
4D-VAR Optimization Efficiency Tuning

Tomas Wilhelmsson

Swedish Meteorological and Hydrological Institute

(now ECMWF)

2009-05-14

Signatur

Previous HIRLAM 4D-VAR performance scaling

Niko Sokka (FMI):

“In the end of day, 4DVAR

scales up to 84 processors

in our system and then

stalls.”

Torgny Faxén (NSC):

Signatur

Efforts to improve HIRLAM 4D-VAR scaling

• Switch from 1D to 2D partitioning?

Transposes with 1D decomposition

Transposes with 2D partitioning

Signatur

Efforts to improve HIRLAM 4D-VAR scaling

• Switch from 1D to 2D partitioning?

– Evaluated in a toy model 2005, no clear benefit

Signatur

Efforts to improve HIRLAM 4D-VAR scaling

• Switch from 1D to 2D partitioning?

– Evaluated in a toy model 2005, no clear benefit

• Reduce interprocessor communication

Signatur

HIRLAM 4D-VAR 1D partitioning

• SMHI C22 area inner loop at 1/3 resolution, with 30 minute time step

– 103 x 103 grid distributed over 26 processors, each get a 103x4 slice

Signatur

Accumulated stencils in halo zone

Signatur

Efforts to improve HIRLAM 4D-VAR scaling

• Switch from 1D to 2D partitioning?

– Evaluated in a toy model 2005, no clear benefit

• Reduce interprocessor communication

– Slswap on demand, implemented 2008

– Investigate “HALO-lite” (Mozdzynski, 2008) approach?

Signatur

Efforts to improve HIRLAM 4D-VAR scaling

• Switch from 1D to 2D partitioning?

– Evaluated in a toy model 2005, no clear benefit

• Reduce interprocessor communication

– Slswap on demand, implemented 2008

– Investigate “HALO-lite” (Mozdzynski, 2008) approach?

• Reduce work

– Fewer FFTs, which also reduces communication (Gustafsson, 2008)

Signatur

Efforts to improve HIRLAM 4D-VAR scaling

• Switch from 1D to 2D partitioning?

– Evaluated in a toy model 2005, no clear benefit

• Reduce interprocessor communication

– Slswap on demand, implemented 2008

– Investigate “HALO-lite” (Mozdzynski, 2008) approach?

• Reduce work

– Fewer FFTs, which also reduces communication (Gustafsson, 2008)

• Additional sources of parallelism

– OpenMP

1D decomposition =>
 a strict upper bound on number of MPI tasks

• SMHI C22 area has 306x306 grid points:

– 4D-VAR inner loop at one third resolution with 103x103 grid points.

– At least 2 rows per task (for efficiency) gives at most 52 MPI-tasks!

– That is only 12% (7 out of 56 nodes) of SMHI’s operational cluster.

• C11 area could use 24% of the machine, but has 4 times the work

• Even worse on future computers (Moore’s law)

• OpenMP can enable better use of multi-core processors

Signatur

 TL time step on 26 processors

Signatur

OpenMP implementation

• Physics was already “done” (through phcall and phtask)

– But check len_loops in namelist (thread granularity)

• Semi-Langrangian dynamics by parallelizing outer “vertical” loop

– Vertical loop over 40 to 60 levels

– 572 !$omp directives added in spdy/*.F

– Large parallel sections, using orphaned directives

– Some nowait directives

– MPI calls within !$omp master / !$omp end master

VERINT_AD: adjoint of interpolation stencil

• Departure points are interpolated with a 4*4*4 stencil

– can be computed one level at a time

• In its adjoint, contributions are summed up over the stencil

– writing to 4 levels => write races with parallelized vertical loop

• First implementation: use omp_set_lock / omp_unset_lock
 to limit concurrent writes to each vertical level

– Slower than serial version!

• Second implementation: reuse the #ifdef VECTOR code 

– Put contributions in temporary vector

– Sum within !$omp critical / !$omp end critical

– Scales beautifully

HOWTO
combine Intel compiler OpenMP with Scali MPI

• Set number of OpenMP threads

setenv OMP_NUM_THREADS 4

• Intel compiler runtime environment

setenv KMP_LIBRARY turnaround
setenv KMP_STACKSIZE 128m
setenv KMP_AFFINITY "none,granularity=core“
setenv KMP_VERBOSE TRUE

• ScaMPI version 3.13.8-5915 bug workaround

setenv SCAFUN_CACHING_MODE 0

• Launch (with socket affinity for up to 4 threads)

mpirun -affinity_mode automatic:bandwidth:socket

mpirun -affinity_mode none

Signatur

HIRLAM 7.2 4D-VAR OpenMP performance
on gimle.nsc.liu.se (8 cores per node)

• SMHI C22 area, 306x306 grid, 40 “minimize” iterations

– Inner TL/AD loop at 1/3 resolution, 103x103 grid

• Times for “minimize” (no I/O):

– 13 nodes, best configuration for pure MPI or MPI/OpenMP hybrid:

• 126 seconds with 52 tasks

• 91 seconds with 26 tasks and 4 threads/task

– 26 nodes:

• 92 seconds with 52 tasks

• 65 seconds with 52 tasks and 4 threads/task

• Best results with OpenMP within sockets, and MPI between

Signatur

Is 4D-VAR operationally feasible for
SMHI’s C11 area?

• C11 area, 606x606 grid, 120 “minimize” iterations, total runtime

• Inner TL/AD loop at 1/3 resolution, 203x203 grid

Best setup!26 nodes, 51 tasks,
4 threads => 204 cores

7.31086

2 OpenMP threadsas above, and 2 threads
=> 204 cores

7.31286

2*tasksas above, and 102 tasks7.21387

Fewer FFTs,
slswap on demand

as above7.21486

Improved configuration26 nodes, 51 tasks,
len_loops=16

7.1.21752

Original setup based on
current operational C22

24 nodes, 192 tasks,
len_loops=2047

7.1.2ca 3600

CommentConfigurationModel

version

Time

(seconds)

Signatur

Conclusion

• OpenMP in HIRLAM 4D-VAR necessary for today’s clusters

• Slswap on demand works, and expected to be more important for high
numbers of processor

• Nothing beats avoiding work completely

• No silver bullet

– Performance from small incremental improvements

Technology will allow larger areas “for free”, but increasing the
number of time steps and maintaining runtime will be harder

Signatur

ITC - Intel Thread Checker

• Finds OpenMP parallelization bugs, like possible race conditions

• Very easy to use

• Compile

– ifort –openmp –tcheck

– No optimization (any –O is ignored)

– No specific thread knowledge allowed, like omp_get_thread_num()

• Instrument and run

– tcheck_cl a.out

– Takes an order of magnitude more memory and runtime

Intel Thread Checker – Output

1. Forgot to declare w0 as private in horint_ad_local.F

2. Wrongly placed nowait in calintf.F

