A Complex Wavelet representation of Error Covariances in ALADIN 3d-Var

Alex Deckmyn

KMI, Belgium

Krakow, April 13, 2010

Contents

- Introduction
- A complex wavelet approach in 1+1 dimensions
- Full 3d implementation: first experiments
- Conclusions

Variational data assimilation

■ In 3 dimensions:

$$J(\mathbf{x}) = \frac{1}{2}(\mathbf{x} - \mathbf{x}^b)^T \mathbf{B}^{-1}(\mathbf{x} - \mathbf{x}^b) + \frac{1}{2}(\mathbf{H}\mathbf{x} - \mathbf{y})^T \mathbf{R}^{-1}(\mathbf{H}\mathbf{x} - \mathbf{y}),$$

- H is the observation operator. B and R are the covariance matrices of the background and observation errors, respectively.
- Formal exact solution:

$$\mathbf{x}^a = \mathbf{x}^b + \mathbf{B}\mathbf{H}^T \left(\mathbf{H}\mathbf{B}\mathbf{H}^T + \mathbf{R}\right)^{-1} \left(\mathbf{y} - \mathbf{H}\mathbf{x}^b\right)$$

■ B describes how one observation influences the analysis in the neighbourhood.

Background Error Covariance

■ The matrix **B** of background error covariances is vital to most assimilation methods.

- Heterogeneous, anisotropic structure functions (and often noisy).
- May be estimated in many ways, either statically or day by day (ensemble).

 A Complex Wavelet representation of Error Covariances in ALADIN 3d-Var p. 4

Simplifying B

- B is much too large as a full matrix.
- A diagonal matrix requires much less memory (and inverting it is trivial).
- If we represent B in grid point space, the diagonal represents the error variance at every grid point. The correlation of errors in different points is completely ignored.

Diagonalising B

- We can represent our background field in spectral co-ordinates: $\mathbf{x}_f = \mathbf{F}\mathbf{x}$.
- The B matrix in Fourier space is $\mathbf{B}_f = \mathbf{F}\mathbf{B}\mathbf{F}^*$.
- If we diagnolise \mathbf{B}_f , the covariance matrix in grid point space becomes $\tilde{\mathbf{B}} = \mathbf{F}^* \mathbf{B}_f \mathbf{F}$
- A diagonal matrix in Fourier space corresponds to homogeneous structure functions in grid space.
- One may combine these 2 representations $\mathbf{B} = \mathbf{D}_g \mathbf{F}^* \mathbf{C}_f \mathbf{F} \mathbf{D}_g$, where \mathbf{D}_g represents the standard deviation and \mathbf{C}_f the correlations.

Spectral diagonalisation

Spectral diagonalisation of B gives homogeneous correlation functions:

- One "average" structure function for the whole domain.
- Can we do better than this?

Introducing wavelets

- M. Fisher (2001) introduced the idea of representing B in wavelet co-ordinates.
- For the *global* model IFS used at ECMWF he introduced a set of non-orthogonal, band-limited wavelets.
- No longer an orthogonal basis, but a tight frame.

A first (naive) approach

■ Using 1 single orthonormal basis of (Meyer) wavelets, the variance (diagonal of B) in grid point space becomes:

■ The wavelet transform & diagonalisation introduce inacceptable artifacts.

A Complex Wavelet representation of Error Covariances in ALADIN 3d-Var – p. 9

A hybrid Meyer approach

- In Deckmyn & Berre (2005) wavelets were combined with grid point and Fourier.
- Use every basis for its strongest points:
 - Grid space: strictly local (variance)
 - Fourier space: average correlation function
 - Wavelet space: local differences from average

$$\mathbf{B} = \mathbf{D}_g^* \mathbf{F}^* \mathbf{D}_f^* (\mathbf{F}^{-1})^* \mathbf{W}^* \mathbf{B}_w \mathbf{W} \mathbf{F}^{-1} \mathbf{D}_f \mathbf{F} \mathbf{D}_g,$$

A hybrid Meyer approach

The length scale (whidth of the local correlation function $L^2 \approx \frac{-2\rho}{\nabla^2 \rho}$) becomes:

- In fact a clearer image than the noisy original!
- Quite cumbersome. A lot of calculations for relatively small gain.

Complex wavelets

- Introduced by N. Kingsbury (2001).
- 2 separate ("Q-shift dual tree") orthonormal wavelet transforms, that can be interpreted as real and imaginary components (\approx windowed cos & sin)

- Approximate shift invariant → much less artifacts!
- Limited redundancy of 2:1.

Complex wavelets

- The two wavelet filters are about 1/2 sample apart.
- To achieve this, the first stage of W_2 in fact uses a different filter.
- The complex wavelet transform $\mathbf{W} = \mathbf{W}_1 + i\mathbf{W}_2$ (or, equivalently, the combination of \mathbf{W}_1 and \mathbf{W}_2 as a set of 2N real functions) is not orthonormal, but a tight frame of multiplicity 2.
- The two wavelets are in fact the reverse of each other!
- \blacksquare \mathbf{B}_w is a complex, hermitian $N \times N$ matrix.

1D Complex wavelets

A synthetic 1D example: 1D structure functions, original (dotted lines) and modelled with complex wavelets (bold).

Variance tends to be underestimated in regions with large length scales. This has also been observed by other researchers.

1D Complex wavelets

Because the covariances are complex (the real part at level 1 can be correllated to the imaginary part at level 2), the diagonal B can still represent tilted structures, with some limitations.

