocessor communication
— Slswap on demand, implemented 2008

— Investigate “HALO-lite” (Mozdzynski, 2008) approach?

* Reduce work

— Fewer FFTs, which also reduces communication (Gustafsson, 2008)

SMHI
Efforts to improve HIRLAM 4D-VAR scaling

* Switch from 1D to 2D partitioning?

— Evaluated in a toy model 2005, no clear benefit

* Reduce interprocessor communication
— Slswap on demand, implemented 2008

— Investigate “HALO-lite” (Mozdzynski, 2008) approach?

* Reduce work

— Fewer FFTs, which also reduces communication (Gustafsson, 2008)

* Additional sources of parallelism

— OpenMP

1D decomposition =>
a strict upper bound on number of MPI tasks

* SMHI C22 area has 306x306 grid points:
— 4D-VAR inner loop at one third resolution with 103x103 grid points.
— At least 2 rows per task (for efficiency) gives at most 52 MPI-tasks!

— That is only 12% (7 out of 56 nodes) of SMHI’s operational cluster.
* C11 area could use 24% of the machine, but has 4 times the work
* Even worse on future computers (Moore’s law)

* OpenMP can enable better use of multi-core processors

TL time step on 26 processors

FIO00 = ShLLT w Sa.ld LV ST0LEE e S0, 5T e FAOI0 = F0.FA o= LOLFE
G2.08 = Fo0.l: = G017 = S0 Id = ELUAT: 028 = 0002 = L]

Al e SEEEC A1 'FF"H“I'\. it Lk - 1 1 B} F dcop -
|]

g iy

.
ST TEHE I Theaa™ <EF :
I 1 1yl ||_rrm|'m_. il
[l= Lo i 2 =y i s WAt
T4 Targy et

5.y F a0

LLI 2o ot Ol Dot e
JI'I' I'I'II.[_.' IEAELIN
H i Al Al & Al nes=s pn

[o
LA AL]

_/\slswap slswap slswap /\ /
Signatur FI__I-

FFT Semi-Lagrangiang dynamics Simplified physics

* Physics was already “done” (through phcall and phtask)
— But check 1len_loops in namelist (thread granularity)
* Semi-Langrangian dynamics by parallelizing outer “vertical” loop
— Vertical loop over 40 to 60 levels
— 572 ! Somp directives added in spdy/*.F
— Large parallel sections, using orphaned directives
— Some nowait directives

— MPI calls within ! $omp master / !'$omp end master

SMHI
VERINT _AD: adjoint of interpolation stencil

* Departure points are interpolated with a 4*4*4 stencil

— can be computed one level at a time

* In its adjoint, contributions are summed up over the stencil

— writing to 4 levels => write races with parallelized vertical loop

* First implementation: use omp set lock / omp unset lock
to limit concurrent writes to each vertical level

— Slower than serial version!

* Second implementation: reuse the #ifdef VECTOR code ©
— Put contributions in temporary vector
— Sum within !'$omp critical / !'$omp end critical

— Scales beautifully

HOWTO
combine Intel compiler OpenMP with Scali MPI

* Set number of OpenMP threads

setenv OMB_NUM_THREADS 4

* Intel compiler runtime environment

setenv KMP LIBRARY turnaround

setenv KMP STACKSIZE 128m

setenv KMP AFFINITY "none,granularity=core"
setenv KMP VERBOSE TRUE

* ScaMPI version 3.13.8-5915 bug workaround

setenv SCAFUN CACHING MODE O
* Launch (with socket affinity for up to 4 threads)
mpirun -affinity mode automatic:bandwidth:socket

mpirun -affinity mode none

HIRLAM 7.2 4D-VAR OpenMP performance
on gimle.nsc.liu.se (8 cores per node)

* SMHI C22 area, 306x306 grid, 40 “minimize” iterations
— Inner TL/AD loop at 1/3 resolution, 103x103 grid

* Times for “minimize” (no 1/0):
— 13 nodes, best configuration for pure MPI or MPI/OpenMP hybrid:
126 seconds with 52 tasks
* 91 seconds with 26 tasks and 4 threads/task
— 26 nodes:
* 92 seconds with 52 tasks
* 65 seconds with 52 tasks and 4 threads/task

* Best results with OpenMP within sockets, and MPI between

Is 4D-VAR operationally feasible for
SMH/I’s C11 area?

* C11 area, 606x606 grid, 120 “minimize” iterations, total runtime

* Inner TL/AD loop at 1/3 resolution, 203x203 grid

Time Model Configuration Comment
(seconds) version
ca 3600 7.1.2 24 nodes, 192 tasks, Original setup based on
len loops=2047 current operational C22
1752 7.1.2 26 nodes, 51 tasks, Improved configuration
len loops=16
1486 7.2 as above Fewer FFTs,
slswap on demand
1387 7.2 as above, and 102 tasks 2*tasks
1286 7.3 as above, and 2 threads 2 OpenMP threads
=> 204 cores
1086 7.3 26 nodes, 51 tasks, Best setup!
4 threads => 204 cores

* OpenMP in HIRLAM 4D-VAR necessary for today’s clusters

* Slswap on demand works, and expected to be more important for high
numbers of processor

* Nothing beats avoiding work completely
* No silver bullet

— Performance from small incremental improvements

Technology will allow larger areas “for free”, but increasing the
number of time steps and maintaining runtime will be harder

* Finds OpenMP parallelization bugs, like possible race conditions

* Very easy to use

* Compile
— ifort -—-openmp -tcheck
— No optimization (any —-O is ignored)

— No specific thread knowledge allowed, like omp get thread num()

* Instrument and run
— tcheck cl a.out

— Takes an order of magnitude more memory and runtime

SMHI
Intel Thread Checker — Output

Tﬁ?ite T;_|Er?'_|5rrp ETﬁennr}_writE_nf wh at o |:EErinT:EnriﬁT
|Write |lor |arall|"horint ad local.F":113 conflicts |t ad 1|t ad 1|

data-race	el re	lwith a prior memory write of w@ at	ocal.F	ocal.F	
		gion	"horint ad local.F":113 (output	":113	":113
			dependence)		
Write -=	Err]jomp p	Merory read of ddiv ad at	"calin	"calin	
Read lor	arall	"calintf.F":412 conflicts with a	tf.F":	tf.F"	

| | |gion |ddiv ad at "calintf.F":412 | |

|
|data-race| |el re|prior memory write of |412 |412 |
|
| | | | (flow dependence) | | |

1. Forgot to declare w0 as private in horint_ad_local.F

2. Wrongly placed nowait in calintf.F

