OOPS: Object Oriented
Prediction System

The evolution of the IFS code 1n the coming 2-3 years

Why to re-arrange the IFS code ?

The IFS code has reached a very high level of complexity. However, most
configurations and options are set up and defined globally from the highest
control level down.

The maintenance cost has become very high.
New cycles take longer and longer to create and debug.
There 1s a long, steep learning curve for new scientists and visitors.

It 1s becoming a barrier to new scientific developments such as long window
weak constraints 4D-Var.

Some algorithmic limitations:
— Entities are not always independent => H”t R—1 H is one piece (jumble) of code.

— The nonlinear model M can only be integrated once per execution => algorithms that require
several calls to M can only be written at script level.

IFS growth: unfortunately, it’s not an investment:
It’s growth of costs, not of benefits.

140

11240

1100

180

Lines of code {(x 1,000,000)
F statements (= 1,000)

40

20

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 !

Modernizing the IFS

* Re-assess « modularity »:

— Define self-sufficient entities that can be composed, that
define the scope of their variables (avoid « bug-
propagation ») => requires a careful understanding and
definition of their interface

— Avoid as much as possible global variables

— Will require to widen the IFS coding rules and break the
« setup/module/namelist » triplet paradigm

* Information hiding and abstraction

The above leads to nhiect-oriented nrosrammino

Basics about OO-programming

Organize the code around the data, not around the algorithms.

The primary mechanism used by object-oriented languages to
define and manipulate objects 1s the class

Classes define the properties of objects, including:
— The structure of their contents,
— The visibility of these contents from outside the object,

— The interface between the object and the outside world,
— What happens when objects are created and destroyed.

Operations, transformations on members of a class: methods

More basics about OO

Encapsulation: content+scope of variables+interfaces (operators)
put altogether

Inheritance: allows more specific classes to be derived from
more general ones. It allows sharing of code that 1s common to
the derived classes.

Polymorphism: refers to the ability to re-use a piece of code with
arguments of different types.

Abstraction: refers to the ability to write code that 1s independent
of the detailed implementation of the objects it manipulates.

Toy OOPS

‘Toy' data assimilation system to try out Object-
Oriented programming for IFS

Abstract Part

- Code the algorithm in terms of base classes which serve to
define interfaces to the data structures & functions

- can be compiled separately

Implementations ("Instantiation")

- Code Lorenz and QG models in terms of derived classes from
the base classes which define data structures and functions

» without change of abstract part

Toy OOPS implementations

LorenzMain QgMain
™| incremental Algorithm <
Base Classes: Derived Classes:

X State 6 X /ncr'emen‘r

LorenzState QgState LorenzIncrement QgIncrement

Qbservatign +

Y 7 Q\ Y- H(x) /gpar‘ ureg

LorenzObservation =~ QgObservation LorenzDeparture QgDeparTur'e

B BkgErrCov R })'bsEr'r'Cov

LorenzBkgErrCov QgBkgErrCov LorenzObsErrCov QgObsErrCov

vio id

Abstraction: Incremental 4D-Var

ControlVariable & x.
Observation & y,
int & nouter) {

ChangeVariableSqrtCovar chavar(l, =J.B);

double zj0 , =zl

int jout;

int ctlsize = 1 .B—>cvecsize ():

ControlVector dx(ctlsize), gx(ctlsize),
da(ctlsize);

de = 0.0;

da = 0.0:

Trajectory traj(J. hmopld—get_nstep|()]):

for (jout=0; jout < nouter; jout ++] {

Departure = ydep;
ydep=J.get_R([)—>get_dep ["ombg"”];

Obzervation = yeqwv;
yeqv=y.clone (" obsv" };

/4 Setup trajectory and departures

ControlVariable xwork(l,x.get()[0]):
l.get_hmopdd (). nl (xwork ,* yeqv, traj);
ydep——=diff(=veqv, K v);

if [(jout =— 0) ydep—>putdb();
traj.set(da);

traj.set(=ydep);
J.settraj(traj,chavar);

incremental_4dvar(CostFunctionddvar & J,

// compute inital cost and gradient
dx = 0.0;
J.simul [dx,gx, zj0);

Jf UG Minimization
CG(J ,d=,gx . 4);

// Compute final cost and gradiant
J.simul (de.gx.zjl):

// Form increment and analysis
S5 in physical space
Increment = dxtmp;
detmp=J. get_B()—>get_inc();
IncrementalControlVariable xine(l,=dxtmp);
chavar . vect2var(dx, xinc):
#xinc.get()=+xinc _get()+*x.get();
da = datdx:

}

A4 Final diagnestics
ControlVariable xwork(1l,x.get ()]|0]);

Observation = yeqv;

yeqv=y .clone (" obsv" };
J.get_hmopdd (). nl{ xwork ,=yeqv ,traj),
Departure = ydep;

ydep—] get_R()—>get_dap ("oman”);
ydep—>d iff (=yeqv ,y);

ydep—>putdb ();

= ECMWF

—2>1FS : a ‘F90 / C++ sandwich’

Main program: master.F90
calls mpl_init etc.

