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Variational data assimilation

In 3 dimensions:

J(x) =
1

2
(x−xb)TB−1(x−xb)+

1

2
(Hx−y)TR−1(Hx−y),

H is theobservation operator. B andR are the
covariance matricesof the background and
observation errors, respectively.

Formal exact solution:
xa = xb + BHT

(

HBHT + R
)−1

(y − Hxb)

B describes how one observation influences the
analysis in the neighbourhood.
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Background Error Covariance

The matrixB of background error covariances is
vital to most assimilation methods.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

T−41 correlations

Heterogeneous, anisotropic structure functions (and
often noisy).

May be estimated in many ways, either statically or
day by day (ensemble). A Complex Wavelet representation of Error Covariances in ALADIN 3d-Var – p. 4



Simplifying B

B is much too large as a full matrix.

A diagonal matrix requires much less memory (and
inverting it is trivial).

If we representB in grid point space, the diagonal
represents the errorvarianceat every grid point.
The correlation of errors in different points is
completely ignored.
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DiagonalisingB

We can represent our background field inspectral
co-ordinates:xf = Fx.

TheB matrix in Fourier space isBf = FBF∗.

If we diagnoliseBf , the covariance matrix in grid
point space becomes̃B = F∗BfF

A diagonal matrix in Fourier space corresponds to
homogeneousstructure functions in grid space.

One may combine these 2 representations
B = DgF

∗CfFDg, whereDg represents the
standard deviation andCf the correlations.
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Spectral diagonalisation

Spectral diagonalisation ofB giveshomogeneous
correlation functions:

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

One “average” structure function for the whole
domain.

Can we do better than this?
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Introducing wavelets

M. Fisher (2001) introduced the idea of representing
B in wavelet co-ordinates.

For theglobal model IFS used at ECMWF he
introduced a set of non-orthogonal, band-limited
wavelets.

No longer an orthogonal basis, but atight frame.
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A first (naive) approach

Using 1 single orthonormal basis of (Meyer)
wavelets, the variance (diagonal ofB) in grid point
space becomes:

The wavelet transform & diagonalisation introduce
inacceptable artifacts. A Complex Wavelet representation of Error Covariances in ALADIN 3d-Var – p. 9



A hybrid Meyer approach

In Deckmyn & Berre (2005) wavelets were
combined with grid point and Fourier.

Use every basis for its strongest points:
Grid space:strictly local (variance)
Fourier space:average correlation function
Wavelet space:local differences from average

B = D∗
gF

∗D∗

f(F
−1)∗W∗BwWF−1DfFDg,
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A hybrid Meyer approach

The length scale (whidth of the local correlation
functionL2

≈
−2ρ
∇2ρ

) becomes:

In fact a clearer image than the noisy original!

Quite cumbersome. A lot of calculations for
relatively small gain.
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Complex wavelets

Introduced by N. Kingsbury (2001).

2 separate (“Q-shift dual tree”) orthonormal wavelet
transforms, that can be interpreted as real and
imaginary components (≈ windowedcos & sin)
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Approximateshift invariant→ much less artifacts!

Limited redundancy of 2:1.
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Complex wavelets

The two wavelet filters are about 1/2 sample apart.

To achieve this, the first stage ofW2 in fact uses a
different filter.

The complex wavelet transformW = W1 + iW2

(or, equivalently, the combination ofW1 andW2 as
a set of 2N real functions) is not orthonormal, but a
tight frame of multiplicity 2.

The two wavelets are in fact the reverse of each
other!

Bw is a complex, hermitianN ×N matrix.
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1D Complex wavelets

A synthetic 1D example: 1D structure functions,
original (dotted lines) and modelled with complex
wavelets (bold).

Variance tends to be underestimated in regions with
large length scales. This has also been observed by
other researchers.
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1D Complex wavelets

Because the covariances are complex (the real part
at level 1 can be correllated to the imaginary part at
level 2), the diagonalB can still represent tilted
structures, with some limitations.
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Implied structure functions
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Non-periodic boundaries?

A single wavelet transform allowing symmetric
boundaries, must be symmetric and odd length.

(Anti-)symmetric wavelets can not be orthogonal
(except the Haar wavelet).

For the complex wavelets, symmetric wavelets are
made possible by the combination of two inverse
wavelets. The “errors” at the periodic boundaries
thus compensate. BUT the first (smallest) scale
needs a different wavelet.

Kingsbury uses a symmetric, non-orthogonal
wavelet. Others propose an orthogonal, even length,
almost-symmetric filter, but this only allows periodic
boundaries.
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Non-periodic: solution

Consider not the original domainX[1..N ], but the
doublingX[1..N,N..1], which is periodic by
definition.