A Complex Wavelet representation of Error Covariances in ALADIN 3d-Var – p. 15

Non-periodic boundaries?

- A single wavelet transform allowing symmetric boundaries, must be symmetric and odd length.
- (Anti-)symmetric wavelets can not be orthogonal (except the Haar wavelet).
- For the complex wavelets, symmetric wavelets are made possible by the combination of two inverse wavelets. The "errors" at the periodic boundaries thus compensate. BUT the first (smallest) scale needs a different wavelet.
- Kingsbury uses a symmetric, non-orthogonal wavelet. Others propose an orthogonal, even length, almost-symmetric filter, but this only allows periodic boundaries.

Non-periodic: solution

- Consider not the original domain X[1..N], but the doubling X[1..N, N..1], which is periodic by definition.
- On this domain, find an orthogonal almost-symmetric & odd length wavelet for the first stage. Such a wavelet existed in literature, but was hard to find.
- Use Kingsbury's wavelet on the next stages.
- Elements 1..N are the real part, the second half are the corresponding imaginary parts.
- So the resulting solution is no longer a combination of 2 orthogonal wavelets, but 1 transform on the doubled domain!

 A Complex Wavelet representation of Error Covariances in ALADIN 3d-Var p. 17

2D complex wavelets

- Tensor products of the 2 dual-tree wavelets yields 4 different orthonormal 2D wavelet transforms, each of which has 3 different sectors.
- By taking certain linear combinations of these wavelet functions, we get a new (non-orthogonal) set of complex wavelets:

$$\Psi_l^1 = (\psi_l^{11} + \psi_l^{22}) + i(\psi_l^{12} - \psi_l^{21}),
\Psi_l^2 = (\psi_l^{12} + \psi_l^{21}) + i(\psi_l^{11} - \psi_l^{22}).$$

2D complex wavelets – orientations

Real part, imaginary part and modulus of the 2D wavelets:

 \blacksquare \rightarrow 6 distinct directional components at every scale!

Complex wavelet transform

If we use these directional wavelets to diagonalise B:

3-dimensional covariances

- We now move on to an $N \times N \times L$ grid.
- Vertical covariances are best treated in a different manner: e.g. they are not evenly spaced. Also, L is usually much smaller than N (e.g. 46).
- In the standard approach, B becomes block-diagonal: for every 2D component (spectral or wavelet) we get a "vertical" $L \times L$ block.
- In the assimilation code, the eigenvectors of these blocks are computed numerically.

Reducing memory cost

- For 1 field, we still have $4N^2 \times L^2$ components, which is too much in an operational setting.
- In ALADIN, the spectral components are also averaged by (total) wave number. So in 2D, there are only O(N) components left.
- We introduced 2 reductions.
- In the horizontal components, we may eliminate the smallest scales.

Reducing the vertical matrices

- For every scale and orientation (denoted l) we calculate the *mean vertical matrix* $\overline{\mathbf{B}}_l$.
- This matrix can be rewritten in its eigenbasis \overline{E}_l :

$$\overline{\mathbf{B}}_l = \overline{E}_l \overline{\Lambda}_l \overline{E}_l^*$$

We then assume that the basis of eigenvectors \overline{E}_l is representative for all local eigenbases. Thus we write for location i:

$$\mathbf{B}_{l,i} \approx \overline{E}_l \Lambda_{l,i} \overline{E}_l^*,$$

where
$$\Lambda_{l,i} = diag(\overline{E}_l^* \mathbf{B}_{l,i} \overline{E}_l)$$
.

Reducing the vertical matrices

- This averageing of vertical components has a rather strong smoothing effect. Some detail (especially close to the surface) is lost.
- This can be (partially) solved by taking out the variance before the reduction, thus only reducing the correlations, which are usually smoother.

Implementation in ALADIN

- Full wavelet treatment of unbalanced part of B. The statistical balance is still in Fourier space.
- Currently, only periodic wavelet version coded.
- Can be turned on with the switch LJBWAVELET.
- Still very experimental.
- B_wav is calculated offline using a wavelet version of FESTAT.

Implementation in ALADIN

- Wavelet domain must contain enough powers of 2 (so extend $300 \rightarrow 320$)
- For the balance part, we go back to Fourier space.
- This requires bi-periodicisation at every iteration.
- Not only expensive, also no simple adjoint.
- Still causes noise unless we use the same (larger) extension zone for Fourier space as well.

Single T obs at 1000hPa

T obs at 1000 hPa T increment at lev 46 B-SPEC

T obs at 1000 hPa T increment at lev 46 B-WAV

Single T obs at 1000hPa

Problem with wind increment?

T obs at 300 hPa U increment lev 20 B-SPEC

T obs at 300 hPa U increment lev 20 B-WAV

Conclusions: advantages

- Using wavelet transform we can simplify the B matrix while maintaining its basic local and spatial (scale) features.
- Compared to standard ODWT, dual-tree complex wavelets have several advantages:
 - Approximate shift invariance (and hence reduced "artifacts").
 - Improved directional resolution,
 - possibility of symmetric boundaries,
 - A phase that allows for tilted structure functions in 3D... But maybe it is removed by the vertical approximations...

To do

- Find out what is happening with the wind increments.
- Implement non-periodic transforms in ALADIN.
- Much more experimenting.
- Solve remaining noise issues & normalisation of variances.
- Better vertical representation (tilt,...)?