
OOPS: Object Oriented
Prediction System

The evolution of the IFS code in the coming 2-3 years

Why to re-arrange the IFS code ?
• The IFS code has reached a very high level of complexity. However, most

configurations and options are set up and defined globally from the highest
control level down.

• The maintenance cost has become very high.
• New cycles take longer and longer to create and debug.
• There is a long, steep learning curve for new scientists and visitors.
• It is becoming a barrier to new scientific developments such as long window

weak constraints 4D-Var.
• Some algorithmic limitations:

– Entities are not always independent => H^t R−1 H is one piece (jumble) of code.
– The nonlinear model M can only be integrated once per execution => algorithms that require

several calls to M can only be written at script level.

IFS growth: unfortunately, it’s not an investment:
It’s growth of costs, not of benefits.

Modernizing the IFS
• Re-assess « modularity »:

– Define self-sufficient entities that can be composed, that
define the scope of their variables (avoid « bug-
propagation ») => requires a careful understanding and
definition of their interface

– Avoid as much as possible global variables
– Will require to widen the IFS coding rules and break the

« setup/module/namelist » triplet paradigm

• Information hiding and abstraction

The above leads to object-oriented programming

Basics about OO-programming
• Organize the code around the data, not around the algorithms.
• The primary mechanism used by object-oriented languages to

define and manipulate objects is the class
• Classes define the properties of objects, including:

– The structure of their contents,
– The visibility of these contents from outside the object,
– The interface between the object and the outside world,
– What happens when objects are created and destroyed.

• Operations, transformations on members of a class: methods

More basics about OO
• Encapsulation: content+scope of variables+interfaces (operators)

put altogether
• Inheritance: allows more specific classes to be derived from

more general ones. It allows sharing of code that is common to
the derived classes.

• Polymorphism: refers to the ability to re-use a piece of code with
arguments of different types.

• Abstraction: refers to the ability to write code that is independent
of the detailed implementation of the objects it manipulates.

Toy OOPS

• ‘Toy’ data assimilation system to try out Object-
Oriented programming for IFS

• Abstract Part
– Code the algorithm in terms of base classes which serve to

define interfaces to the data structures & functions
• can be compiled separately

• Implementations (“Instantiation”)
– Code Lorenz and QG models in terms of derived classes from

the base classes which define data structures and functions
• without change of abstract part

Toy OOPS implementations

State Increment

incrementalAlgorithm

Observation Departure

x

y

δx

y-H(x)

Base Classes: Derived Classes:

BkgErrCov ObsErrCovB R

LorenzState QgState

LorenzObservation QgObservation

LorenzBkgErrCov QgBkgErrCov

LorenzIncrement QgIncrement

LorenzDeparture QgDeparture

LorenzObsErrCov QgObsErrCov

LorenzMain QgMain

Abstraction: Incremental 4D-Var
on One Slide!

IFS : a ‘F90 / C++ sandwich’

Main program: master.F90
 calls mpl_init etc.

Control layer in C++ : IFS_main
Abstract part: IncrementalAlgorithm.cpp,

 Stepo.cpp, Hop.cpp,
 State.cpp, Increment.cpp, etc.

IFS specific: IFS_State.cpp, IFS_Increment.cpp, etc.

Computational parts in F90:
 cpg.F90, callpar.F90, rttov.F90 etc.

Polymorphism
• ODB retrievals in H (hop.F90), H
(hoptl.F90), HT (hopad.F90) depend on
the observation type (see ctxinitdb.F90)

• OpenMP loop over observation type and
each operator has a behavior depending
on the observation type

SSMI

H

ATOVS

SATOB

REO3

RADAR

HT

H

SATOB

SATOB observation

observation
distribute
H

H
SATOB departure

departure

H HT
H

HT

SATOB ObsErrCov

ObsErrCov R
R

ATOVS

ATOVS observation

observation
distribute
H

H
ATOVS departure

departure

H HT
H

HT

ATOVS ObsErrCov

ObsErrCov R
R

SSMI

SSMI observation

observation
distribute
H

H
SSMI departure

departure

H HT
H

HT

SSMI ObsErrCov

ObsErrCov R
R

distribute

Transition from IFS to OOPS
• The main idea is to keep the computational parts of the existing code and

reuse them in a re-designed structure => this can be achieved by a top-down
and bottom-up approach.

• From the top: Develop a new modern, flexible structure => Expand the
existing toy system.

• From the bottom: Move setup, namelists, data and code together.
– Propose new coding guidelines to that effect,
– Everybody participates by applying it to the part of the code they know.
– Create self-contained units of code.

• C++/F95 breaking levels: STEPO and COBS/HOP
• Put the two together: Extract self-contained parts of the IFS and plug them

into OOPS => this step should be quick enough for versions not to diverge.

User considerations:

• User interface:
– Xml files: incremental rather than full-default; no more

namelists after OOPS !!!
– Must preserve the facility to read in model parameters from a

model input file (like with « FA » files; for LAM at least)

• Documentation: needs to remain at a reasonable level
(clean code is « auto-documentary »)

Preliminary coding
considerations:

• At which level to split OO and standard F ? How far should OO go
into the IFS ?:
– Start with D.A. control; assess the interior of the forecast model(s) later (NL, TL,

AD) => timestep organization, externalize physics ?, phys/dyn interface, timestep 1
specificity

– Break STEPO, make GP buffers the natural vehicle for initializing and passing
model data at OO-level (spectral transforms and data become an « optional » entity
within the models)

– Later on, define grids and interpolators as Objects (both « base objects » and
« instantiated objects »)

• High-level entities: ocean v/s atmospheric model, EPS and singular vector
computation, EnsDA

• For « bottom-to-top » approach: write guidelines for helping developers
to identify their entities

Opportunity v/s risks
• Opportunity:

– Move towards a more “modern” code, sharing more concepts with other system/I.T. codes
– Guidelines for the bottom-to-top approach will force a general and rather drastic review of the existing

code (and options in the code) => some rarely used Research options may disappear !
– Develop new configurations of the assimilation at the OO-level: NL cost function, hybrid, filters, …
– Review of the obs operator interfacing, based on a scientific identification of the operators, while totally

hiding the ODB database structuring (at the scientific level of the code)

• Risks:
– Long-lasting effort that may never end in practice ?
– Some bets are implicit: future of Fortran programming in Met’ HPC code
– A rather tricky transition period to be organized, but the switch would be “at once” with no backward

compatibility (of code) => Research developments will need to be separately adapted
– Impact on MF and Partner’s applications: especially LAM code

Impact on MF&Harmonie applications: a first glance

• LAM: re-organization of LELAM key
• MF’s own 4D-VAR multi-incremental sequence: adaptations of Arpège specifities

& question of shared C++ assimilation control level
• adaptation of Full-Pos/e927 with a well-defined interface for OOPS (2-3 possible

strategies, to be further decided) => ideally, one should be able to almost code the
sequence « global forecast + e927 + LAM forecast » within one C++ piece of code

• Keep the possibility to set up the model parameters by reading from a model
input file (923, (e)927, Arpège and LAM forecasts)

• DFI code: Jc-DFI but also regular D.F. initialization in global or LAM models (state
vector is both input and output)

• CANARI
• Other options …

Starting efforts at MF … &
partners ?

• Get familiar with OO & C++
• Implement and learn the toy
• Play with the toy
• Do your own exercise:

– Multiple geometry, LAM versus global
– Small ensemble
– Extra term (« à la Jk »)
– …

• Tutorials to come: at ECMWF (next NWP training
seminar) and at MF (by EC staff, June)

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17

