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INTRODUCTION : INTRODUCTION : présentation of BATORprésentation of BATOR

 Application to transform the collected observations over the 
planet into a database of the « ODB » format, suiatable for 
ARPEGE, ALADIN, AROME

 First task on the critical path of an assimilation suite 3DVar 
(AROME) or 4DVar (ARPEGE)

 Mechanism : several executions of the applications in order to 
transform sets of observations files delivered in different formats 
(BUFR mainly) and different sizes



« Anatomy » of BATOR as used for AROME (3DVAr)« Anatomy » of BATOR as used for AROME (3DVAr)

Kind of observations or instrument Number of files Format Size (Mb)

Surface 1 OBSOUL 1

Wind profilers + GPS 2 OBSOUL 1

Conventional 1 OBSOUL 7

SEVIRI 1 GRIB 18

HIRS 1 BUFR 2

AMSUA 1 BUFR 1

AMSUB 1 BUFR 4

SSMI 1 BUFR 3

IASI 1 BUFR 13

Geowind 1 BUFR 2

ERS + ASCAT 2 BUFR 1

AIRS 1 BUFR 0

RADAR 24 BUFR 200



Characteristics of BATORCharacteristics of BATOR

BATOR vs AROME BATOR (without ODB) AROME forecast (3h)

Number of lines of code  ≈  7 000  ≈  1 600 000

MPI parallelisation Oui mais inefficace Oui

Open-MP parallélisation Non Oui

CPUs used in operations 1 16 (SX9)

Elapse time  ≈  500 s.  ≈  500 s.

Memory per CPU 15 Go 11.5 Go (SX9)

Static memory allocated  ≈  600 Mo  ≈  400 Mo

Impact of the hardware 
architecture

NEC SX9
Vector machine

Intel Xeon
Scalar machine

Elapse time  ≈  500 s.  ≈  180 s.



Load balancing of the BATOR tasks

=> In such conditions, the scalability is near to zero
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The task devoted to the 24 radars files is dramatically proeminent
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=> Will a external dynamic load balancing 
be enough ?

What if we maximize the number of tasks ?
(1 task per file)
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Limits of the scalability with a dynamic load balancing

 Limited because the number of 
observations files is limited 
('36' wall)

 Scalability loss because of 
residual load imbalance
(we can't run faster than the 
slowest task : red line)

 

And also :
 Relatively high memory cost 

per task
 Memory-anti-scalable 

parallelisation scheme

Practically : beyond16 procesors, the 
ressources at disposal is critical
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How to cross this scalability barrier ?

Jump over the obstacle ?
 

 Increase the number of observations files ??
– In 4DVar : slice the files into shorter time slots
– Cut the files per geographical sub-area ?
– Define a better-adapted file format ?

  

– However, handling many small files may not be the best solution
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How to cross this scalability barrier ?

  Avg-%   Avg.time # of calls : routine 
 42.65%      9.697      13312 : BUEXS3 
 26.40%      6.002          7 : Bator_lbufr_radar
  7.89%      1.795          1 : BATOR
  4.87%      1.107          1 : BATOR_ELIM

=> An obvious efficiency issue in decoding radar BUFR files
=> Subroutine Bator_lbufr_radar to be further examined

Turn around the obstacle, looking for better performance ?

 Efficiency may contribute to improve the Scalability
– Are the files read/written efficiently ?
– Does the algorithm fit parallel machines ?
– Is the code performant ?



How to cross this scalability barrier ?

Turn around the obstacle
Using other directions in parallelism ?

  BUFR decoding library uses global variables
– => To use Open-MP one should modify the software

 Bator algorithm is intrinsincally sequential
– => To use Open-MP one should revisit the algorithm

 Bator contains a lot of loops left by GOTO instructions
– =>Difficult to analyse the code performance and implement Open-MP. 

The code has to be modified.

 MPI parallelisation in dans Bator : it exists but :
– Parallelism based on the distribution of a set of input observations files
– => No treatment of memory load balancing
– => No treatment of CPU load balancing
– => finally less efficient than the external dynamic parallelisation



Another unexpected issue

The number of observations pools should be a multiple of the 
number of MPI tasks in the subsequent applications

(Screening, Minimization)

 ODB_IO_METHOD=1
– 1 file per table and per pool
– => would lead to much small files on many-processors machine. Is the 

file system ready to support this ?

 ODB_IO_METHOD=4
– Less files of fixed size
– => Requires (much) more memory. May easily break the memory limit of 

a node with Bator on a scalar machine

 Alternative # 1 : ODB_IO_METHOD=1 + tool « Odb1to4 »
 Alternative # 2 : ODB_IO_METHOD=4 + « reshuffling » (needs a 

specific ODB recompilation)



Conclusions

 Bator exhibits strong scalabilitiy issues than, could be overcome :
– Better I/O conditionning (format, number of files)
– Parallelisation methods (MPI, threads) using algorithms adapted to the 

problem
– Playing with ODB tools

 The search for scalability should not mask the performance issue

 Softwares should evolve permanently according to its context of 
execution, not its own being :
– « High Performance Computation » => batch processing (« vectorization »)
– Evolution of programing languages, hardware architectures
– Software context (3DVar, 4DVar for Bator, OOPS later on)



Perspectives for Bator

 Scalability and performance issues for Bator/AROME could be 
solved for short or mid term : 
– Thanks to a sufficient external parallelisation
– Because the enhancement of performance (Bufrdc) seems 

feasible

 Bator/AROME-3DVar solution is extensible to 4DVar

 Ongoing : Fusion of ECMWF Bufr2odb with Bator
– Full parallelisation support from Bufr2Odb
– Get the software out of the critical path thanks to an earlier 

upstream execution
– Object-oriented context for 3DVar/4DVar ?
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