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Signatur

Previous HIRLAM 4D-VAR performance scaling

Niko Sokka (FMI):

“In the end of day, 4DVAR
scales up to 84 processors

in our system and then

stalls.”

Torgny Faxén (NSC):
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SMHI
Efforts to improve HIRLAM 4D-VAR scaling

* Switch from 1D to 2D partitioning?

Signatur



Transposes with 1D decomposition
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SMHI
Transposes with 2D partitioning
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* SMHI C22 area inner loop at 1/3 resolution, with 30 minute time step

— 103 x 103 grid distributed over 26 processors, each get a 103x4 slice

< nlon = 103 S
nhalo = 10
nhalo = 10

B core points Halo zone



Accumulated stencils in halo zone

Wind direction

B Needed for interpolation
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SMHI
Efforts to improve HIRLAM 4D-VAR scaling

* Switch from 1D to 2D partitioning?

— Evaluated in a toy model 2005, no clear benefit

* Reduce interprocessor communication
— Slswap on demand, implemented 2008

— Investigate “HALO-lite” (Mozdzynski, 2008) approach?

* Reduce work

— Fewer FFTs, which also reduces communication (Gustafsson, 2008)

* Additional sources of parallelism

— OpenMP



1D decomposition =>
a strict upper bound on number of MPI tasks

* SMHI C22 area has 306x306 grid points:
— 4D-VAR inner loop at one third resolution with 103x103 grid points.
— At least 2 rows per task (for efficiency) gives at most 52 MPI-tasks!

— That is only 12% (7 out of 56 nodes) of SMHI’s operational cluster.
* C11 area could use 24% of the machine, but has 4 times the work
* Even worse on future computers (Moore’s law)

* OpenMP can enable better use of multi-core processors



TL time step on 26 processors
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FFT Semi-Lagrangiang dynamics Simplified physics




* Physics was already “done” (through phcall and phtask)
— But check 1len_loops in namelist (thread granularity)
* Semi-Langrangian dynamics by parallelizing outer “vertical” loop
— Vertical loop over 40 to 60 levels
— 572 ! Somp directives added in spdy/*.F
— Large parallel sections, using orphaned directives
— Some nowait directives

— MPI calls within ! $omp master / !'$omp end master



SMHI
VERINT _AD: adjoint of interpolation stencil

* Departure points are interpolated with a 4*4*4 stencil

— can be computed one level at a time

* In its adjoint, contributions are summed up over the stencil

— writing to 4 levels => write races with parallelized vertical loop

* First implementation: use omp set lock / omp unset lock
to limit concurrent writes to each vertical level

— Slower than serial version!

* Second implementation: reuse the #ifdef VECTOR code ©
— Put contributions in temporary vector
— Sum within !'$omp critical / !'$omp end critical

— Scales beautifully



HOWTO
combine Intel compiler OpenMP with Scali MPI

* Set number of OpenMP threads

setenv OMB_NUM_THREADS 4

* Intel compiler runtime environment

setenv KMP LIBRARY turnaround

setenv KMP STACKSIZE 128m

setenv KMP AFFINITY "none,granularity=core"
setenv KMP VERBOSE TRUE

* ScaMPI version 3.13.8-5915 bug workaround

setenv SCAFUN CACHING MODE O
* Launch (with socket affinity for up to 4 threads)
mpirun -affinity mode automatic:bandwidth:socket

mpirun -affinity mode none



HIRLAM 7.2 4D-VAR OpenMP performance
on gimle.nsc.liu.se (8 cores per node)

* SMHI C22 area, 306x306 grid, 40 “minimize” iterations
— Inner TL/AD loop at 1/3 resolution, 103x103 grid

* Times for “minimize” (no 1/0):
— 13 nodes, best configuration for pure MPI or MPI/OpenMP hybrid:
126 seconds with 52 tasks
* 91 seconds with 26 tasks and 4 threads/task
— 26 nodes:
* 92 seconds with 52 tasks
* 65 seconds with 52 tasks and 4 threads/task

* Best results with OpenMP within sockets, and MPI between



Is 4D-VAR operationally feasible for
SMH/I’s C11 area?

* C11 area, 606x606 grid, 120 “minimize” iterations, total runtime

* Inner TL/AD loop at 1/3 resolution, 203x203 grid

Time Model Configuration Comment
(seconds) version
ca 3600 7.1.2 24 nodes, 192 tasks, Original setup based on
len loops=2047 current operational C22
1752 7.1.2 26 nodes, 51 tasks, Improved configuration
len loops=16
1486 7.2 as above Fewer FFTs,
slswap on demand
1387 7.2 as above, and 102 tasks 2*tasks
1286 7.3 as above, and 2 threads 2 OpenMP threads
=> 204 cores
1086 7.3 26 nodes, 51 tasks, Best setup!
4 threads => 204 cores




* OpenMP in HIRLAM 4D-VAR necessary for today’s clusters

* Slswap on demand works, and expected to be more important for high
numbers of processor

* Nothing beats avoiding work completely
* No silver bullet

— Performance from small incremental improvements

Technology will allow larger areas “for free”, but increasing the
number of time steps and maintaining runtime will be harder



* Finds OpenMP parallelization bugs, like possible race conditions

* Very easy to use

* Compile
— ifort -—-openmp -tcheck
— No optimization (any —-O is ignored)

— No specific thread knowledge allowed, like omp get thread num()

* Instrument and run
— tcheck cl a.out

— Takes an order of magnitude more memory and runtime



SMHI
Intel Thread Checker — Output

Tﬁ?ite T;_|Er?'_|5rrp ETﬁennr}_writE_nf wh at o |:EErinT:EnriﬁT
|Write |lor |arall|"horint ad local.F":113 conflicts |t ad 1|t ad 1|

|data-race| el re|lwith a prior memory write of w@ at|ocal.F|ocal.F|
| | |gion |"horint ad local.F":113 (output |":113 |":113 |
| | | | dependence) | | |
|Write -= |Err]jomp p|Merory read of ddiv ad at | "calin|"calin|
| Read lor |arall|"calintf.F":412 conflicts with a |tf.F":|tf.F"

| | |gion |ddiv ad at "calintf.F":412 | |

|
|data-race| |el re|prior memory write of |412  |412 |
|
| | | | (flow dependence) | | |

1. Forgot to declare w0 as private in horint_ad_local.F

2. Wrongly placed nowait in calintf.F