Control layer in C++ : IFS_main

Abstract part: IncrementalAlgorithm.cpp,
Stepo.cpp, Hop.cpp,
State.cpp, Increment.cpp, etc.

IFS specific: IFS_State.cpp, IFS_Increment.cpp, etc.

Computational parts in F9O:
cpg.F90, callpar.F90, rttov.F90 etc.

Polymorphism
*+ ODB retrievals in H (hop.F90), H

(hoptl.F90), H" (hopad.F90) depend on
the observation Type (see c'rxml'rdb F90)

* OpenMP loop ove

SATOB

BEfoRth CEMhtor hifon
“rl.bservah SSMI

SSMI observation SSMI departure

- observation 7] departure
W) = H
RADAR & catbuee]
SSMI ObsErrCov

ObsErrCov @
R

Transition from IFS to OOPS

The main 1dea 1s to keep the computational parts of the existing code and
reuse them in a re-designed structure => this can be achieved by a top-down
and bottom-up approach.

From the top: Develop a new modern, flexible structure => Expand the
existing toy system.
From the bottom: Move setup, namelists, data and code together.

— Propose new coding guidelines to that effect,

— Everybody participates by applying it to the part of the code they know.
— Create self-contained units of code.

C++/F95 breaking levels: STEPO and COBS/HOP

Put the two together: Extract self-contained parts of the IFS and plug them
into OOPS => this step should be quick enough for versions not to diverge.

User considerations:

* User interface:

— Xml files: incremental rather than full-default; no more
namelists after OOPS !!!

— Must preserve the facility to read in model parameters from a
model input file (like with « FA » files; for LAM at least)

* Documentation: needs to remain at a reasonable level
(clean code 1s « auto-documentary »)

Preliminary coding

considerations:

* At which level to split OO and standard F ? How far should OO go
into the IFS ?:

— Start with D.A. control; assess the interior of the forecast model(s) later (NL, TL,
AD) => timestep organization, externalize physics ?, phys/dyn interface, timestep 1
specificity

— Break STEPO, make GP buffers the natural vehicle for initializing and passing
model data at OO-level (spectral transforms and data become an « optional » entity
within the models)

— Later on, define grids and interpolators as Objects (both « base objects » and
« instantiated objects »)
« High-level entities: ocean v/s atmospheric model, EPS and singular vector
computation, EnsDA

* For « bottom-to-top » approach: write guidelines for helping developers
to 1identifv their entities

- Opportunity v/s risks

— Move towards a more “modern” code, sharing more concepts with other system/I.T. codes

— QGuidelines for the bottom-to-top approach will force a general and rather drastic review of the existing
code (and options in the code) => some rarely used Research options may disappear !

— Develop new configurations of the assimilation at the OO-level: NL cost function, hybrid, filters, ...

— Review of the obs operator interfacing, based on a scientific identification of the operators, while totally
hiding the ODB database structuring (at the scientific level of the code)

* Risks:
— Long-lasting effort that may never end in practice ?
— Some bets are implicit: future of Fortran programming in Met” HPC code

— A rather tricky transition period to be organized, but the switch would be “at once” with no backward
compatibility (of code) => Research developments will need to be separately adapted

— Impact on MF and Partner’s applications: especially LAM code

Impact on MF&Harmonie applications: a first glance

* LAM: re-organization of LELAM key

* MF’s own 4D-VAR multi-incremental sequence: adaptations of Arpege specifities
& question of shared C++ assimilation control level

* adaptation of Full-Pos/e927 with a well-defined interface for OOPS (2-3 possible
strategies, to be further decided) => ideally, one should be able to almost code the
sequence « global forecast + €927 + LAM forecast » within one C++ piece of code

* Keep the possibility to set up the model parameters by reading from a model
input file (923, (¢)927, Arpege and LAM forecasts)

* DFI code: Jc-DFI but also regular D.F. initialization in global or LAM models (state
vector is both input and output)

« CANARI
* Other options ...

Starting efforts at MF ... &

partners ?

Get familiar with OO & C++

Implement and learn the toy
Play with the toy

Do your own exercise:

— Multiple geometry, LAM versus global
— Small ensemble

— Extra term (« a la Jk »)

Tutorials to come: at ECMWF (next NWP training
seminar) and at MF (bv EC staff. June)

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17

