AROME-France Evolution

Y.Seity CNRM-GAME, Météo-France

Contributors:
S. Riette,
C. Lac, D. Ricard, S. Donier

- Developments and perspectives on :
 - Surface
 - Shallow clouds and Fog
 - Dynamics/Physics coupling

AROME France Oper

Since November 2010 : CY36T1_op1

Domain 750x720xL60 points

AROME France E-suite

CONTENT (physics part):

Hail diagnostic

Hail: case of the 13 May 2010

Evaluation of ICE4 scheme in AROME

- In operational AROME version, ICE3 is used (hail is part of graupels)
- ICE4 separates graupel and hail as 2 prognostic species
- ICE4 has been evaluated over 2009 on South West of France

Grêlimètres

(30x40cm polystyrene plate):

TYPE	Caracteristics
Ice crystals (i)	D~10-100µm
Snow (s)	D~1-10mm ρ _s ~100kg/m³ V~0,3-1,5m/s
Graupel (q)	Hail and graupels D>7mm $ \rho_g ^> \rho_s \\ V \sim 1-5 m/s \\ V_{lim} = 10 m/s $

- Disappointing results: Scheme very sensitive to the time step, and too active (small amount of hail but everywhere there is graupel in altitude)
- Despite a lot of sensitivity tests, we did not manage to tune the scheme correctly
- => not ready for operational use

We tried to diagnose hail in the model

Hail diagnostic

- l. Compute each time step, vertically integrated graupel content
- Save in files the maximal value since last file (as for gusts)

Low clouds variability

- Several scales of variability and processes for boundary layer clouds:
 - Turbulent motions (parameterized with ED schemes)
 - Shallow cumulus forces by BL thermals (with MassFlux scheme)
 - Mesoscale variability (e.g. gravity waves, humidity heterogeneity in nocturnal & residual boundary layer, orography, residual clouds from previous convection, etc...)
- AROME statistical cloud scheme uses distance to saturation curve)

$$Q = \frac{q_t - q_{sat}}{\sigma_s} \qquad \text{(=normalized)}$$

- Condensation starts for $Q > Q_c$
- Wim de Rooy formulae used for mesoscale variability

- suppose
$$\sigma_{_S} = \alpha \times q_{_{Sat}}$$

then one will have condensation for :

$$Hu > Hu_c = Q_c \times \alpha + 1$$

Critical saturation humidity Hu.

Modifications for low clouds

We use
$$\alpha=0.02$$
 and $\sigma=\sqrt{\sigma_{turb}^2+\sigma_{RH_c}^2}$

Example: 13 May 2008:

Add clouds at some places they were missed

Still over-estimation of cloud fractions on the South

- Developments and perspectives on
 - Surface
 - Shallow clouds and Fog
 - Dynamics/Physics coupling

New version of ECOCLIMAP

Available in surfex6 (CY37T1)

Comparison of ECOCLIMAP2 / ECOCLIMAP1 databases for surface covers:

Proportion of C3 cultures decreases but bare lands and grasslands increases

In ECOCLIMAP1, vegetation stats growing sooner than in ECOCLIMAP2

Example of impacts on surface parameters:

New version of ECOCLIMAP

<u>Impact on AROME real cases simulations ECOCLIMAP1 / ECOCLIMAP2 :</u>

Other tests

- New climatologies of sand and clay :

- Patchs (positive impact at 8km on ARPEGE-Climat and during CARBO-Europe exp.)
- Isba Diffusion?

- Developments and perspectives on
 - Surface
 - Shallow clouds and Fog
 - Dynamics/Physics coupling

FOG: Comparison COBEL - AROME 1D on Paris-CdG international airport

COBEL (Bergot et al., 2005): **1D operational** prediction model of **fog and low clouds** on a few **airports**.

<u>Characteristics</u>: - High vertical resolution

- Local assimilation scheme
- Physics adapted to the low clouds :
 - Turbulence : same 1D TKE scheme. A mixed of mixing length (Bougeault-Lacarrere and Estournel)
 - Microphysics: Warm microphysics without rain and imposed fall velocity for droplets
 - Surface : ISBA-DIFFUSION vegetation scheme (7 layers) (ISBA-3L in AROME)
 - Radiation scheme : Quite similar but more numerous spectral bands

QUESTION: In the same initial conditions, is AROME-1D able to produce the same forecast quality? Impacts of: - the vertical resolution

- the differences in the physics

For simplicity, study leaded with MESO-NH (As 1D, same conclusions as for AROME) Evaluation leaded on 2 winters

-> with same vertical resolution and same surface options Meso-NH and COBEL are close

Impact of the vertical resolution with MESO-NH/AROME 1D

COBEL vertical levels	Current AROME (L60)	2013 possible AROME (L113)
0,25	-	-
1,075	-	-
2,35	-	-
3,895	-	-
5,76	-	5,205
8,015	-	-
10,745	-	-
14,045	-	16,277
18,035	18,07	-
22,865	-	-
28,705	-	29,15
35,765	-	-
44,305	40,73	44,24
54,635	-	-
67,13	71	61,408
82,24	-	-
100,515	-	101,755
122,615	-	124,9
149,34	156,44	149,97
181	-	176,96
220,756	211,52	205,86

Huge impact on the formation with delay or absence of formation with L60.

Significative improvements with L113

Smaller impact on dissipation (not shown)

Impact of the physics

Significative differences between ISBA-DIFFUSION (Explicite diffusion, 7 soil layers) and ISBA-3L (Force-Restore, 3 soil layers): soil saturation too rapid with ISBA-3L -> Advance on the fog formation

Current ICE3 microphysics adapted to the fog

No major differences due to different mixing lengths in the turbulence

QUESTION: In the same initial conditions, is AROME-1D able to produce the same forecast quality?

FIRST ANSWER: YES, IF vertical resolution is finer, and explicit diffusion vegetation scheme

Perspectives on shallow convection & cloud scheme

- Improve cumulus scheme :
 - Test 2 new detrainment/entrainment (Wim De Rooy and Rio et al.) in clouds in our MassFlux scheme
 - New statistical cloud scheme (explicitly separating cumulus contribution), double gaussian PDF (S. Riette continue the work of E. Perraud's PhD)
- Validate AROME clouds modifications against :
 - Surface downwards solar radiation
 - Cloud experiments databases
 - Scores with satellite images

- Developments and perspectives on
 - Surface
 - Shallow clouds and Fog
 - Dynamics/Physics coupling

First tests of modification of Semi-Lagrangian scheme in AROME Sylvie Malardel (ECMWF), Didier Ricard (GAME-CNRM)

- Purpose: a more conservative scheme (via modifications of SL interpolators)
- Implementation in AROME: → Test on idealized cases: warm bubble experiments
 - → Test on real cases: convective cells over plain (11 April 2007)

First tests of modification of Semi-Lagrangian scheme in AROME Sylvie Malardel (ECMWF), Didier Ricard (GAME-CNRM)

- Purpose: a more conservative scheme (via modifications of SL interpolators)
- Implementation in AROME: → Test on idealized cases: warm bubble experiments
 - → Test on real cases: convective cells over plain (11 April 2007)

- Developments and perspectives on :
 - Surface
 - Shallow clouds and Fog
 - Dynamics/Physics coupling

To finish ...

Participation to the BLLAST campain :

(Boundary Layer Late Afternoon and Sunset Turbulence)

15 June- 15 July around Lannemezan (SW of France) (http://www.aero.obs-mip.fr) To study the transition from the mixed layer convective boundary layer to a residual layer overlying a stably-stratified surface layer in late afternoon