On this domain, find an orthogonal
almost-symmetric & odd length wavelet for the first
stage. Such a wavelet existed in literature, but was
hard to find.

Use Kingsbury’s wavelet on the next stages.

Elements 1..N are the real part, the second half are
the corresponding imaginary parts.

So the resulting solution is no longer a combination
of 2 orthogonal wavelets, but 1 transform on the
doubled domain! A Complex Wavelet representation of Error Covariances in ALADIN 3d-Var – p. 17



2D complex wavelets

Tensor products of the 2 dual-tree wavelets yields4
different orthonormal 2D wavelet transforms, each
of which has 3 different sectors.

By taking certain linear combinations of these
wavelet functions, we get a new (non-orthogonal)
set of complex wavelets:

Ψ1

l = (ψ11

l + ψ22

l ) + i(ψ12

l − ψ21

l ),

Ψ2

l = (ψ12

l + ψ21

l ) + i(ψ11

l − ψ22

l ).
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2D complex wavelets – orientations

Real part, imaginary part and modulus of the 2D
wavelets:

→6 distinct directional components at every scale!
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Complex wavelet transform

If we use these directional wavelets to diagonalise
B:
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3-dimensional covariances

We now move on to anN ×N × L grid.

Vertical covariances are best treated in a different
manner: e.g. they are not evenly spaced. Also,L is
usually much smaller thanN (e.g. 46).

In the standard approach,B becomes
block-diagonal: for every 2D component (spectral or
wavelet) we get a “vertical”L× L block.

In the assimilation code, the eigenvectors of these
blocks are computed numerically.
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Reducing memory cost

For 1 field, we still have4N2
× L2 components,

which is too much in an operational setting.

In ALADIN, the spectral components are also
averaged by (total) wave number. So in 2D, there are
onlyO(N) components left.

We introduced 2 reductions.

In the horizontal components, we may eliminate the
smallest scales.
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Reducing the vertical matrices

For every scale and orientation (denotedl) we
calculate themean vertical matrix Bl.

This matrix can be rewritten in its eigenbasisEl:

Bl = ElΛlE
∗

l

We then assume that the basis of eigenvectorsEl is
representative for all local eigenbases. Thus we
write for locationi:

Bl,i ≈ ElΛl,iE
∗

l ,

whereΛl,i = diag(E
∗

l Bl,iEl).
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Reducing the vertical matrices

This averageing of vertical components has a rather
strong smoothing effect. Some detail (especially
close to the surface) is lost.

This can be (partially) solved by taking out the
variance before the reduction, thus only reducing the
correlations, which are usually smoother.
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Implementation in ALADIN

Full wavelet treatment ofunbalanced partof B. The
statistical balance is still in Fourier space.

Currently, only periodic wavelet version coded.

Can be turned on with the switch LJBWAVELET.

Still very experimental.

B_wav is calculated offline using a wavelet version
of FESTAT.
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Implementation in ALADIN

Wavelet domain must contain enough powers of 2
(so extend300 → 320)

For the balance part, we go back to Fourier space.

This requires bi-periodicisation at every iteration.

Not only expensive, also no simple adjoint.

Still causes noiseunless we use the same (larger)
extension zone for Fourier space as well.
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Single T obs at 1000hPa

 
 

T obs at 1000 hPa
T increment at lev 46

B−SPEC

 
 

T obs at 1000 hPa
T increment at lev 46

B−WAV
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Single T obs at 1000hPa

110 120 130 140 150 160 170 180

45
40

35
30

T obs at 1000hPa
Vertical slice of WAV and SPEC increments
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Problem with wind increment?

 
 

T obs at 300 hPa
U increment lev 20

B−SPEC

 
 

T obs at 300 hPa
U increment lev 20

B−WAV

A Complex Wavelet representation of Error Covariances in ALADIN 3d-Var – p. 29



Conclusions: advantages

Using wavelet transform we can simplify theB
matrix while maintaining its basic local and spatial
(scale) features.

Compared to standard ODWT, dual-tree complex
wavelets have several advantages:

Approximate shift invariance (and hence reduced
“artifacts”).
Improved directional resolution,
possibility of symmetric boundaries,
A phase that allows for tilted structure functions
in 3D... But maybe it is removed by the vertical
approximations...
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To do

Find out what is happening with the wind
increments.

Implement non-periodic transforms in ALADIN.

Much more experimenting.

Solve remaining noise issues & normalisation of
variances.

Better vertical representation (tilt,...)?
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