
Scalability of BATOR :

A problem of strong scalability ?

Ryad El Khatib (CNRM/GMAP)

Aladin Workshop / Hirlam All Staff Meeting Norrköping, 05-08 April 2011

PlanPlan

INTRODUCTIONINTRODUCTION
 Presentation of BATOR softwarePresentation of BATOR software
 Characteristics of BATOR compared to AROMECharacteristics of BATOR compared to AROME

STUDIES
 Improvements and limits of the scalability of today
 Software performance
 Other parallelisations algorithms

CONCLUSIONS
 Recommendations for Bator and softwares in general
 Perspectives for Bator in particular

INTRODUCTION : INTRODUCTION : présentation of BATORprésentation of BATOR

 Application to transform the collected observations over the
planet into a database of the « ODB » format, suiatable for
ARPEGE, ALADIN, AROME

 First task on the critical path of an assimilation suite 3DVar
(AROME) or 4DVar (ARPEGE)

 Mechanism : several executions of the applications in order to
transform sets of observations files delivered in different formats
(BUFR mainly) and different sizes

« Anatomy » of BATOR as used for AROME (3DVAr)« Anatomy » of BATOR as used for AROME (3DVAr)

Kind of observations or instrument Number of files Format Size (Mb)

Surface 1 OBSOUL 1

Wind profilers + GPS 2 OBSOUL 1

Conventional 1 OBSOUL 7

SEVIRI 1 GRIB 18

HIRS 1 BUFR 2

AMSUA 1 BUFR 1

AMSUB 1 BUFR 4

SSMI 1 BUFR 3

IASI 1 BUFR 13

Geowind 1 BUFR 2

ERS + ASCAT 2 BUFR 1

AIRS 1 BUFR 0

RADAR 24 BUFR 200

Characteristics of BATORCharacteristics of BATOR

BATOR vs AROME BATOR (without ODB) AROME forecast (3h)

Number of lines of code ≈ 7 000 ≈ 1 600 000

MPI parallelisation Oui mais inefficace Oui

Open-MP parallélisation Non Oui

CPUs used in operations 1 16 (SX9)

Elapse time ≈ 500 s. ≈ 500 s.

Memory per CPU 15 Go 11.5 Go (SX9)

Static memory allocated ≈ 600 Mo ≈ 400 Mo

Impact of the hardware
architecture

NEC SX9
Vector machine

Intel Xeon
Scalar machine

Elapse time ≈ 500 s. ≈ 180 s.

Load balancing of the BATOR tasks

=> In such conditions, the scalability is near to zero

0

20

40

60

80

100

120

140

BATOR / AROME Elapse time (s.)
Intel Xeon + Intel compiler

conv
geow
iasi
prof
radar
scat
sev
ssmis
surf
tovsa
tovsb
tovsh
airs 0

2000

4000

6000

8000

10000

12000

14000

BATOR / AROME Memory usage Mb)
Intel Xeon + Intel compiler

conv
geow
iasi
prof
radar
scat
sev
ssmis
surf
tovsa
tovsb
tovsh
airs

The task devoted to the 24 radars files is dramatically proeminent

07
00

5
07

02
7

07
08

3
07

10
8

07
14

5
07

16
8

07
18

0
07

22
3

07
25

5
07

27
4

07
29

1
07

33
6

07
38

1
07

43
6

07
47

1

07
51

0
07

56
9

07
60

6
07

62
9

07
63

7
07

64
5

07
67

1
07

74
5

07
77

4

co
nv

ge
ow ia
si

pr
of

sc
at

se
v

ss
m

is
su

rf
to

vs
a

to
vs

b
to

vs
h

ai
rs

0

2

4

6

8

10

12

BATOR / AROME temps d'exécution par tâche (s.) Intel Xeon + Intel compiler

07
00

5

07
02

7

07
08

3

07
10

8

07
14

5

07
16

8

07
18

0

07
22

3

07
25

5

07
27

4

07
29

1

07
33

6

07
38

1

07
43

6

07
47

1

07
51

0

07
56

9

07
60

6

07
62

9

07
63

7

07
64

5

07
67

1

07
74

5

07
77

4

co
nv

ge
ow ia
si

pr
of

sc
at

se
v

ss
m

is

su
rf

to
vs

a

to
vs

b

to
vs

h

ai
rs

0

500

1000

1500

2000

2500
BATOR / AROME - Coût mémoire (Mo)

Intel Xeon + Intel compiler

=> Will a external dynamic load balancing
be enough ?

What if we maximize the number of tasks ?
(1 task per file)

07
00

5
07

02
7

07
08

3
07

10
8

07
14

5
07

16
8

07
18

0
07

22
3

07
25

5
07

27
4

07
29

1
07

33
6

07
38

1
07

43
6

07
47

1

07
51

0
07

56
9

07
60

6
07

62
9

07
63

7
07

64
5

07
67

1
07

74
5

07
77

4

co
nv

ge
ow ia
si

pr
of

sc
at

se
v

ss
m

is
su

rf
to

vs
a

to
vs

b
to

vs
h

ai
rs

0

2

4

6

8

10

12

BATOR / AROME temps d'exécution par tâche (s.) Intel Xeon + Intel compiler

07
00

5

07
02

7

07
08

3

07
10

8

07
14

5

07
16

8

07
18

0

07
22

3

07
25

5

07
27

4

07
29

1

07
33

6

07
38

1

07
43

6

07
47

1

07
51

0

07
56

9

07
60

6

07
62

9

07
63

7

07
64

5

07
67

1

07
74

5

07
77

4

co
nv

ge
ow ia
si

pr
of

sc
at

se
v

ss
m

is

su
rf

to
vs

a

to
vs

b

to
vs

h

ai
rs

0

500

1000

1500

2000

2500
BATOR / AROME - Coût mémoire (Mo)

Intel Xeon + Intel compiler

Limits of the scalability with a dynamic load balancing

 Limited because the number of
observations files is limited
('36' wall)

 Scalability loss because of
residual load imbalance
(we can't run faster than the
slowest task : red line)

And also :
 Relatively high memory cost

per task
 Memory-anti-scalable

parallelisation scheme

Practically : beyond16 procesors, the
ressources at disposal is critical

1 4 8 12 16 20 24 28 32 36
1

6

11

16

21

26

31

36

Scalability

ideal
maximal
mesured

Possible number of processors

S
pe

ed
up

How to cross this scalability barrier ?

Jump over the obstacle ?

 Increase the number of observations files ??
– In 4DVar : slice the files into shorter time slots
– Cut the files per geographical sub-area ?
– Define a better-adapted file format ?

– However, handling many small files may not be the best solution

1 4 8 12 16
0%

20%

40%

60%

80%

100%

System time vs / Real time

system
real

Number of tasks

How to cross this scalability barrier ?

 Avg-% Avg.time # of calls : routine
 42.65% 9.697 13312 : BUEXS3
 26.40% 6.002 7 : Bator_lbufr_radar
 7.89% 1.795 1 : BATOR
 4.87% 1.107 1 : BATOR_ELIM

=> An obvious efficiency issue in decoding radar BUFR files
=> Subroutine Bator_lbufr_radar to be further examined

Turn around the obstacle, looking for better performance ?

 Efficiency may contribute to improve the Scalability
– Are the files read/written efficiently ?
– Does the algorithm fit parallel machines ?
– Is the code performant ?

How to cross this scalability barrier ?

Turn around the obstacle
Using other directions in parallelism ?

 BUFR decoding library uses global variables
– => To use Open-MP one should modify the software

 Bator algorithm is intrinsincally sequential
– => To use Open-MP one should revisit the algorithm

 Bator contains a lot of loops left by GOTO instructions
– =>Difficult to analyse the code performance and implement Open-MP.

The code has to be modified.

 MPI parallelisation in dans Bator : it exists but :
– Parallelism based on the distribution of a set of input observations files
– => No treatment of memory load balancing
– => No treatment of CPU load balancing
– => finally less efficient than the external dynamic parallelisation

Another unexpected issue

The number of observations pools should be a multiple of the
number of MPI tasks in the subsequent applications

(Screening, Minimization)

 ODB_IO_METHOD=1
– 1 file per table and per pool
– => would lead to much small files on many-processors machine. Is the

file system ready to support this ?

 ODB_IO_METHOD=4
– Less files of fixed size
– => Requires (much) more memory. May easily break the memory limit of

a node with Bator on a scalar machine

 Alternative # 1 : ODB_IO_METHOD=1 + tool « Odb1to4 »
 Alternative # 2 : ODB_IO_METHOD=4 + « reshuffling » (needs a

specific ODB recompilation)

Conclusions

 Bator exhibits strong scalabilitiy issues than, could be overcome :
– Better I/O conditionning (format, number of files)
– Parallelisation methods (MPI, threads) using algorithms adapted to the

problem
– Playing with ODB tools

 The search for scalability should not mask the performance issue

 Softwares should evolve permanently according to its context of
execution, not its own being :
– « High Performance Computation » => batch processing (« vectorization »)
– Evolution of programing languages, hardware architectures
– Software context (3DVar, 4DVar for Bator, OOPS later on)

Perspectives for Bator

 Scalability and performance issues for Bator/AROME could be
solved for short or mid term :
– Thanks to a sufficient external parallelisation
– Because the enhancement of performance (Bufrdc) seems

feasible

 Bator/AROME-3DVar solution is extensible to 4DVar

 Ongoing : Fusion of ECMWF Bufr2odb with Bator
– Full parallelisation support from Bufr2Odb
– Get the software out of the critical path thanks to an earlier

upstream execution
– Object-oriented context for 3DVar/4DVar ?

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15

